Towards a standard gamma-ray burst: tight correlations between the prompt and the afterglow plateau phase emission

M. G. Dainotti,1⋆ M. Ostrowski1★ and R. Willingale2★

1Observatorium Astronomiczne, Uniwersytet Jagiellonski, ul. Orla 171, 31-501 Krakow, Poland
2Department of Physics and Astronomy, University of Leicester, University Road, Leicester LE1 7RH

Accepted 2011 July 13. Received 2011 July 13; in original form 2011 April 6

ABSTRACT
To find out the astrophysical processes responsible for gamma-ray burst (GRB), it is crucial to discover and understand the relations between their observational properties. This work was performed in the GRB rest frames using a sample of 62 long Swift GRBs with known redshifts. Following the earlier analysis of the correlation afterglow luminosity (L_a^*) and peak time (T_a^*), we extend it to correlations between the afterglow and the prompt emission GRB physical parameters. We find a tight physical scaling between the mentioned afterglow luminosity L_a^* and the prompt emission mean luminosity $\langle L_p^* \rangle_{45} \equiv E_{iso}/T_{45}^2$. The distribution, with the Spearman correlation coefficient reaching 0.95 for the most accurately fitted subsample, scales approximately as $L_a^* \propto \langle L_p^* \rangle_{45}^{0.7}$. We have also analysed correlations of L_a^* with several prompt emission parameters, including the isotropic energy E_{iso} and the peak energy in the νF_ν spectrum, E_{peak}. As a result, we obtain significant correlations also between these quantities, discovering that the highest correlated GRB subsample in the afterglow analysis leads also to the highest prompt–afterglow correlations. Such events can be considered to form a sample of standard GRBs for astrophysics and cosmology.

Key words: radiation mechanisms: non-thermal – gamma-ray burst: general.

1 INTRODUCTION
To better understand the processes responsible for gamma-ray bursts (GRBs) and possibly to create a new GRB-based cosmological standard candle, one should find out the universal properties by looking for strict relations among their observables. But, GRBs seem to be everything but standard candles, with their energetics spanning over 8 orders of magnitude. However, the reported correlations of $E_{iso}^* - E_{peak}$ (Lloyd & Petrosian 1999; Amati et al. 2002; Amati, Frontera & Guidorzi 2009), $E_{\gamma}^* - E_{peak}$ (Ghirlanda, Ghisellini & Lazzati 2004; Ghirlanda, Ghisellini & Firmani 2006), $L_{\nu} - E_{\nu}$ (Schaefer 2003; Yonekotu 2004), $L_{\nu} - V$ (Fenimore & Ramirez-Ruiz 2000; Riechart et al. 2001) and other proposed luminosity indicators (Norris, Marani & Bonnell 2000; Liang & Zhang 2005, 2006) raised the expectation of a quick progress in the field. The problem of large data scatter in the considered luminosity relations (Butler, Kocevski & Bloom 2009; Yu, Qi & Lu 2009) and a possible impact of detector thresholds on cosmological standard candles (Shahmoradi & Nemiroff 2009) are also debated issues (Cabrera et al. 2007). The underlying problem of the scatter in all the correlations is that it is larger than the spread expected of the z dependence alone. GRBs can be seen from a large fraction of the visible Universe, up to $z = 9.4$ (Cucchiara et al. 2011). The luminosity spread due to, exclusively, its luminosity distance squared dependence gives for the limiting redshifts a factor of $D_L^2(9.4)/D_L^2(0.085) = 6.4 \times 10^7$ while the actual spread in luminosity is 8 orders of magnitude $10^{46} - 10^{54}$ erg s$^{-1}$. It is not clear what is responsible for such a large dynamic range.

Among various attempts, Dainotti, Cardone & Capozziello (2008) have proposed a way to standardize GRBs with the discovery of $\log L_a^* - \log T_a^*$ (LT) anticorrelation, where $L_a^* \equiv L_a^*(T_a^*)$ is an isotropic X-ray luminosity in the time T_a^*, the transition time separating the plateau and the power-law decay afterglow phases and, henceforth, we use the index ‘a’ to indicate quantities measured in the GRB rest frame.1 We have presented (Dainotti et al. 2010) an analysis revealing that the long GRBs with smaller values of the error parameters in the afterglow are much more tightly LT correlated as compared to the full sample of long GRBs. The LT correlation has been already applied to derive cosmological parameters (Cardone, Capozziello & Dainotti 2009; Cardone et al. 2010). Moreover, one may note that an analogous LT relation was derived phenomenologically (Ghisellini et al. 2009; Yamazaki 2009) and

1 Note a change of notation with respect to our previous papers, where we used the symbol L_X^a – without an index ‘a’ – to indicate $L_X(T_a)$. © 2011 The Authors

it is also a useful test for the models (Cannizzo & Gehrels 2009; Cannizzo, Troja & Gehrels 2011; Dall’Osso et al. 2011).

GRBs have been traditionally classified as short/hard (\(T_r < 2 \, \text{s}\)) and long/soft (\(T_r > 2 \, \text{s}\)), where \(T_r\) usually denotes the time duration of the GRB (Kouveliotou et al. 1993). However, the existence of an intermediate GRB class (IC), as an apparent (sub)class of bursts with a short initial pulse followed by an extended low-intensity emission phase has been revealed (Norris & Bonnell 2006). It requires a revision of the above simple scheme. In our analysis we consider only long GRBs, but on some plots with GRB distributions we also show the IC class events demonstrating remarkable differences as compared to the long bursts.

Here we study correlations between the afterglow luminosity parameter \(L^*_a\) and the energetics and mean luminosity of the prompt emission. We demonstrate the existence of significant correlations among the afterglow plateau and the prompt emission phases, which reach a maximum for the Swift light curve well fitted by a simple analytical expression proposed by Willingale et al. (2007). The obtained high correlations indicate the expected physical coupling between the GRB prompt and afterglow energetics, which is quite tight for the well-fitted afterglow light-curve GRBs [called in Dainotti et al. (2010) the upper envelope]. We also find that the prompt–afterglow correlations are more significant if one uses the prompt emission mean luminosity instead of the energy \(\mathcal{E}_{\text{iso}}\).

Below, the fitted power-law relation between the analysed quantities is characterized by the brightest 45 per cent of the total counts above the background (Riechert et al. 2001) and \(T_r\) is the fitted transition time in which the exponential decay in the prompt phase changes to a power-law decay (Willingale et al. 2007). Here we define \(\langle L^*_p \rangle_{45} = \mathcal{E}_{\text{iso}}/T^*_r\), \(\langle L^*_p \rangle_{90} = \mathcal{E}_{\text{iso}}/T^*_r\) and \(\langle L^*_p \rangle_{T_r} = \mathcal{E}_{\text{iso}}/T_r\) and analyse correlations between logarithms of the prompt emission parameters \(\mathcal{E}_{\text{iso}}, \langle L^*_p \rangle_{45}, \langle L^*_p \rangle_{90}, \langle L^*_p \rangle_{T_r}, \mathcal{E}_{\text{peak}}, V\) and the parameters \(L^*_a\) and \(T^*_a\) characterizing the afterglow light curve.

The GRB sample used in the analysis is composed of all afterglows with known redshifts detected by Swift from 2005 January up to 2009 April (Dainotti et al. 2010), with the light curve positions presented in the Swift/UVOT catalog version 4.2 (Evans et al. 2009; Dainotti et al. 2010). For \(T_r > 2 \, \text{s}\), we adopt a flat Friedman–Robertson–Walker cosmological model with \(H_0 = 71 \, \text{km s}^{-1} \, \text{Mpc}^{-1}\) and \(\Omega_m = 0.3\) [see the online Table 1 at http://www.oa.uj.edu.pl/M.Dainotti/GRB2011].

2 DATA SELECTION AND ANALYSIS

We can estimate the characteristic luminosity of a burst using different characteristic times, \(T_a, T_{90}\) and \(T_{45}\), where \(T_{90}\) is the time interval during which the background-subtracted cumulative counts increase from 5 to 95 per cent (Kouveliotou et al. 1993), \(T_{45}\) is the

!!Table 1. A data list for GRBs with known redshifts analysed in this paper: 62 long GRBs with \(u < 4\) (upper part of the table) and 11 IC GRBs (lower part of the table). The U0.095 subsample is indicated by ash attached to their \(u\) values. The full version of this table is present at http://www.mpe.mpg.de/~jcg/grb.html.!!

<table>
<thead>
<tr>
<th>(\text{Id}_{\text{GRB}})</th>
<th>(z)</th>
<th>betaa</th>
<th>(F \times x) (erg cm(^{-2}) s(^{-1}))</th>
<th>(\log T_{90}) (s)</th>
<th>(\log T_{45}) (s)</th>
<th>(\log L^*_a) (erg s(^{-1}))</th>
<th>(\log E_{\text{iso}}) (erg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>050315</td>
<td>1.95</td>
<td>0.89 ± 0.04</td>
<td>4.58E-12 ± 1.97E-12</td>
<td>1.510 ± 0.014</td>
<td>0.816 ± 0.018</td>
<td>1.010 ± 0.037</td>
<td>3.92 ± 0.17</td>
</tr>
<tr>
<td>050318</td>
<td>1.44</td>
<td>0.93 ± 0.18</td>
<td>1.00E-08 ± 1.41E-08</td>
<td>1.100 ± 0.001</td>
<td>0.157 ± 0.024</td>
<td>-1.770 ± 0.132</td>
<td>1.62 ± 0.59</td>
</tr>
<tr>
<td>050319</td>
<td>3.24</td>
<td>0.85 ± 0.20</td>
<td>3.18E-12 ± 1.78E-12</td>
<td>1.560 ± 0.005</td>
<td>0.452 ± 0.032</td>
<td>0.260 ± 0.099</td>
<td>4.04 ± 0.16</td>
</tr>
<tr>
<td>050401</td>
<td>2.9</td>
<td>1.00 ± 0.04</td>
<td>3.87E-11 ± 1.33E-11</td>
<td>0.945 ± 0.006</td>
<td>0.125 ± 0.033</td>
<td>-1.480 ± 0.316</td>
<td>3.28 ± 0.14</td>
</tr>
<tr>
<td>050416A</td>
<td>0.65</td>
<td>0.99 ± 0.10</td>
<td>1.06E-11 ± 5.62E-12</td>
<td>2.254 ± 0.044</td>
<td>-0.841 ± 0.041</td>
<td>0.042 ± 0.105</td>
<td>2.97 ± 0.21</td>
</tr>
<tr>
<td>050505</td>
<td>4.26</td>
<td>1.09 ± 0.04</td>
<td>3.93E-12 ± 3.84E-12</td>
<td>1.606 ± 0.007</td>
<td>0.260 ± 0.036</td>
<td>0.137 ± 0.082</td>
<td>3.67 ± 0.33</td>
</tr>
<tr>
<td>050603</td>
<td>2.82</td>
<td>0.91 ± 0.10</td>
<td>1.10E-12 ± 6.64E-13</td>
<td>0.409 ± 0.026</td>
<td>0.378 ± 0.027</td>
<td>-0.230 ± 0.199</td>
<td>4.25 ± 0.25</td>
</tr>
<tr>
<td>050730</td>
<td>3.97</td>
<td>0.52 ± 0.27</td>
<td>6.59E-11 ± 1.12E-11</td>
<td>1.080 ± 0.021</td>
<td>0.626 ± 0.021</td>
<td>0.656 ± 0.052</td>
<td>3.44 ± 0.04</td>
</tr>
<tr>
<td>050801</td>
<td>1.56</td>
<td>1.43 ± 0.30</td>
<td>4.23E-11 ± 1.62E-11</td>
<td>0.363 ± 0.036</td>
<td>-0.408 ± 0.043</td>
<td>0.690 ± 0.197</td>
<td>2.17 ± 0.15</td>
</tr>
</tbody>
</table>

© 2011 The Authors, MNRAS 418, 2202–2206

Downloaded from http://mnras.oxfordjournals.org at Leicester University Library on November 11, 2015
as defined in Dainotti et al. (2010). One note that it is also a relative parameter \(\rho \) among the largest one consisting of 62 long GRBs with light curves. The latter depends on the errors and the number of data points of all the sample (Fig. 1). The fitted distribution reads log \(L^* \) a non-parametric measure of statistical dependence between two variables.

As a measure of the fit accuracy \((L^*_a, T^*_a) \) we use the error parameter \(u \):

\[
u \equiv \sqrt{\sigma^2_{L^*_a} + \sigma^2_{T^*_a}}\]

as defined in Dainotti et al. (2010). One note that it is also a relative error in measuring the X-ray energy scale \(L^*_a \times T^*_a \). The error parameter \(u \) is determined by several factors, such as the errors of the individual data points and their number, but particularly by its distribution near the break time \(T^*_a \). This error parameter is a better discriminator for the LT correlation than chi square, because the latter depends on the errors and the number of data points of all the light curves.

In this study the limiting long-GRB subsamples are the following: the largest one consisting of 62 long GRBs with \(u \leq 4 \), hereafter called ‘U4’; and the subsample that was previously called the upper envelope, consisting of eight GRBs with the smallest afterglow fit errors, \(u \leq 0.095 \), hereafter called ‘U0.095’. We also analyse selected intermediate subsamples with the maximum \(u \) values decreasing from 4.0 to 0.095, in an attempt to reveal systematic variations in the studied correlations. This choice follows our previous paper, Dainotti et al. (2010), and the discussion of the systematics issues has been already presented in Dainotti et al. (2011).

3 Prompt–Afterglow Correlations

The derived log \(L^*_a \) \(\log (L^*_a)_{45} \) distribution is presented for the U4 subsample of 62 long GRBs in Fig. 1, where the U0.095 subsample of eight GRBs with the most accurate determination of \(L^*_a \) and \(T^*_a \) is also indicated. The distribution illustrates a significant correlation of the considered luminosities, with the Spearman correlation coefficient, \(\rho \), equal to 0.64 for U4 but growing to 0.98 for U0.095 sample (Fig. 1). The fitted distribution reads log \(L^*_a \propto \log (L^*_a)_{45} \), with \(a = 0.67^{+0.14}_{-0.13} \) and \(0.73^{+0.16}_{-0.11} \) for U4 and U0.095 samples, respectively, agreeing with the fit errors. The other distributions considered in this study, involving \(E_{iso}, (L^*_a)_{90}, (L^*_a)_{10} \), instead of \((L^*_a)_{45} \) also show significant correlations, with the lowest \(u \) events forming – in all the cases – tightly correlated subsamples of the full distribution (Fig. 2). The resulting correlation coefficients, parameters \((a, b) \) of the fitted correlation lines and the respective probabilities, \(P = P(\rho \geq \rho_{
onsense{random}}) \) (Bevington & Robinson 2003), generated by chance in a random distribution, are presented in Table 2.

Fig. 2 illustrates the trend in a few tested ‘prompt–afterglow’ distributions to increase the correlation coefficient by selecting the GRBs with the most accurate determination of the plateau-phase parameters, as measured by the error parameter \(u \). The same trend was presented earlier (Dainotti et al. 2010) for the afterglow \((L^*_a, \log T^*_a) \) distribution. In the figure, e.g. we have data derived for 62 long GRBs for \(u = 4 \), 33 GRBs for \(u = 0.3 \), 19 GRBs for \(u = 0.15 \), 13 GRBs for \(u = 0.12 \) and eight GRBs left for the limiting \(u = 0.095 \). The prompt emission parameters \(E_{iso}, (L^*_a)_{90} \) and \((L^*_a)_{10} \), tested versus the afterglow luminosity \(L^*_a \) show significant correlations (cf. Table 2, and its full version in the Supporting Information), but one should note that the mean prompt emission luminosity, \((L^*_a)_{45} \), derived using the characteristic time-scale \(T^*_a \), provides the slightly...
Correlations between prompt and afterglow

Figure 3. Comparison of the characteristic time-scales for the GRB prompt emission for all the GRBs analysed in this paper. The green points are the IC GRBs, the red ones are the long GRBs with \(u \leq 0.095 \) and the black ones are the other long GRBs with \(u \leq 4 \). Upper panel: \(\log T_{90} \) versus \(\log T_{45} \) distribution. Lower panel: \(\log T_{p} \) versus \(\log T_{45} \) distribution. The reference lines are \(T_{90} = 2 T_{45} \) and \(T_{45} = T_{p} \) for the upper and lower panels, respectively.

higher value of the Spearman correlation coefficient for small \(u \) data points.\(^{3}\) One may also note that the correlations involving the considered mean prompt emission luminosities are higher than the one involving the isotropic energy \(E_{\text{iso}} \).

The GRB energy flux of the prompt emission phase is highly non-uniform and distributed non-evenly within the time \(T_{90} \) or \(T_{p} \), as compared to \(T_{45} \) (Fig. 3). Thus selecting different characteristic time-scales to derive the mean prompt luminosity is equivalent to considering different physical phases of the prompt emission variation. \(T_{45} \) puts a greater emphasis on the peaks of the luminosity, while \(T_{90} \) including periods when the emission is low or absent puts therefore more weight on the total elapsed time of the activity period.

Following the above comparison of the considered correlations, we conclude that the presence of tight correlations involving the prompt emission quantities for a small \(u \) subsample, defined from the afterglow light curves only, proves that such sample forms a well-defined physical class of standard GRBs with tight relations between their observational parameters, otherwise partly hidden within large scattered samples involving all the available events. In the considered standard GRBs the mechanism causing the prompt phase of the burst influences directly the afterglow plateau phase, as discussed in literature (Ghisellini et al. 2007; Liang, Zhang & Zhang 2007; Nava et al. 2007; Shao & Dai 2007; Troja et al. 2009; Racusin et al. 2009).

To better understand how the afterglow plateau phase properties are related to the instantaneous or averaged physical parameters of the prompt emission, we have investigated (see Table 2) the following additional distributions: \(E_{\text{iso}}-T_{90}^{*}, E_{\text{peak}}^{*}-L_{90}^{*}, E_{\text{peak}}^{*}-T_{90}^{*} \) and \(V-L_{90}^{*} \). For the \(E_{\text{peak}}^{*}-L_{90}^{*} \) distribution we obtain a significant correlation as one could expect from the known \(E_{\text{peak}}^{*}-E_{\text{iso}} \) correlation (Amati et al. 2009): \(\rho_{E_{\text{peak}}^{*}-L_{90}^{*}} = 0.54 \) for the U4 subsample, growing to 0.74 for the U0,095. We have also found a significant \(E_{\text{peak}}^{*}-L_{45}^{*} \) correlation, shown at the bottom of the Table 2 (for a similar correlation, see Collazzi & Schaefer 2008). Furthermore, since \(L_{90}^{*} \) is anticorrelated with \(T_{90}^{*} \), we derived the expected correlations involving the time-scale \(T_{90}^{*} \) for the distributions \(T_{90}^{*}-E_{\text{peak}}^{*} \) and \(T_{90}^{*}-E_{\text{iso}}^{*} \). We note that the correlations involving the time-scale \(T_{90}^{*} \) are weaker than the ones that correlate the prompt energetic and \(L_{90}^{*} \). Instead, for \(V-L_{90}^{*} \) we did not find any significant correlation or any clear trend for decreasing \(u \) subsamples (cf. Ramirez-Ruiz & Fenimore 1999; Lloyd-Romig & Ramirez-Ruiz 2002) for the \(V-E_{\text{peak}}^{*} \) correlation and analogous relations when these energies are transformed to the source rest frame. If one compares the correlation fit line inclinations, \(a \), given for the U4 and U0,095 (online Table 2) samples, one finds a good agreement – within the error bars – between these samples.

No significant correlations between \(L_{90}^{*} \) and the prompt emission quantities \(\langle L_{45}^{*}\rangle_{T_{45}}, \langle L_{45}^{*}\rangle_{u} \) and \(\langle L_{90}^{*}\rangle_{\text{iso}} \) exist for the \(u < 4 \) subsample of IC GRB afterglows, including 050724, 051221A, 060502, 070810, 070809, 070714 (Norris & Bonnell 2010) and 060912A (Levan, Jakobsson & Hurkett 2007), but the number of events is too small to draw any firm conclusion from this fact. Furthermore, for some of these bursts, the determination of the redshift is not so firm, therefore the conclusion of a lack of correlation on this subsample could change with an enlarged and more firm redshift sample.

4 FINAL REMARKS

In this paper we present new significant correlations between the characteristic luminosity of the afterglow plateau phase, \(L_{90}^{*} \), and the parameters that characterize the prompt emission, including the mean luminosities and the integral emitted energy. For the afterglow light curves which are well fitted by the Willingale’s phenomenological model, with most accurately determined \(L_{90}^{*} \) and \(T_{90}^{*} \) values, we find tight prompt–afterglow correlations in the analysed distributions. Thus, such events can be considered to form the standard GRB sample, to be used both for a detailed physical model discussion for GRB and, possibly, to work out the GRB-related cosmological standard candle. A progress in both issues requires an increase in the number of the well-fitted light curves, not a simple increase of the total number of GRBs with known redshifts.

Correlations between the physical properties of the prompt emission and the luminosity of the afterglow plateau reveal that mean (averaged in time) energetic properties of the prompt emission more directly influence the afterglow plateau phase as compared to \(E_{\text{iso}} \), providing new constraints for the physical model of the GRB explosion mechanism. The \((L_{90}^{*}, L_{45}^{*})_{T_{45}} \) correlation could suggest that the burst and afterglow arise from the same relativistic ejecta, if the energy of those ejecta determined the luminosity of both the prompt and the afterglow phases. Following such an interpretation, we have also studied the correlation between the burst prompt and the afterglow plateau characteristic energies, \(E_{\text{iso}} \) versus \(E_{a} \) (where \(E_{a} = L_{a}^{*} \times T_{a} \)), with a resulting weaker correlation: for U4 sample

\(^{3}\) It is notable that when comparing the times \(T_{90} \) and \(T_{45} \), the first one is more dependent on the BAT detector sensitivity limit (Willingale et al. 2010).
of 62 GRBs the Spearman correlation coefficient is 0.39, while for the U0.095 sample of eight GRBs it is 0.42.

No significant prompt–afterglow correlations were detected for the sample of IC GRBs, but the small number of registered events makes it difficult to draw any firm conclusion about the presence or absence of such correlations for the well-fitted IC light-curve shapes.

ACKNOWLEDGMENTS

This work made use of data supplied by the UK Swift Science Data Center at the University of Leicester. MGD and MO are grateful to the Polish Ministry of Science and Higher Education for support through the grant N N203 380336. We thank the anonymous referee for his/her useful comments.

REFERENCES

Spearman C., 1904, American J. Psychology, 15, 72

SUPPORTING INFORMATION

Additional Supporting Information may be found in the online version of this article:

Table 1. A data list for GRBs with known redshifts analysed in this paper.

Table 2. Spearman correlation coefficients ρ, and the random occurrence probability P, for the listed prompt–afterglow and prompt–prompt distributions.

Please note: Wiley-Blackwell are not responsible for the content or functionality of any supporting materials supplied by the authors. Any queries (other than missing material) should be directed to the corresponding author for the article.

This paper has been typeset from a TEX/LATEX file prepared by the author.