Specific Inhibition of Estrogen Receptor Alpha Function by Antisense Oligodeoxyribonucleotides

ANTHONY H. TAYLOR,1 J. HOWARD PRINGLE,2 STEPHEN C. BELL,1 and FAROOK AL-AZZAWI1

ABSTRACT

We have tested the effect of a range of antisense oligodeoxyribonucleotides (ODN) directed against the human estrogen receptor alpha (ERα) on ERα protein expression and function. Antisense ERα ODN transfected into the ERα-positive human breast carcinoma cell line MCF7-K2 showed variable responses dependent on the oligo used. The most active antisense ODN (oligo 7) decreased the levels of ERα protein by 61% as measured by Western blot analysis. Exogenous 17β-estradiol (17β-E2), but not 17α-E2, augmented this effect, with a threshold effect at 10^{-8} M 17β-E2. The inhibitory effect of antisense ERα oligo 7 was confirmed by measurement of functional ERα protein. β-17β-E2 binding to MCF7 cell extracts was inhibited to approximately 40% of control values in the presence of oligo 7. Antisense-transfected MCF7-K2 cell cultures produced a further 30% binding reduction in the presence of exogenous 17β-E2. An inhibitory effect on 17β-E2-dependent cell function was confirmed by the demonstration that ERα oligo 7-transfected MCF7-K2 cells failed to exhibit 17β-E2-stimulated cell proliferation. Exogenous 17β-E2 enhanced the inhibitory effect of the antisense ODN by increasing ODN transfection efficiency but without ERα catabolism via the proteosomal pathway, suggesting an effect of 17β-E2 on the plasma membrane and the existence of different ERα degradation pathways in the MCF7-K2 cell subclone. As 17β-E2 had no effect on ERα protein degradation, we conclude that the observed reduction of ERα protein levels is due solely to the presence of the antisense ERα ODN. Antisense ERα ODN molecules, therefore, may form the basis of effective therapies against ERα-dependent malignancies.

INTRODUCTION

NATURAL AND SYNTHETIC ESTROGENS exert their physiologic and pharmacologic effects on target tissues by interacting with the cognate estrogen receptor (ERα), a member of the steroid/thyroid hormone superfamily of nuclear transcription factors (Evans, 1988; O’Malley, 1990; Ribeiro et al., 1995). ERα antagonists that inhibit estrogen-dependent breast and endometrial pathologies while also providing ERα agonist activity on the skeleton and cardiovascular system (SERM) have been developed for the treatment of estrogen-deficient states in women (Mijatovic et al., 1999; Mitlak and Cohen, 1999; Poletti, 1999). Unfortunately, the reinitiation of uterine bleeding and increased breast tenderness are two of many symptoms of SERM therapy in women that cause discontinuation of long-term treatment (Schiff et al., 1998).

To inhibit the dysfunctional uterine bleeding and, to a lesser extent, breast tenderness, a progestin is often added to the hormone replacement therapy (HRT). However, progestins often cause premenstrual-type symptoms that also cause patients to discontinue treatment (Al-Azzawi and Habiba, 1994). If the adverse effects on the endometrium of unopposed estrogens could be blocked, the addition of a progestin to a patient’s HRT would not be needed, and problems associated with progestin use would be avoided. Simultaneously, the systemic effects of the estrogen would be maintained without the reinitiation of uterine bleeding. These data suggest that an alternative treatment method for estrogen-sensitive tissues might be useful.

As the expression and intracellular concentration of ERα are central to the progression of estrogen-dependant malignancies and there is clear evidence that ERα levels must achieve a critical level for ERα-mediated events to occur (Vanderbilt et al., 1987; Weeb et al., 1992), a reduction in ERα protein levels in a target tissue, such as the breast or uterus, to below a critical level might prevent the activation of ERα-dependent transcription pathways (Curtis and Korach, 1990).

1Gynaecology Research Group, Department of Obstetrics & Gynaecology, and 2Department of Pathology, Faculty of Medicine and Biological Sciences, University of Leicester, Leicester, Leicestershire, LE2 7LX, England.
Antisense oligodeoxyribonucleotide (ODN) sequences used in gene therapy that show tissue specificity have been used to ameliorate the symptoms of some clinical conditions and to significantly improve quality of life (Yacyshyn et al., 1998; Sereni et al., 1999; Warzocha, 1999). Additionally, data suggest that many ERα-dependent tissues are amenable to transfection, with some studies showing specific inhibition of gene activity in laboratory animals (L’Horset et al., 1994; Arslan et al., 1995; Moreau et al., 1995; Charnock-Jones et al., 1997; Horn et al., 1998). Therefore, an attractive route to ameliorate the noncontinuous issue for SERM treatment regimens would be the use of topical antisense ODN gene therapy against the human ERα in the human uterus.

This study was designed to test the hypothesis that antisense ODN directed against the human ERα might reduce cellular ERα concentrations in a human cell line. To study the action of the antisense ODN, we have used a subclone of the well-characterized human breast cancer cell line MCF7. The data presented show that three antisense ERα ODN sequences inhibit ERα protein concentrations. The antisense effect is enhanced by exogenous 17β-estradiol (17β-E2) through a mechanism that increases ODN uptake, which augments ERα clearance, but not through the normal MCF7 cell proteosome-dependent pathway (Alarid et al., 1999; Nawaz et al., 1999). One of the antisense ODN specifically inhibits 17β-E2-dependent MCF7 cell proliferation.

MATERIALS AND METHODS

ODN design and synthesis

Antisense ODN were designed to encompass the translation start site (−3 to 15 bp) and both coding and noncoding regions of the human ERα gene (Greene et al., 1986; Santagati et al., 1997). Control sequences were the respective sense strands, and for oligo 7, an additional control was the nucleotides contained in the antisense sequence arranged at random to generate a scrambled sequence. The antisense ODN, numbered oligo 1 to oligo 6, (Fig. 1) have been described elsewhere (oligo 1; GACATGCGCTGCAGCC; oligo 2, GGCAGTACACACTGCAAG; oligo 3, TGTGCTGCTGCTAGAGATC; oligo 4, GGTCATGCGGTTCTTTT; oligo 5 GTGTCTCCGAGCCGCTG; oligo 6 TGGACAGTAGCGAGTCAG [Santagati et al., 1997]). To ensure the uniqueness of the sequences, they were aligned against all known human sequences on the sequence databases. All sequences were unique to human ERα except the antisense sequence designed to encompass the translation start site (oligo 7, GACCATGACCATGACCCCT) that aligned with the rat and mouse ERα and the human, mouse, and rat estrogen receptor-related alpha1 (ERR-1α) genes alone (White et al., 1987; Giguere et al., 1988; Shigeta et al., 1997). The ODN and RT-PCR primer sequences (Table 1) were commercially synthesized (Bioline Ltd., London, U.K.) and purified by both PAGE electrophoresis and HPLC prior to use.

Cell culture, transfection, and protein extraction

MCF7-K2 cells (Katzenellenbogen et al., 1987) obtained from the Breast Cancer Unit, Glenfield Hospital (Leicester, U.K.) were maintained in phenol red-free Dulbecco’s modified Eagle’s medium (DMEM) (GIBCO-BRL, Paisley, Scotland) containing 10% fetal bovine serum (FBS), 50 U/ml penicillin, 50 µg/ml streptomycin, and 2 mM L-glutamine (GIBCO-BRL) in a humidified 5% CO2 in air atmosphere. For transfection, MCF7-K2 cells were subcultured to 10-cm diameter plastic Petri dishes with the aid of trypsin-EDTA at a density of 4 × 10^6 cells/cm² in the above medium and allowed to adhere for 24 hours. Cells were then washed twice with sterile phosphate-buffered saline (PBS), covered with serum-free medium, and transfected with DNA-lipofectamine complexes at a 1:8 ratio according to the manufacturer’s instructions (GIBCO-BRL).

Crystalline 17β-E2 and 17α-E2 were purchased from Sigma-Aldrich (Poole, Dorset, U.K.), and the proteosome inhibitor MG-132 was from CN Biosciences (Nottingham, U.K.). E2 and MG-132 solutions in ethanol and dimethylsulfoxide (DMSO), respectively, were diluted in serum-free medium and added to cultures at the indicated concentrations. To control for possible solvent effects, control cultures contained 0.1% ethanol or 0.2% DMSO in serum-free medium. After a further 24-hour incubation, cells were washed with sterile PBS and scraped from the plastic substratum in GETD buffer (10% glycerol, 1.5 mM EDTA, 10 mM Tris-HCl, pH 7.6, 10 mM dithiothreitol [DTT]) in the absence of protease inhibitors and subjected to five rounds of freeze-fracture. Protein concentrations were measured using the Bradford microassay (Bradford, 1976) (Bio-Rad Laboratories, Hemel Hempstead, Hertfordshire, U.K.), with bovine serum albumin (BSA) as standard and samples

FIG. 1. Schematic representation of antisense ODN designed against human ERα. ERα target sequences oligo 1–oligo 6 are depicted by the numbered boxes corresponding to translated and nontranslated regions of the human ERα mRNA sequence. The sequences of oligo 1–oligo 7 correspond to nucleotides −117 to 99, 495/512, 1140 to 1157, 4134 to 4151, 302 to 320, 539 to 557, and −3 to −15 of the human ERα cDNA, respectively (Santagati et al., 1997). The various regions of the ERα gene are labeled A, B, C, D, E, F, following established nomenclature. DBD, DNA-binding domain; LBD, ligand-binding domain.
stored at −20°C for radioligand binding and Western blot analysis.

Western blot analysis

Total cellular protein (12 μg) was separated on 12% precast denaturing SDS-PAGE gels (Novex, San Diego, CA) at 125 V constant voltage for 1.5 hours. After transfer to nitrocellulose membranes (Hybond-C) (Amersham PLC, Amersham, Buckinghamshire, U.K.) in transfer buffer (12 mM Tris, 96 mM glycine, 20% methanol), membranes were blocked with 3% nonfat milk powder in PBS for 20 minutes. Membranes were then incubated at 4°C for 18 hours with monoclonal primary ERα antibody (clone 05-394, Upstate Biotechnology, Lake Placid, NY) diluted to 2 μg/ml in the blocking solution. After five washes with deionized water, membranes were incubated with secondary antimoouse horseradish peroxidase (HRP)-linked antibody (1:3000) (Amersham) in 3% blocking solution at ambient temperature for 1.5 hours. After a further five washes with water, a 5-minute wash with 0.05% Tween-PBS, and a further five washes with water, the protein-antibody complexes were visualized with enhanced chemiluminescence (ECL) detection, according to the manufacturer's protocol (Amersham), and exposure to x-ray film (Kodak Biomax ML) (Integra Biosciences Ltd, Letchworth, Hertfordshire, U.K.) for up to 5 minutes. In some experiments, human recombinant ERα (Affinity Bioreagents Inc., Golden, CO) was used to create a curve of standards within the assay. The densities of the visualized bands were obtained by image-assisted densitometry (NIH Image program Version Beta 3b, 1998, modified for Windows 95/98 by Scion Corporation; http://www.scioncorp.com) and corrected for by the amount of β-actin (1:5000, clone AC-74, Sigma) from replica blots.

Radioligand binding

3H-E2 binding to MCF7-K2 extracts was performed essentially as described (Campisi et al., 1993). Briefly, initial studies to find maximum binding capacity used 200–300-μg aliquots of MCF7-K2 extract in triplicate adjusted to give a volume of 250 μl in GETD buffer and incubated with a range of 3H-E2 (79.5 Ci/mmol) concentrations (Amersham) in GETD buffer at 4°C for 18 hours. Nonspecific binding was determined in the presence of 100-fold excess of unlabeled 17β-E2 in duplicate. Bound radioactivity was separated from free radioactivity by incubation with 500 μl dextran-coated charcoal in PBS for 20 minutes at 4°C, followed by centrifugation at 1800g for 20 minutes. An aliquot (500 μl) of the supernatant was counted by β-scintillation counting for 5 minutes. Maximum binding was found to be 6 × 10^4 cpm of 3H-E2, and this amount of 3H-E2, 200 μg cell extract, and a 100-fold excess of unlabeled 17β-E2 were used in subsequent binding assays, with separation and counting as described.

Fluorescence photomicroscopy

Cells were plated at a density of 5 × 10^4 to polystyrene-coated multislot slides (Hendley, Loughton, Essex, U.K.) contained in a sterile 10-cm Petri dish. After 24-hours attachment, the cells were transfected with fluorescein isothiocyanate (FITC)-labeled antisense oligo 7 in lipofectamine, as described, and immediately treated with up to 10^{-6} M 17β-E2 in serum-free medium. After 24 hours, cells were washed twice with PBS and then fixed with 4% paraformaldehyde in serum-free medium for 5 minutes. After two further washes with PBS, the slides were mounted in aquamount (BDH, Poole, Dorset, U.K.) and stored at 4°C in the dark until photographed on a Zeiss Axioplan II microscope fitted with a fluorescence attachment at 530–585-nm excitation onto Fujichrome ASA800 film.

RNA preparation and RT-PCR analysis

MCF7-K2 cells were transfected or nontransfected (controls) and treated with 17β-E2 as described. After 24 hours, cells were washed twice with PBS and lysed in TRIZOL reagent (GIBCO-BRL). Total RNA was prepared according to the manufacturer’s instructions and stored at −80°C. Total RNA (1 μg) was electrophoresed on 1.2% agarose gels to ensure that the RNA was intact.

The primer sequences for ERα and β-actin and assay conditions showing amplification within the exponential part of the amplification have been described elsewhere (Heikinheimo et al., 1995) (Table 1). For RT-PCR analysis, 2 μl total cellular RNA was reverse transcribed and subjected to PCR using ExpeRT 100 PCR kits (Thermohybird, Teddington, Middlesex, U.K.) according to the manufacturer’s one-tube protocol. The level of amplicon was corrected by that produced with specific β-actin primers. The RT conditions were 48°C for 30 minutes, 95°C for 2 minutes. PCR was performed with 10 cycles of 94°C for 30 seconds, 60°C for 30 seconds, 68°C for 1 minute, followed by 25 further cycles with the exception that primer extension at 68°C for 1 minute was extended for 5 seconds on each further cycle. Finally, the reaction was incubated at 68°C for 10 minutes to fully extend all amplified products. Amplification of the housekeeping gene β-actin was similar, except the annealing temperature was 54°C. Thirty or forty percent of the reaction mixture was separated on 1.8% agarose gels impreg-
nated with 0.5 μg/ml ethidium bromide, and the amount of signal was measured by video-assisted densitometry.

Growth curves

Stock cultures of MCF7-K2 cells were subcultured for three passages and maintained in E2-deficient medium. This medium consists of phenol red-free DMEM containing 5% charcoal-stripped FBS (batch AHM9371, Hyclone, Logan, UT), 50 U/ml penicillin, 50 μg/ml streptomycin, and 2 mM L-glutamine. For the actual growth experiments, cells were plated on 96-well plates at a seeding density of 5000 cells per well. After 24 hours, the cells were transfected in the absence of serum (as described) for 24 hours. The medium was then exchanged for phenol red-free DMEM medium containing 1% charcoal-stripped FBS, 50 U/ml penicillin, 50 μg/ml streptomycin, 2 mM L-glutamine, and 0.12 U/ml bovine insulin supplemented with up to 10^{-6} M of either 17α-E2 or 17β-E2 (Malet et al., 1988). The medium was changed daily for up to 7 days. At the end of the culture period, cell density was assessed with the XTT formazan dye production assay (Roche Diagnostics, Ltd., Lewes, East Sussex, U.K.) for 2 hours, according to the manufacturer’s instructions. XTT absorption was measured at 490 nm with a Bio-Rad model 450 ELISA plate reader with a reference absorbance set at 595 nm.

RESULTS

Characterization of MCF7-K2 cells

To ensure that the phenotype of the MCF7-K2 cells used in this study corresponded with that detailed in the literature, 3H-E2 binding, proteosomal degradation, and the growth characteristics of these cells were assessed. Binding of 3H-E2 to MCF7-K2 cell extracts showed the presence of a functional ERα (Fig.

TABLE 2. 3H-E2 BINDING TO MCF7 CELL EXTRACTS OF NONTRANSFECTED AND TRANSFECTED CULTURES TREATED WITH EXOGENOUS ESTRADIOL

<table>
<thead>
<tr>
<th>E2 dose (M)</th>
<th>Control</th>
<th>Scrambled</th>
<th>Antisense</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>fmol/mg</td>
<td>%</td>
<td>fmol/mg</td>
</tr>
<tr>
<td>0</td>
<td>16.9 ± 2.3*</td>
<td>100</td>
<td>14.1 ± 3.5</td>
</tr>
<tr>
<td>10^{-9}</td>
<td>18.3 ± 2.3</td>
<td>108</td>
<td>9.9 ± 2.5*</td>
</tr>
<tr>
<td>10^{-8}</td>
<td>17.3 ± 2.6</td>
<td>102</td>
<td>9.0 ± 2.5*</td>
</tr>
<tr>
<td>10^{-7}</td>
<td>12.1 ± 2.4</td>
<td>71</td>
<td>10.0 ± 2.6</td>
</tr>
<tr>
<td>10^{-6}</td>
<td>12.5 ± 1.6</td>
<td>74</td>
<td>8.7 ± 2.6</td>
</tr>
</tbody>
</table>

*Data are presented as the amount of 3H-E2 binding in fmol/mg of cellular protein and are the mean ± SEM of three independent experiments performed in triplicate.

*p < 0.05, **p < 0.01, transfected compared with nontransfected cultures, ANOVA with Tukey’s significant difference test. To indicate the proportional effect of added E2, data are also normalized to untreated cultures and presented as % of untreated control.

p < 0.01, *p < 0.001, E2-treated compared with untreated, two-way ANOVA with Tukey’s significant difference test.
2). Specific \(^3\)H-E\(_2\) binding increased with dose and reached a plateau at \(10^4\) cpm, with no appreciable increase in nonspecific binding up to \(6 \times 10^4\) cpm (Fig. 2). The calculated \(K_d\) and \(B_{\text{max}}\) were 3.9 ± 1.5 nM and 32 ± 3.4 fmol/mg protein (\(n = 6\)), respectively. As \(^3\)H-E\(_2\) at \(6 \times 10^4\) cpm did not show appreciable increased nonspecific binding, the amount of total \(^3\)H-E\(_2\) used in subsequent binding assays to show that the antisense ER\(_\alpha\) ODN might also affect functional ER\(_\alpha\) protein (Table 2) was set to \(6 \times 10^4\) cpm.

Because exogenous 17\(\beta\)-E\(_2\) enhances ER\(_\alpha\) protein degradation in MCF7-K1 but not in MCF7-K2 cells through the proteosome (Aronica and Katzenellenbogen, 1993; El Khissiin and Leclercq, 1999; Ing and Ott, 1999), we postulated that 17\(\beta\)-E\(_2\)-induced ER\(_\alpha\) protein degradation in MCF7-K2 cells would not occur. To test this possibility, MCF7-K2 cells were treated with \(10^{-8}\) M 17\(\beta\)-E\(_2\) (the dose that significantly enhances antisense ER\(_\alpha\) oligo 7 action and ER\(_\alpha\) degradation through the proteosome in MCF7-K1 cells) for up to 24 hours in the presence and absence of the proteosome inhibitor MG-132 (Fig. 3). 17\(\beta\)-E\(_2\) had no effect on the degradation of ER\(_\alpha\) over the duration of the experiment (Fig. 3). The addition of the proteosome inhibitor MG-132 to 17\(\beta\)-E\(_2\)-treated cultures had no effect on ER\(_\alpha\) protein levels (Fig. 3). This model suggests that any reduction in ER\(_\alpha\) protein levels observed would, therefore, be due to a direct effect of antisense ODN action and not 17\(\beta\)-E\(_2\)-induced proteosomal degradation of receptor.

MCF7-K2 cells treated with vehicle (0.1% ethanol) in 1% charcoal-stripped serum proliferated weakly compared with untreated cultures (Fig. 4) but with a population doubling time of 7–8 days. The observed doubling time is similar to that found in the literature (Boccuzzi et al., 1994). Similarly, cells treated with \(10^{-8}\) M 17\(\beta\)-E\(_2\) did not proliferate above that of untreated cell cultures or vehicle-treated cultures, whereas MCF7-K2 cells showed an increased proliferation rate (~2.5–3 days) in response to exogenous 17\(\beta\)-E\(_2\) (Fig. 4).

FIG. 3. MCF7-K2 ER\(_\alpha\) protein is not degraded via the proteosome. Protein extracts (12 \(\mu\)g) from MCF7 cells treated with 17\(\beta\)-E\(_2\) (\(10^{-8}\) M) in the absence (solid circles) or presence of MG-132 (open circles) for the times indicated were subjected to Western blot analysis as described in Materials and Methods. Data are the mean ± SD of six experiments performed in triplicate (\(n = 6\)) (data were not significantly different, ANOVA with Tukey’s significant differences test).

FIG. 4. Characterization of 17\(\beta\)-E\(_2\)-dependent MCF7-K2 cell proliferation. MCF7-K2 cells (5000) plated in estrogen-deficient medium (10% charcoal-stripped serum) for 3 days were treated with vehicle (0.1% ethanol) (open triangles), 10\(^{-8}\) M 17\(\alpha\)-E\(_2\) (open circles), or 10\(^{-8}\) M 17\(\beta\)-E\(_2\) (solid circles) for a further 4 days. Medium was changed on days 1 and 3. Growth was assessed using XTT formazan dye conversion at 490 nm. Data are the mean ± SD of three experiments performed in quadruplicate (\(n = 3\)) (\(p < 0.05\), \(* * * p < 0.01\), \(* * * * p < 0.001\), ANOVA with Tukey’s significant differences test compared to day 0).
These data suggest that MCF7-K2 cells are an appropriate model to study the effect of antisense ODN on the levels of ERα mRNA, protein, ³H-E₂ binding, and proliferation in response to 17β-E₂ (Katzenellenbogen et al., 1987; Read et al., 1989).

Antisense ERα ODN decrease ERα protein expression

To test the hypothesis that antisense ERα ODN inhibits ERα protein synthesis, the levels of ERα protein in MCF7-K2 cell extracts transfected with antisense ERα ODN were analyzed by Western blot analysis. MCF7-K2 cells produce a single immunoreactive signal with a relative molecular mass of ~66–67 kDa (Fig. 5A). After densitometric analysis and normalization against untreated controls (Fig. 5B), the data showed that lipofectamine-treated cells and cells transfected with either sense or scrambled ERα ODN sequences had no significant effect on the expression of ERα in MCF7-K2 cells. Oligos 1–6 had no effect on the levels of ERα protein (Fig. 5B), but oligo 7 reduced the levels of ERα in MCF7-K2 cells by 61% ± 14% (n = 6) (ANOVA).

To ensure that the decrease in cytoplasmic ERα levels was not an artifact caused by aberrant 17β-E₂ in the culture system altering ERα degradation, transfected MCF7-K2 cells were treated with 10⁻⁸ M 17β-E₂ in an attempt to induce similar reductions in ERα concentrations regardless of the oligo transfected. The four sense and antisense oligonucleotides (oligos 2, 3, 5, and 6, Fig. 1) previously used to demonstrate autologous downregulation of ERα on ERα expression in MCF7 cells (Santagati et al., 1997) showed no effect on ERα protein levels in the presence of 17β-E₂ (Fig. 5C). However, cells transfected with oligo 1, oligo 4, or oligo 7 subsequently treated with exogenous 17β-E₂ (Fig. 5C) showed significant ERα protein level reductions of 36% ± 7% for oligo 1 (n = 6) (Student's t-test) and 62% ± 10% (n = 6) (Student's t-test) for oligo 4 and 78% ± 4% for oligo 7, respectively.

Because the antisense ODN directed toward the translational start site of human ERα (oligo 7) showed an inhibitory action

FIG. 5. Antisense oligos 1, 4, and 7 decrease ERα protein levels. (A) A representative ERα protein Western blot of protein extracts from untreated MCF7-K2 cells (C), cells treated with lipofectamine (L), cells transfected with scrambled oligo 7 (Sc), or cells transfected with antisense oligo 7 (A). Migration markers for the indicated molecular mass markers (in kDa) are shown at left. The blot is representative of six separate experiments. (B) Untreated MCF7-K2 cells (C), cells treated with lipofectamine alone (L), or cells transfected with sense (open bars) or antisense oligos (solid bars) or scrambled oligo 7 (Sc) and treated with vehicle (0.1% ethanol) for 24 hours were subjected to Western blot analysis as described in Materials and Methods, and the amount of ERα protein obtained was normalized against signals obtained from related β-actin Western blots. (C) Parallel cultures transfected and treated in a similar manner, except all cultures were treated with 10⁻³ M 17β-E₂. Data are the mean ± SD (n = 6) (◊p < 0.05, ++p < 0.01, Student’s unpaired t-test).
on ERα expression both in the absence and the presence of 17β-E2, only this antisense molecule was tested further.

Specific 17β-E2-induced inhibition of ERα protein levels

MCF7-K2 cells transfected with antisense ERα oligo 7 and treated with graded doses of 17β-E2 showed a marked reduction in ERα protein levels, with a threshold and maximal 36% ± 9.3% (n = 6) inhibitory effect occurring at 10⁻⁸ M 17β-E2 (Fig. 6). In contrast, control MCF7-K2 cells (data not shown) and MCF7-K2 cells transfected with the control scrambled ERα ODN did not show significantly reduced protein concentrations when treated with 10⁻⁸ M 17β-E2 (4% ± 11.0%) (Fig. 6).

Because both 2′-E isomers can interact either in a nonspecific manner with the plasma membrane (Nemere and Farach-Carson, 1998) or specifically via a putative membrane ER (Razandi et al., 1999) of 17β-E2, 2′-E can inhibit ERα protein levels, with a threshold and maximal 36% ± 9.3% (n = 6) inhibitory effect occurring at 10⁻⁸ M 17β-E2 (Fig. 6).

In a parallel study, MCF7-K2 cells were transfected with scrambled or antisense ERα oligo 7 and incubated with 10⁻⁸–10⁻⁶ M 17β-E2 (Table 2). Binding to nontransfected control cell extracts was significantly inhibited by high doses of 17β-E2 (25.7% at 10⁻⁶ M) compared with 17β-E2, with 1H-E₂ for MCF7-K2 ERα (Table 2). 1H-E₂ binding to extracts from cells transfected with the scrambled and antisense ERα oligo 7 was also reduced by 29.9% ± 6.2% and 82.0% ± 5.0% (n = 9) (ANOVA), respectively, in the presence of 10⁻⁶ M exogenous 17β-E2 compared with the respective controls. The amount of 1H-E₂ bound to extracts from scrambled oligo 7-transfected cultures treated with 10⁻⁶ M 17β-E2 was not significantly different from the amount bound to similarly treated control cultures (9.9 ± 2.6 compared with 12.5 ± 1.6 fmol/mg protein) (n = 9) (ANOVA). However, the amount of 1H-E₂ bound after 17β-E₂ inhibition with 10⁻⁶ M 17β-E₂ in an antisense ODN-transfected culture was significantly lower (1.2 ± 1.0 vs. 9.9 ± 2.6 or 12.5 ± 1.6 fmol/mg protein) (n = 9) (ANOVA). These data suggest that 17β-E₂ enhances the inhibitory effect of antisense ERα ODN on 1H-E₂ binding to ERα protein.

![FIG. 6](image-url) 17β-E₂ enhances the inhibitory effect of antisense ERα ODN on ERα protein levels. Control MCF7-K2 cells (dotted line) or cells transfected with scrambled (open circle) or antisense ERα oligo 7 (solid circles) were incubated with the indicated concentrations of exogenous 17β-E₂ for 24 hours. Cell lysates (12 μg) were subjected to Western blot analysis as described in Materials and Methods. The data were then corrected for the amount of β-actin protein and normalized to the relevant control. Data are the mean ± SD of four experiments performed in triplicate (n = 4) (*p < 0.05, **p < 0.01, two-way ANOVA with Tukey’s significance difference test).
17β-E₂ enhances antisense ERα ODN effect by increasing ODN uptake

To better understand how 17β-E₂ enhances the efficacy of antisense ERα oligo 7, MCF7-K2 cells were transfected with FITC-labeled antisense ERα oligo 7 and treated with graded doses of 17β-E₂ (Fig. 8). The amount of fluorescence is low in untreated cells (Fig. 8A) but increases with 17β-E₂ treatment and reaches a maximum at about 10⁻⁸ M 17β-E₂ (Fig. 8C). We also noted that at low doses of 17β-E₂ and shorter times, fluorescence is confined to the plasma membrane and cytoplasm (data not shown). At higher doses and longer times, fluorescence signal accumulates in the nucleus. These data indicate that 17β-E₂ enhances antisense ERα oligo 7 transfection efficiency to MCF7-K2 cells.

Antisense ERα ODN has no effect on ERα transcription

To discount the hypothesis that 17β-E₂ affects ERα transcription in antisense ERα oligo-transfected MCF7-K2 cells, we measured the levels of ERα mRNA using RT-PCR (Fig. 9). The RT-PCR method, including the number of cycles, was validated to ensure the number of cycles was in the linear range for both ERα and β-actin (data not shown) (Heikinheimo et al., 1995). Antisense ERα oligo 7 had no effect on ERα mRNA levels when compared with ERα mRNA levels in scrambled oligo 7 and control cultures (Fig. 9A). Additionally, 17β-E₂ had no significant effect on the levels of ERα in any of the control or treated MCF7-K2 cultures (Fig. 8A). Densitometry measurements of amplicon levels showed an apparent decrease in ERα mRNA levels when compared with control and scrambled ODN-transfected cultures, but the decrease was not found to differ statistically (Fig. 9B).

Characterization of MCF7-K2 cells

There are several reports on the characteristics of MCF7 cells that show altered phenotypes in numerous laboratories. The main types of MCF7 cell are characterized by the expression of a functional ERα, but cellular response to exogenous estrogen (usually

MCF7-K2 cell proliferation is enhanced by 17β-E₂ and inhibited by antisense ERα ODN

Initial studies of MCF7-K2 cell proliferation treated with 17β-E₂ at any serum concentration, cell density, and duration of culture showed these cells to be unresponsive to 17β-E₂ (data not shown). However, after three passages of stock cultures in low-E₂-containing growth medium, MCF7-K2 cells showed both time-dependent (Fig. 4) and dose-dependent responses to 17β-E₂ but not to 17α-E₂ (data not shown). Parallel cultures transfected with scrambled oligo 7 or antisense ERα oligo 7 showed no alteration in the basic nonproliferation pattern when treated with 17α-E₂ (Fig. 10A). In contrast, MCF7-K2 cells transfected with scrambled oligo 7 and treated with graded doses of 17β-E₂ continued to proliferate (Fig. 10B). MCF7-K2 cells transfected with antisense oligo 7 showed a departure from the normal 17β-E₂ growth patterns, with a dose-dependent loss of cells from the culture (Fig. 10B). The effect of antisense oligo 7 action on MCF7-K2 cell proliferation was maintained for at least 4 days in culture. Cells transfected with either scrambled or antisense oligo 7 ODN initially showed growth-inhibitory effects within the first 24 hours (Fig. 10C). When medium containing 10⁻⁸ M 17β-E₂ was reintroduced to the cultures on day 2, MCF7-K2 cells transfected with scrambled oligo 7 or sense oligo 7 (data not shown) reinitiated cell proliferation and continued to proliferate at the same rate as non-transfected control cultures (Fig. 10C). However, MCF7-K2 cells transfected with antisense oligo 7 no longer had the capacity to proliferate in response to 10⁻⁸ M 17β-E₂ (Fig. 10C). These data suggest that antisense oligo 7 inhibits the production of ERα in MCF7-K2 cells, which in turn inhibits 17β-E₂-dependent MCF7-K2 cell proliferation.

DISCUSSION

Characterization of MCF7-K2 cells

There are several reports on the characteristics of MCF7 cells that show altered phenotypes in numerous laboratories. The main types of MCF7 cell are characterized by the expression of a functional ERα, but cellular response to exogenous estrogen (usually
17\(\beta\)-E2 differs markedly. For example, MCF7-K1 and MCF7-K2 cells both contain functional ER\(\alpha\) that bind 17\(\beta\)-E2. However, in MCF7-K1 cells, 17\(\beta\)-E2 causes a number of effects, including ER\(\alpha\) degradation through the proteosome pathway, activation of promoter ERE (estrogen responsive elements) by receptor transactivation, inhibition of ER\(\alpha\) transcription and hence a reduction in the steady-state levels of ER\(\alpha\) mRNA, and stimulation of 17\(\beta\)-E2-dependent proliferation. In contrast, MCF7-K2 cells only show some of these properties (Read et al., 1989). To eliminate the confounding effects that 17\(\beta\)-E2 administration might have on the potential mode of action of the antisense ODN used in this study, we used the MCF7-K2 cells. Using the MCF7-K2 cells, we have demonstrated that three specific antisense ER\(\alpha\) ODN directed against the human ER\(\alpha\) gene specifically and efficiently inhibit ER\(\alpha\) protein synthesis. Two of the oligos, oligo 1 and oligo 4, appear to work only in the presence of exogenous 17\(\beta\)-E2, whereas oligo 7 inhibited ER\(\alpha\) protein levels in both the absence and presence of 17\(\beta\)-E2. More detailed studies with antisense oligo 7 show that both ER\(\alpha\) protein and \(^3\)H-E2 binding were decreased by 50%–60%, suggesting that both methods measured the quantity of synthesized ER\(\alpha\). The values for \(K_d\) and \(B_{\text{max}}\) for \(^3\)H-E2 binding to MCF7-K2 cell extracts were similar to that reported by MacIndoe et al. (1982) but crucially different from those of others (Gyling and Leclercq, 1988; Otto, 1995). This discrepancy is probably due to the subclone of MCF7 cells used in the present studies. Additionally, the relative molecular mass of immunoreactive MCF7 ER\(\alpha\) protein was identical to that reported previously, with no additional isoforms or detectable proteolytic products (El Khiassin et al., 1997; Santagati et al., 1997).

The other antisense molecules directed against the human ER\(\alpha\) (oligos 1 and 4) did not show an effect on ER\(\alpha\) protein levels or affect the ability of the protein to bind radioligand (data not shown) in the absence of 17\(\beta\)-E2 but showed significant reductions in ER\(\alpha\) levels when exposed to 17\(\beta\)-E2 (Fig. 5). These data do not correlate with the data obtained by others (Santagati et al., 1997). In the studies of Santagati et al. (1997) MCF7 ER\(\alpha\) protein levels increased in response to antisense ODN transfection with oligos 1 and 2, which are directed against the 5' region of the human ER\(\alpha\) cDNA. In the present study, ER\(\alpha\) levels remained constant in four of six cases and showed inhibitory effects on ER\(\alpha\) protein levels, but only in the presence of exogenous 17\(\beta\)-E2. Oligos 1 and 4 showed no change in ER\(\alpha\) levels in the absence of 17\(\beta\)-E2, but significant reductions in ER\(\alpha\) protein levels were observed in the presence of 10\(^{-8}\) M 17\(\beta\)-E2 (Fig. 5). The reason for the discrepancy between these data is presumably due to the type of MCF7 cells

FIG. 8. 17\(\beta\)-E2 enhances the cellular uptake of antisense ER\(\alpha\) oligo 7. MCF7 cells grown on glass slides were transfected with FITC-labeled antisense ER\(\alpha\) oligo 7 alone (A) or treated with 10\(^{-10}\) M (B), 10\(^{-8}\) M (C), or 10\(^{-6}\) M 17\(\beta\)-E2 (D) for 24 hours. Cells fixed with paraformaldehyde were washed in PBS and photographed at 400× original magnification to ASA800 film. Photomicrographs are representative of two separate experiments.
used. The MCF7 cells used by Santagati et al. (1997) are probably different from the MCF7-K2 cells used in our studies, as several clones of the MCF7 cell line exist (Read et al., 1989). These data suggest that the use of antisense ODN directed against endometrial ERα would perhaps require individual testing on a patient biopsy before any clinical trial.

Both the MCF7-K1 and MCF7-K2 cell clones contain high levels of ERα, but only the MCF7-K1 cells exhibit autologous downregulation of the ERα in response to 17β-E2 (Santagati et al., 1997). Although MCF7-K2 cells contain ligand-binding forms of the ER, 17β-E2 does not affect ERα mRNA or protein levels (Read et al., 1989). We were unable to demonstrate a decrease in ERα protein or mRNA levels in response to exogenous 17β-E2 (Figs. 3 and 9 and Table 2), confirming that MCF7-K2 cells were used in the present study. However, using MCF7-K2 cells was important for this study because the autologous downregulating effect of exogenous 17β-E2 on ERα expression that is seen in MCF7-K1 cells could have masked any modulation of ERα expression by the antisense ODN molecules. In other words, we can conclude that the inhibitory effect on the antisense ODN on ERα protein levels in the MCF7-K2 cells presented herein is due solely to the presence of the antisense ODN.

Although 17β-E2 increases the degradation of ERα protein in MCF7-K1 cells in a dose-dependent and time-dependent manner

FIG. 9. Antisense ERα oligo 7 has no effect on levels of ERα mRNA. (A) A representative ethidium bromide-stained agarose gel of RT-PCR products for ERα and β-actin. MCF7 cells transfected with scrambled or antisense ERα ODN were untreated (lanes 1, 6, 11) or treated with 10⁻³ M (lanes 2, 7, 12), 10⁻⁴ M (lanes 3, 8, 13), 10⁻⁵ M (lanes 4, 9, 14), or 10⁻⁶ M 17β-E₂ (lanes 5, 10, 15) for 24 hours. Extracted total RNA (1 μg) was subjected to RT-PCR with the primers shown in Table 1 and subjected to electrophoresis on 1.8% agarose gels impregnated with 0.5 μg/ml ethidium bromide. The image is representative of three separate experiments. (B) The densities of the bands shown in A were quantitated by video-assisted densitometry and corrected for the levels of β-actin. Data were normalized to nontransfected control cultures (the zero line) and are the mean ± SD for three experiments in triplicate (n = 3) (data were not significantly different, two-way ANOVA with Tukey's significance difference test).
via the proteosome (Alarid et al., 1999; Nawaz et al., 1999), this hormone also increases plasmid DNA transfer to MCF7 cells (Jain and Gerwitz, 1998). This suggests that 17β-E2 may have an effect on the MCF7 cell via the plasma membrane. Although a specific membrane ER has been reported recently (Nemere and Farach-Carson, 1998), there is also evidence that 17β-E2 interacts with the plasma membrane in a nonspecific manner (Dufy et al., 1979) and that other steroids directly interact with the plasma membrane (Zinder and Dar, 1999). These data suggest that the addition of exogenous 17β-E2 could enhance the effect of some antisense molecules through two or more mechanisms. First, 17β-E2 could interact with a plasma membrane ER to activate the degradation of existing ER protein, or second, the hormone might interact with fundamental components of the plasma membrane to increase transfection efficiency or alter the physical characteristics of the lipofectamine-DNA complex to alter transfection efficiency. In our hands, 17β-E2 had no effect on endogenous ERα protein expression and clearly is unable to induce ERα turnover via the proteosome pathway. Because ERα mRNA levels are not affected but protein levels decrease in the presence of antisense ERα ODN, we can conclude that antisense ERα ODN efficiently binds to the ERα mRNA, translation of nascent ERα protein is blocked, and endogenous ERα is cleared by a nonproteosomal pathway in MCF7-K2 cells.

The FITC-labeled ODN uptake experiment (Fig. 8) showed that 17β-E2 enhanced ODN uptake and, therefore, transfection efficiency. Therefore, 17β-E2 must alter the physical properties of the transfection process by interfering with either the liposome-DNA complex or the MCF7 cell plasma membrane to increase passage of DNA into the cell. 17β-E2 enhanced FITC-labeled antisense ERα ODN (oligo 7) uptake and nuclear accumulation by MCF7-K2 cells. Theoretically, antisense ODN should be assimilated by cells through an episomal pathway and, therefore, should not appear in the nucleus (Cooper, 1996). However, coating of DNA molecules with cationic liposomes, such as lipofectamine, may protect naked DNA and retarget the DNA through an alternative pathway to the MCF7-K2 nucleus, as is seen in keratinocytes (White et al., 2000). This raises the possibility that first contact for the antisense ODN is heteronuclear RNA and not mature cytoplasmic RNA. This may explain why the levels of ERα mRNA showed an apparent, but not significant, decrease in the presence of antisense oligo 7 ERα ODN (Fig. 9B). However, as ERα mRNA concentrations were not significantly different, an RNase H-dependent RNA degradation mechanism (Schlingensiepen and Schlingensiepen, 1997) involving the destruction of ERα mRNA is not implicated. The observed decrease in ERα protein levels with antisense oligo 7 is, therefore, presumably due to a steric blockade at the ERα translational start site.

The addition of exogenous 17β-E2, but not 17α-E2, to cultures augments both decreased ERα protein concentration and 3H-E2 binding to MCF7 extracts, suggesting that 17β-E2 increases the transfection efficiency of the antisense ERα ODN. Additionally, 17β-E2 does not override the antiproliferative effect of antisense oligo 7 but appears to enhance the antiproliferative effect. This is presumably due to increased transfection efficiency, leading to further reductions in ERα protein levels and, hence, ERα-dependent proliferation.

The ERα ODN described are not the first antisense molecule to be tested in our eventual goal, the uterine endometrium. An-
tisense ODN directed against Hox a10, Hox a11, calcitonin, and other target genes in laboratory animals have been described (Zhu et al., 1998; Bagot et al., 1999; Kunishige et al., 1999; Malayer et al., 1999). This is to our knowledge, however, the first report of the use of antisense ODN against a human steroid receptor nuclear transcription factor. This is an important step forward because steroid receptors are implicated in numerous pathologic conditions, and the data presented may help in the elucidation of new gene targets. However, the diversity of steroid receptor-mediated effects suggests that significant systemic toxicity, a major concern in gene therapy (Cotter, 1997), could occur with the use of antisense ERα oligo 7 in future human gene therapy clinical trials.

Although we envisage that antisense oligo 7 or similar molecules will be used solely as a topical application to the endometrial layer of the uterus and, thus, will have reduced toxic effects compared with a systemic application, there are two pieces of extra data that suggest any systemic toxic effect of a topically applied antisense ERα might be negligible. First, the application of β-galactosidase by transfection of the mouse uterus failed to elicit more than a few millimeters of penetration (Charnock-Joneset al., 1997), and second, the female ERα knockout mouse does not exhibit gross systemic anatomic anomalies (Couse and Korach, 1999). These data suggest that an antisense ODN would fail to penetrate further than a few millimeters into the human endometrium, and should it enter the vasculature, systemic organ damage would be limited. Additionally, unmodified oligonucleotides are rapidly destroyed in blood, suggesting that antisense ERα ODN, such as the ones described herein, would not cause significant toxicity (Agrawal et al., 1997).

Accordingly, this paper has important implications for the control of diseases that involve transcriptional regulators, such as the steroid receptors, and especially diseases that are enhanced by 17β-E2 through ERα. The data presented may lead to effective therapies for such diseases. The data presented also suggest that antisense ERα ODN have the potential to help unlock the mechanism of ERα synthesis and protein stability in target cells and help to dissect the relative roles of ERα and ERβ in 17β-E2-dependent cells.

ACKNOWLEDGMENTS

We thank Prof. J. Thompson, Department of Ophthalmic Epidemiology, University of Leicester, for help with statistical analyses and Ms. L. Hendry and Ms. K. Mulligan for excellent technical support.

REFERENCES

ANTI-SENSE ERα DECREASES ER FUNCTION

Address reprint requests to:
Dr. Farook Al-Azzawi
Senior Lecturer, Consultant Gynaecologist
Gynaecology Research Group
Department of Obstetrics & Gynaecology
Faculty of Medicine and Biological Sciences
University of Leicester
Robert Kilpatrick Clinical Sciences Building
Leicester Royal Infirmary
Leicester, Leicestershire
LE2 7LX England
E-mail: fa2@le.ac.uk

Received March 9, 2001; accepted in revised form May 19, 2001.