INVESTIGATIONS ON ARSENITE INDUCED PREMATURE SENESCENCE IN HUMAN VASCULAR ENDOTHELIAL CELLS

Thesis submitted for the degree of
Doctor of Philosophy
at the University of Leicester

By

Qudsia Malik MSc, BSc (Hons)

Department of Cardiovascular Sciences
University of Leicester
2013
Dedication

This PhD thesis is lovingly dedicated to Mummy, Farida Malik, and Papa, Mohammed Umar Malik, for their unconditional love and support throughout my life.
Investigations on arsenite induced premature senescence

Abstract

Chronic exposure of humans to arsenic contaminated drinking water promotes the development of atherosclerosis and is a problem in many countries worldwide. The pathogenic mechanisms are ill-defined, although arsenite-induced endothelial dysfunction has been hypothesised. Ageing is a major risk factor for atherosclerosis and aged (senescent) endothelial cells have been observed in human and experimental atherosclerosis, including in people with arsenicism. Senescence is a cellular state of irreversible growth arrest, the accumulation of such cells could contribute to the development of age-related diseases. The aim of this thesis was to determine whether arsenite induced premature senescence in human vascular endothelial cells in vitro and whether the mechanisms involved reactive oxygen species-mediated cellular damage. Since mitochondria are a major source of cellular oxidants, studies to determine whether mitochondria were the primary targets for arsenic toxicity were carried out.

At sub-cytotoxic concentrations, using a cell culture model, arsenite caused stress-induced premature senescence in HUVECs which was quantitatively similar to induction of senescence by low levels of serial peroxide. Microarray-based transcriptomics revealed that antioxidant responses, including Nrf2-oxidative stress response pathway and metallothioneins, were upregulated in HUVECs treated with sub-cytotoxic arsenite concentrations supporting arsenite-induced oxidative stress as a possible mechanism. This was accompanied by an increase in nuclear DNA damage observed using the Comet assay. Although no statistically significant effects on mitochondrial biogenesis or mtDNA damage were seen using qPCR, analysis by extracellular flux analyzer revealed a decline in mitochondrial function, specifically the mitochondrial reserve capacity. These findings cast serious doubt that mitochondria are the primary targets of arsenite in endothelial cells, with the oxidative stress occurring through cytoplasmic sources and leading to cellular damage. This forms a possible mechanism for the observed premature senescence in endothelial cells due to arsenite which is linked with the process of atherosclerosis in humans.
Acknowledgements

First and foremost I would like to express my deepest gratitude to Dr Karl Herbert for his faultless supervision and guidance. I am very grateful for all his contributions and efforts during my doctorate study and for always being approachable and encouraging, especially through the stressful times. I am thankful to Professor Andy Smith for his continuous advice and support and to the Medical Research Council for providing funding for this PhD.

I would like to acknowledge all members of the cardiovascular department at the University of Leicester who supported and helped me during my research. A special thank you to William Dott for not only being a helpful colleague but also a good friend, making the time spent in the lab/office enjoyable with his quirky comments and sense of humour. I would also like to thank Dr Nicolas Sylvius and the research groups of Dr Kalvin Cain and Dr Mark Evans for their help/collaboration.

Conducting a PhD has been a challenging experience, I am very fortunate to have had a strong support system to help me get through it. My sisters, Anisa Malik, Aisha Yunus, Uzma Malik and Arusa Malik, have been my inspirations in life and I am forever indebted to them for supporting me through my every endeavour. I am very grateful to my best friend and husband, Safeer Mughal, for being my ‘rock’, always knowing what to say to lift my spirits and giving me the confidence to overcome every hurdle. I am also thankful to my brother in laws, Yunus Vhora, Sa’id Din and Nomaan Sheikh, and my parents in law, Shakeel and Shala Mughal, for their help, advice and encouraging words.
I would like to take this opportunity to express my heartfelt gratitude to my parents, Farida and Mohammad Umar Malik, for all their love, prayers and reassurance. They have always believed in me and helped me believe in myself, if it wasn’t for the immense support they provided me throughout my life, especially these past few years, none of my accomplishments would be possible. I dedicate this thesis to them.

Most importantly, I sincerely thank God for providing me with this opportunity, for looking over me at all times and blessing me with all my achievements. Alhamdulillah.
Investigations on arsenite induced premature senescence

Contents

Dedication II
Abstract III
Acknowledgements IV
Contents VI
Index of Tables IX
Index of Figures X
Abbreviations XIII

CHAPTER ONE: Introduction
1.1 Arsenic 2
1.2 Health effects of arsenic 5
1.3 Cardiovascular disease 10
1.4 Cardiovascular ageing 14
1.5 Oxidative stress 21
1.6 Mitochondria 30

CHAPTER TWO: Hypothesis and Aims
2 Hypothesis and aims 35

CHAPTER THREE: Materials and Methods
3.1 Cell culture 37
3.2 Measuring cell viability 41
3.3 Measuring ROS 44
3.4 Measuring apoptosis in EA.hy 926 cells 48
3.5 Measuring protein levels 49
3.6 Measuring ATP levels 50
3.7 Measuring mitochondrial biogenesis 51
3.8 Measuring mitochondrial DNA content and damage using qPCR 54
3.9 Measuring nuclear DNA damage using the Comet assay 58
3.10 Microarray based transcriptional profiling 61
3.11 Induction of SIPS 68
CHAPTER EIGHT: General Discussion and Future Work

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.1</td>
<td>Effects of arsenite on mitochondria</td>
<td>199</td>
</tr>
<tr>
<td>8.2</td>
<td>EA.hy 926 cells as a model for HUVECs</td>
<td>202</td>
</tr>
<tr>
<td>8.3</td>
<td>Oxidative stress and arsenite</td>
<td>203</td>
</tr>
<tr>
<td>8.4</td>
<td>Comparison of in vitro and in vivo microarray-based transcriptomics analysis</td>
<td>206</td>
</tr>
<tr>
<td>8.5</td>
<td>Mechanisms of arsenite-induced senescence</td>
<td>207</td>
</tr>
<tr>
<td>8.6</td>
<td>Future work</td>
<td>211</td>
</tr>
</tbody>
</table>

APPENDICES

<table>
<thead>
<tr>
<th>Appendix</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>215</td>
</tr>
<tr>
<td>2</td>
<td>215</td>
</tr>
</tbody>
</table>

References 216
Index of Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Naturally occurring forms of Arsenic</td>
<td>3</td>
</tr>
<tr>
<td>1.2</td>
<td>Examples of antioxidants, reactive oxygen and nitrogen species</td>
<td>24</td>
</tr>
<tr>
<td>3.1</td>
<td>Component of HUVECs and EA.hy 926 cells culture media</td>
<td>37</td>
</tr>
<tr>
<td>3.2</td>
<td>Components of HepG2 cells culture media</td>
<td>38</td>
</tr>
<tr>
<td>3.3</td>
<td>Components of galactose containing HepG2 cells culture media</td>
<td>38</td>
</tr>
<tr>
<td>3.4</td>
<td>Reagents used to make the freeze mix for HUVECs and EA.hy 926 cells</td>
<td>39</td>
</tr>
<tr>
<td>3.5</td>
<td>Components of the Amplex red assay</td>
<td>44</td>
</tr>
<tr>
<td>3.6</td>
<td>Dilutions used to make the H2O2 standard curve for the Amplex red Assay</td>
<td>44</td>
</tr>
<tr>
<td>3.7</td>
<td>Fluorescent dyes used with flow cytometry to measure ROS</td>
<td>46</td>
</tr>
<tr>
<td>3.8</td>
<td>Components of the Bradford assay</td>
<td>49</td>
</tr>
<tr>
<td>3.9</td>
<td>Dilutions used to make the BSA standard curve for the Bradford assay</td>
<td>50</td>
</tr>
<tr>
<td>3.10</td>
<td>Reagents to make the standard reaction for ATP detection</td>
<td>51</td>
</tr>
<tr>
<td>3.11</td>
<td>Final concentrations of mitochondrial inhibitors</td>
<td>52</td>
</tr>
<tr>
<td>3.12</td>
<td>Components required to make the assay media for the XF analyzer</td>
<td>53</td>
</tr>
<tr>
<td>3.13</td>
<td>Primers for measuring mtDNA content</td>
<td>55</td>
</tr>
<tr>
<td>3.14</td>
<td>Primers for measuring mtDNA damage</td>
<td>55</td>
</tr>
<tr>
<td>3.15</td>
<td>Components to make Tris-EDTA buffer</td>
<td>58</td>
</tr>
<tr>
<td>3.16</td>
<td>Components to make lysis buffer</td>
<td>59</td>
</tr>
<tr>
<td>3.17</td>
<td>Components to make electrophoresis buffer</td>
<td>59</td>
</tr>
<tr>
<td>3.18</td>
<td>Components for reverse transcription master mix</td>
<td>65</td>
</tr>
<tr>
<td>3.19</td>
<td>Components for second strand master mix</td>
<td>65</td>
</tr>
<tr>
<td>3.20</td>
<td>Components for IVT master mix</td>
<td>66</td>
</tr>
<tr>
<td>3.21</td>
<td>Senescence cells histochemical staining kit components</td>
<td>69</td>
</tr>
<tr>
<td>7.1</td>
<td>The 10 most up-regulated genes in response to arsenite in HUVECs</td>
<td>167</td>
</tr>
<tr>
<td>7.2</td>
<td>The 10 most down-regulated genes in response to arsenite in HUVECs</td>
<td>168</td>
</tr>
<tr>
<td>7.3</td>
<td>Arsenite induced differential expression of antioxidant genes in HUVECs</td>
<td>170</td>
</tr>
<tr>
<td>7.4</td>
<td>Differential expression of genes involved in endothelial cell viability in response to arsenite</td>
<td>170</td>
</tr>
<tr>
<td>7.5</td>
<td>Transcriptional changes for genes involved in endothelial cell proliferation in response to arsenite</td>
<td>171</td>
</tr>
</tbody>
</table>
7.6 Most significantly affected gene networks affected by arsenite

Index of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Metabolism of inorganic arsenite</td>
<td>4</td>
</tr>
<tr>
<td>1.2</td>
<td>Health effects of chronic arsenic exposure</td>
<td>5</td>
</tr>
<tr>
<td>1.3</td>
<td>Comparison between a healthy and atherosclerotic artery</td>
<td>7</td>
</tr>
<tr>
<td>1.4</td>
<td>Mechanisms of arsenic induced endothelial dysfunction and oxidative stress</td>
<td>13</td>
</tr>
<tr>
<td>1.5</td>
<td>Factors contributing to endothelial cell senescence</td>
<td>15</td>
</tr>
<tr>
<td>1.6</td>
<td>Synthesis of endothelial nitric oxide</td>
<td>22</td>
</tr>
<tr>
<td>1.7</td>
<td>Overview of cellular respiration in mammalian cells</td>
<td>31</td>
</tr>
<tr>
<td>3.1</td>
<td>Layout of the XF analyzer assay plates</td>
<td>54</td>
</tr>
<tr>
<td>3.2</td>
<td>Overview of the alkaline comet assay</td>
<td>60</td>
</tr>
<tr>
<td>3.3</td>
<td>Whole-genome gene expression direct hybridisation process</td>
<td>62</td>
</tr>
<tr>
<td>4.1</td>
<td>Mechanism behind Amplex red assay</td>
<td>75</td>
</tr>
<tr>
<td>4.2</td>
<td>Using Trypan blue to measure arsenite induced cell death in HUVECs</td>
<td>79</td>
</tr>
<tr>
<td>4.3</td>
<td>Determining cell seeding density using the CCK8 assay with HUVECs</td>
<td>80</td>
</tr>
<tr>
<td>4.4</td>
<td>Measuring cell viability in HUVECs treated with 1-10,000 µg/L arsenite</td>
<td>81</td>
</tr>
<tr>
<td></td>
<td>for 24 hours using the CCK8 assay</td>
<td></td>
</tr>
<tr>
<td>4.5</td>
<td>Measuring cell viability in HUVECs treated with 2500-10,000 µg/L arsenite</td>
<td>81</td>
</tr>
<tr>
<td></td>
<td>for 24 hours using the CCK8 assay</td>
<td></td>
</tr>
<tr>
<td>4.6</td>
<td>Measuring cell viability in HUVECs treated with 1-5000 µg/L arsenite</td>
<td>83</td>
</tr>
<tr>
<td></td>
<td>for 5 days using the CCK8 assay</td>
<td></td>
</tr>
<tr>
<td>4.7</td>
<td>Measuring cell viability in HUVECs treated with 200-1000 µg/L arsenite</td>
<td>83</td>
</tr>
<tr>
<td></td>
<td>for 5 days using the CCK8 assay</td>
<td></td>
</tr>
<tr>
<td>4.8</td>
<td>Measuring cell viability in HUVECs treated with 0.1-200 µg/L arsenite</td>
<td>84</td>
</tr>
<tr>
<td></td>
<td>for 5 days using the CCK8 assay</td>
<td></td>
</tr>
<tr>
<td>4.9</td>
<td>HUVECs staining for β-galactosidase</td>
<td>85</td>
</tr>
<tr>
<td>4.10</td>
<td>Arsenite induced stress-induced premature senescence in HUVECs</td>
<td>86</td>
</tr>
<tr>
<td>4.11</td>
<td>Results for the Amplex red and Bradford assay with HUVECs</td>
<td>88</td>
</tr>
</tbody>
</table>
4.12 Schematic representation of annexin V/ PI double staining analysis using flow cytometry

4.13 Measuring apoptosis and necrosis in EA.hy 926 cells after 1 hour arsenite treatment

4.14 Measuring apoptosis and necrosis in EA.hy 926 cells after 4 hours arsenite treatment

4.15 Measuring ROS levels in EA.hy 926 cells after 4 hours arsenite treatment

4.16 Measuring ROS levels in HUVECs after 4 hours arsenite treatment

4.17 Measuring mitochondrial superoxide generation from EA.hy 926 cells after 1 hour arsenite exposure

4.18 Measuring mitochondrial superoxide generation from EA.hy 926 cells after 4 hours arsenite exposure

4.19 Measuring mitochondrial superoxide generation from HUVECs after 4 hours arsenite exposure

4.20 Measuring superoxide generation from EA.hy 926 cells after 1 hour arsenite exposure

4.21 Measuring superoxide generation from EA.hy 926 cells after 4 hours arsenite exposure

4.22 Measuring superoxide generation from HUVECs after 4 hours arsenite exposure

4.23 Measuring superoxide generation from HUVECs after 12 hours arsenite exposure

4.24 Measuring superoxide generation from HUVECs after 24 hours arsenite exposure

5.1 DNA standard curve for determining the changes in mtDNA content

5.2 DNA standard curve for determining the concentration of the reference gene

5.3 Images of HUVECs stained with PI for the comet assay

5.4 Arsenite induced nDNA damage in HUVECs

5.5 Effects of arsenite on mtDNA content in HUVECs after 24 hours treatment

5.6 Effects of arsenite on mtDNA content in HUVECs after 5 days treatment
5.7 Levels of mtDNA damage measured in HUVECs after 24 hour arsenite treatment

5.8 Levels of mtDNA damage measured in HUVECs after 5 days arsenite treatment

6.1 Measurement of the oxygen consumption rate using in HUVECs in response several mitochondrial inhibitors

6.2 Effects of 1 hour arsenite treatment on endothelial mitochondrial reserve capacity

6.3 Effects of 1 hour arsenite treatment on endothelial maximum OCR

6.4 Effects of 1 hour arsenite treatment on endothelial ATP-linked oxygen consumption

6.5 Effects of 1 hour arsenite treatment on endothelial non-mitochondrial oxygen consumption

6.6 Effects of 4 hours arsenite treatment on endothelial mitochondrial reserve capacity

6.7 Effects of 4 hours arsenite treatment on endothelial maximum OCR

6.8 Effects of 4 hours arsenite treatment on endothelial ATP-linked oxygen consumption

6.9 Effects of 4 hours arsenite treatment on endothelial non-mitochondrial oxygen consumption

6.10 Comparing the levels of ATP in HepG2 cells grown in either glucose or galactose media in response to antimycin A treatment

6.11 Comparing the levels of ATP in HepG2 cells grown in either glucose or galactose media in response to arsenite treatment

7.1 Structure of the probes attached to a bead used on the BeadChip for the Direct hybridisation assay

7.2 Principle component analysis of the transcriptional profiles

7.3 Gene-signalling map

7.4 Differential gene expression in pathways involved in ‘cellular stress and injury’ in response to arsenite

7.5 Differential gene expression in pathways involved in ‘cellular growth, proliferation and development’ in response to arsenite

7.6 Effects of arsenite on gene expression changes in pathways involved in the cellular ‘toxicological response’
List of Abbreviations

ρ Mitochondrial DNA deficient/rho
AA Antimycin A
ADP Adenosine diphosphate
AFU Arbitrary fluorescence unit
Amplex red 10-acetyl-3,7-dihydroxyphenoxazine
ANGPT2 Angiopoietin 2
ANOVA One-way analysis of variance
AP Activator protein
AQP Aquaglyceroporins
ATM Ataxia telangiectasia mutated
ATP Adenosine triphosphate
As\(^{3+}\) Arsenite
BCL2 B-cell leukemia/lymphoma 2
BFD Blackfoot disease
BH\(_4\) Tetrahydrobiopterin
bp Base pairs
BSA Bovine serum albumin
CaCl\(_2\) Calcium chloride
CAD Coronary artery disease
CCK8 Cell counting kit 8
CCL15 Chemokine ligand 14
CCL15 Chemokine ligand 15
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CDKN1A</td>
<td>Cyclin-dependent kinase inhibitor 1A</td>
</tr>
<tr>
<td>cDNA</td>
<td>Copy DNA</td>
</tr>
<tr>
<td>CHK</td>
<td>Checkpoint kinases</td>
</tr>
<tr>
<td>CM-H₂DCFDA</td>
<td>5,6-chloromethyl- 2',7'-dichlorohydrofluorescein diacetate</td>
</tr>
<tr>
<td>CO₂</td>
<td>Carbon dioxide</td>
</tr>
<tr>
<td>COX</td>
<td>Cytochrome c oxidase</td>
</tr>
<tr>
<td>cRNA</td>
<td>Copy RNA</td>
</tr>
<tr>
<td>Ct</td>
<td>Cycle threshold</td>
</tr>
<tr>
<td>CVD</td>
<td>Cardiovascular disease</td>
</tr>
<tr>
<td>Cyt c</td>
<td>Cytochrome c</td>
</tr>
<tr>
<td>DCF</td>
<td>(fluorescent) 2', 7'-dichlorofluorescein</td>
</tr>
<tr>
<td>DCFH</td>
<td>(non-fluorescent) 2'-7'-dichlorofluorescein</td>
</tr>
<tr>
<td>DCFH-DA</td>
<td>Dichlorodihydrofluorescein diacetate</td>
</tr>
<tr>
<td>DDIT3</td>
<td>DNA damage-inducible transcript 3</td>
</tr>
<tr>
<td>DDR</td>
<td>DNA damage response</td>
</tr>
<tr>
<td>DHE</td>
<td>Dihydroethidium</td>
</tr>
<tr>
<td>DHE-HPLC</td>
<td>Dihydroethidium-High performance liquid chromatography</td>
</tr>
<tr>
<td>dH₂O</td>
<td>Distilled water</td>
</tr>
<tr>
<td>DMEM</td>
<td>Dulbecco's modified Eagle's medium (Sigma-Aldrich D5546)</td>
</tr>
<tr>
<td>DMNQ</td>
<td>2,3-dimethoxy-1,4-naphthoquinone</td>
</tr>
<tr>
<td>DMSO</td>
<td>Dimethyl sulfoxide</td>
</tr>
<tr>
<td>DNA</td>
<td>Deoxyribonucleic acid</td>
</tr>
<tr>
<td>dNTP</td>
<td>Deoxyribonucleotide triphosphates</td>
</tr>
<tr>
<td>DOX</td>
<td>Doxorubicin</td>
</tr>
<tr>
<td>DPBS</td>
<td>Dulbecco’s phosphate buffer solution</td>
</tr>
<tr>
<td>DSB</td>
<td>Double-strand break</td>
</tr>
<tr>
<td>DTT</td>
<td>Dithiothreitol</td>
</tr>
</tbody>
</table>
Investigations on arsenite induced premature senescence

EA.hy 926 Fusion of human umbilical vein endothelial cells with the permanent human cell line A549 derived from a human lung carcinoma

EDTA Ethylenediaminetetraacetic acid

eNOS Endothelial nitric oxide synthase

ER Endoplasmic reticulum

ETC Electron transport chain

FADH2 Flavin adenine dinucleotide

FBS Fetal bovine serum

FC Fold change

FCCP Carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone.

FDR False discovery rate

FITC Fluorescein isothiocyanate

β-gal β-galactosidase

GPCR G-protein coupled receptors

GSH Glutathione

γ-H2A.X Phosphorylated histone H2A.X

HBSS Hank’s balanced salt solution

H9C2 Cell line derived from rat cardiac myoblasts

H2DCF-DA 2′,7′-dichlorodihydrofluorescein diacetate

HepG2 cells Human hepatocellular liver carcinoma cells

HGPS Hutchinson-Gilford progeria syndrome

HIF1A Hypoxia-inducible factor-1α

H2O Water

H2O2 Hydrogen peroxide

hOGG1 human 8-hydroxyguanine DNA-glycosylase

HSPA5 Heat shock 70kDa protein 5

HUVECs Human umbilical vein endothelial cells
<table>
<thead>
<tr>
<th>Term</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IARC</td>
<td>International Agency of Research on Cancer</td>
</tr>
<tr>
<td>IGF-1</td>
<td>Insulin-like growth factor-1</td>
</tr>
<tr>
<td>IMDM</td>
<td>Iscove’s modified Dulbecco’s medium</td>
</tr>
<tr>
<td>IL8</td>
<td>Interleukin 8</td>
</tr>
<tr>
<td>IPA</td>
<td>Ingenuity pathway analysis</td>
</tr>
<tr>
<td>KCl</td>
<td>Potassium Chloride</td>
</tr>
<tr>
<td>KH₂PO₄</td>
<td>Potassium phosphate</td>
</tr>
<tr>
<td>LDL</td>
<td>Low-density lipoproteins</td>
</tr>
<tr>
<td>LMP</td>
<td>Low melting point</td>
</tr>
<tr>
<td>LPA</td>
<td>Lysophosphatidic acid</td>
</tr>
<tr>
<td>LPAR1</td>
<td>Lysosphosphatidic acid receptor 1</td>
</tr>
<tr>
<td>LPAR2</td>
<td>Lysosphosphatidic acid receptor 2</td>
</tr>
<tr>
<td>MAPK</td>
<td>Mitogen activated protein kinase</td>
</tr>
<tr>
<td>MEN</td>
<td>Menadione</td>
</tr>
<tr>
<td>MgCl₂</td>
<td>Magnesium chloride</td>
</tr>
<tr>
<td>MitoSOX™</td>
<td>MitoSOX™ red mitochondrial superoxide indicator</td>
</tr>
<tr>
<td>mRNA</td>
<td>micro RNA</td>
</tr>
<tr>
<td>mtDNA</td>
<td>Mitochondrial DNA</td>
</tr>
<tr>
<td>MTs</td>
<td>Metallothioneins</td>
</tr>
<tr>
<td>MT1G</td>
<td>Metallothionein 1G</td>
</tr>
<tr>
<td>MT1H</td>
<td>Metallothionein 1H</td>
</tr>
<tr>
<td>MT1X</td>
<td>Metallothionein 1X</td>
</tr>
<tr>
<td>mTOR</td>
<td>Mammalian target of rapamycin</td>
</tr>
<tr>
<td>MTT</td>
<td>3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide</td>
</tr>
<tr>
<td>NaCl</td>
<td>Sodium Chloride</td>
</tr>
<tr>
<td>NADH</td>
<td>Nicotinamide adenine dinucleotide oxidase</td>
</tr>
<tr>
<td>NADPH</td>
<td>Nicotinamide adenine dinucleotide phosphate-oxidase</td>
</tr>
</tbody>
</table>
Investigations on arsenite induced premature senescence

\(\text{Na}_2\text{HPO}_4 \) Disodium hydrogen phosphate

nDNA Nuclear DNA

NER Nucleotide excision repair

NF-\(\kappa \)B Nuclear factor kappa B

NO Nitric oxide

NOS Nitric oxide synthase

NQO1 NAD(P)H dehydrogenase, quinine 1

NRF2 Nuclear factor erythroid 2-related factor 2

NTP Nucleoside triphosphate

O\(_2\) Oxygen

OC Oxygen consumption

OCR Oxygen consumption rate

8-oxo-dG 8-hydroxy-2-deoxyguanosine

P21 Another name for CDKN1A

PBS Phosphate buffer solution

PC Principal component

PCA Principal component analysis

PCR Polymerase chain reaction

PI Propidium iodide

PS Phosphatidylserine

PVD Peripheral vascular disease

qPCR Quantitative real-time polymerase chain reaction

RGS4 Regulator of G-protein signalling 4

RNA Ribonucleic acid

RNase Ribonuclease

RNS Reactive nitrogen species

ROS Reactive oxygen species
Investigations on arsenite induced premature senescence

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>RPLPO</td>
<td>Large ribosomal protein</td>
</tr>
<tr>
<td>SA-β-Gal</td>
<td>Senescence associated β-galactosidase</td>
</tr>
<tr>
<td>SEM</td>
<td>Standard error of mean</td>
</tr>
<tr>
<td>SIPS</td>
<td>Stress-induced premature senescence</td>
</tr>
<tr>
<td>SOD</td>
<td>Superoxide dismutase</td>
</tr>
<tr>
<td>SOD1</td>
<td>Superoxide dismutase 1</td>
</tr>
<tr>
<td>SOD2</td>
<td>Superoxide dismutase 2</td>
</tr>
<tr>
<td>SS</td>
<td>Staurosporin</td>
</tr>
<tr>
<td>STASIS</td>
<td>Stress or aberrant signalling induced senescence</td>
</tr>
<tr>
<td>SVEC4-10</td>
<td>Mouse vascular endothelial derived cell line</td>
</tr>
<tr>
<td>t-BHP</td>
<td>tert-Butyl hydrogen peroxide</td>
</tr>
<tr>
<td>TE</td>
<td>Tris-EDTA</td>
</tr>
<tr>
<td>TMRM</td>
<td>Tetramethylrhodamine methyl ester</td>
</tr>
<tr>
<td>TNF</td>
<td>Tumour necrosis factor</td>
</tr>
<tr>
<td>TPP</td>
<td>Triphenylphosphonium</td>
</tr>
<tr>
<td>UP</td>
<td>Ultra pure</td>
</tr>
<tr>
<td>UPR</td>
<td>Unfolded protein response</td>
</tr>
<tr>
<td>UROtsa cells</td>
<td>Urothelium cell line</td>
</tr>
<tr>
<td>VSMCs</td>
<td>Vascular smooth muscle cells</td>
</tr>
<tr>
<td>WHO</td>
<td>World health organisation</td>
</tr>
<tr>
<td>WS</td>
<td>Werner’s syndrome</td>
</tr>
<tr>
<td>WST-8</td>
<td>2-(2-methoxy-4-nitrophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium, monosodium salt</td>
</tr>
<tr>
<td>XF analyzer</td>
<td>Extracellular flux analyser</td>
</tr>
<tr>
<td>XF24</td>
<td>Extracellular flux 24 well cell culture microplates</td>
</tr>
<tr>
<td>X-gal</td>
<td>5-bromo-4-chloro-3-indolyl-beta-D-galacto-pyranoside</td>
</tr>
</tbody>
</table>
CHAPTER ONE

Introduction
Chapter 1: Introduction

1: Introduction

1.1 Arsenic

1.1.1 Arsenic in the environment

Arsenic is a naturally occurring toxic chemical known as a metalloid due to its metal and non-metal like properties, present as the twentieth most abundant element in the earth’s crust. It occurs in its native element form as well as a constituent to over 200 minerals and has been found to be present at varying concentrations in air, rocks, soil, water and food (Luong et al., 2007). Arsenic exists in both organic and inorganic forms in several oxidation states, with the inorganic forms trivalent arsenite and pentavalent arsenate being the most prevalent and thus the species to which humans are commonly exposed (Garelick et al., 2008) (Table 1.1).

The exposure of humans to arsenic can occur through many means due to its large distribution in the environment e.g. through the air as arsine, food which contains both organic and inorganic arsenic and through drinking water which generally consists of the inorganic forms (Abernathy et al., 2003). The form of arsenic exposure to humans that is associated with the most adverse health effects is the consumption of contaminated drinking water (Abernathy et al., 2003), which has increased due to the development of water wells in the ground enabling arsenic to leech out from rocks. In many countries, such as Bangladesh, Taiwan and India, arsenic from drinking water has become a major health hazard due to its toxic effects.
Table 1.1 Naturally occurring arsenic species in both their organic and inorganic forms. (Adapted from WHO, 2001)

<table>
<thead>
<tr>
<th>NAME</th>
<th>STRUCTURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inorganic</td>
<td></td>
</tr>
<tr>
<td>Arsenate</td>
<td></td>
</tr>
<tr>
<td>Arsenite</td>
<td></td>
</tr>
<tr>
<td>Organic</td>
<td></td>
</tr>
<tr>
<td>Monomethylarsonic acid</td>
<td></td>
</tr>
<tr>
<td>Dimethylarsinic acid</td>
<td></td>
</tr>
<tr>
<td>Trimethylarsine oxide</td>
<td></td>
</tr>
</tbody>
</table>

1.1.2 Arsenic metabolism

Of the two biologically relevant inorganic arsenic species, trivalent arsenite is more toxic than pentavalent arsenate, exerting its toxicity through the formation of strong bonds with functional groups on proteins, i.e. thiolates of cysteine residues with inhibition of the protein function (Bhattacharjee et al., 2009). Arsenite is taken up in the body through aquaglyceroporins (AQPs); AQP channels enable the transport of water, glycerol and other small molecules (Bhattacharjee et al., 2009), whereas arsenate mimics inorganic phosphate and therefore is taken up by phosphate transporters (Wysocki and Tamas, 2010).
On entering the body arsenate is reduced to arsenite. Arsenite then undergoes oxidative methylation and reduction steps by the enzymes arsenic methyltransferase and methylarsonic acid reductase in the presence of glutathione and S-adenosyl methionine to give the products monomethylarsenic (MMA) and dimethylarsenic (DMA) (Kedderis et al., 2006) (Figure 1.1). The methylation of inorganic arsenic helps the excretion process of this toxicant as MMA and DMA are more easily removed from the body in urine (WHO, 2001).

Figure 1.1 Metabolism of inorganic arsenic relies on oxidative methylation steps; represented by the blue arrows involving the methyltransferase Cyt19 (a) and cofactor S-adenosylmethionine (SAM), and reduction steps; represented by the red arrows, involving glutathione S-transferase omega 1-1 (b) and glutathione (GSH). (Adapted from Kedderis et al., 2006).
1.2. Health effects of Arsenic

The epidemiological effects of chronic arsenic exposure in humans, mainly through the consumption of arsenic contaminated drinking water, predominantly consisting of the inorganic arsenite and arsenate forms, have been manifested and researched globally (Figure 1.2).

Figure 1.2 The health effects of chronic arsenic exposure on the human body. (Adapted from Smith et al., 2000)

1.2.1. Cancer

Arsenic has been classified as a group 1 carcinogen by the International Agency for Research on Cancer (IARC, 2012), suggesting arsenic to be the most carcinogenic environmental compound to humans, with incidents of arsenic induced cancer being manifested globally. The first study which identified the relationship between arsenic contaminated drinking water and cancer in humans was through the study of a population in Taiwan in which individuals developed skin cancer. The study found 10% of men chronically exposed to arsenic; approximately 500 μg/L found in their drinking
Chapter 1: Introduction

water, developed skin cancer by 60 years of age (Tseng et al., 1968). The occurrence of skin cancer however is found to be relatively low in comparison to the incidents of internal cancers observed in arsenicism (Smith et al., 2000).

Internal cancers have been found to give the highest mortality amongst the health effects of chronic arsenicism. In certain regions of Taiwan, where the arsenic concentration in water is as high as 800 μg/L, high incidents of bladder and lung cancer were observed (Chen et al., 1988; Smith et al., 1992; Bates et al., 1992). Lung cancer was also observed in 66% of the autopsies carried out on 163 male wine growers in Chile. These individuals had chronic arsenic poisoning due to the consumption of ‘hastrunk’; a wine substitute made up of grapes of high arsenic content. As well as lung cancer, 5 of these males also suffered from liver cancer (Luchtrath, 1983). Liver cancer was also seen in 1 in 16 arsenic-induced cancer patients in Chile that consumed water containing arsenic at concentrations varying between 200- 2000 μg/L (Zaldivar et al., 1981).

Similarly in Bangladesh, high incidences of cancers have been noted in response to consumption of arsenic contaminated water. Chen and Ahsan (2004) calculated at least a 2-fold increase in the lifetime mortality risk of lung, bladder or liver cancer in response to arsenic consumption than the background lifetime mortality risk of these cancers in a Bangladeshi population. Furthermore, the excess cancer risk with lifetime exposure to arsenic contaminated drinking water that exceeds the WHO guidelines of <10 μg/L was determined at approximately 1 in 300 individuals, which poses a risk up to 300 times higher than other known carcinogens found in drinking water at
concentrations compliant with the U.S. regulations for drinking water (Smith et al., 2002).

1.2.2 Vascular disorders

Through the analyses of many of the arsenic exposed regions of the world such as the arseniasis endemic areas in Taiwan and Bangladesh, arsenic has been found to cause vascular disease through atherosclerosis (Tseng et al., 1996; Chen et al., 2006). Atherosclerosis is the thickening of the arterial walls due to the accumulation of fatty deposits which form plaques (Figure 1.3). Atherosclerosis has been found to be the primary cause of many cardiovascular and peripheral vascular disorders (PVD) (Wang et al., 2002).

![Atherosclerotic Artery vs Healthy Artery](image)

Figure 1.3 The comparison between a healthy artery against an atherosclerotic artery which displays the build-up of plaque and the narrowing of the lumen, restricting blood flow.
1.2.2.1 Peripheral vascular disease

The PVD called Blackfoot disease (BFD) is a characteristic to arsenicism, which is seen as endemic in Taiwan through the consumption of inorganic arsenic in water. The name of this disease is given due to the gangrene like symptoms that appear in the lower extremities of patients due to arterial occlusion (Tseng, 2002). Studies carried in the arsenic exposed regions of Taiwan have shown a concentration response relationship between the consumption of arsenic contaminated artesian well water and the prevalence of BFD. The cumulative arsenic exposure of ≥20,000 µg/L-years through contaminated water gave a prevalence rate of up to 19.8% for the development of PVD compared to 4.4% in a control group not exposed to arsenic contaminated water (Tseng, 2002).

This association between arsenic and BFD is supported by the display of other symptoms that have been associated with arsenic exposure, i.e. skin lesions and skin cancer (Tseng et al., 1968), as well as the decline in the number of BFD cases that have occurred in these ‘BFD-hyperendemic regions’ of Taiwan after the implementation of clean tap water (Tseng et al., 1996).

Atherosclerosis is the main pathological change that occurs to give rise to BFD. In a study of 52 limbs taken from BFD patients, 70% displayed features of atherosclerosis. Thrombus formation was also seen with a decrease in the number and size of newly formed blood vessels and changes in the vessel walls (Tseng et al., 2003).
1.2.2.2 Cardiovascular diseases

Cardiovascular disease (CVD) may not be as prevalent an effect of arsenic exposure to humans as cancer, however many global epidemiological studies have reported cases of CVD in arsenicism, particularly in arsenic rich areas such as Taiwan.

A relationship between long term arsenic exposure and the risk of developing carotid atherosclerosis was established in Taiwan by Wang et al (2002). Observations of intima media thickness and/or the presence of plaques in arteries were carried out using ultrasonography in individuals who had not yet developed heart disease. The study revealed arsenic exposure to lead to carotid atherosclerosis development and progression, giving rise to general atherosclerosis over time before the development of clinical events including myocardial infarctions (Wang et al., 2002). A concentration-dependent link was also established between arsenic exposure and hypertension in Taiwan, where long-term consumption of arsenic contaminated drinking water gave a 1.5 fold increase in the incidence of hypertension compared to non-exposed individuals (Chen et al., 1995).

Epidemiological studies carried out in Chile also found a direct relationship between the exposure to arsenic and CVD; autopsies of 10 infants and young adults ranging from the age of 1-18 years found intimal thickening in the arterial walls in 9 of the individuals. Furthermore, 2 of them displayed signs of myocardial infarction prior to death. Moreover, comparing adults <40 years in arsenic exposed and non-exposed areas of Chile showed a significant increase in the incidence of myocardial infarctions compared to the non-arsenic exposed population (Zaldivar, 1980).
1.3 Cardiovascular disease

CVD is one of the leading causes of death worldwide. The onset of CVD is usually as a result of vascular dysfunction due to factors such as high blood pressure, thrombosis and the development of atherosclerosis (Bosson, 2008), with atherosclerosis known to be the most common underlying cause for CVD.

1.3.1 Atherosclerosis

Atherosclerosis is an immune-inflammatory disease of the arteries that results in the narrowing of the arterial lumen due to the build-up of plaque (Figure 1.3). Atherosclerosis is initiated as a result of increased cholesterol and low-density lipoprotein (LDL) concentrations and developed further involving endothelial cells, smooth muscle cells and leukocytes (Falk, 2006), with the formation of plaques in the intima of blood vessels (Figure 1.3). In the formation of plaques, LDLs are sequestered within the intima, where they are oxidised by reactive oxygen species (ROS) produced by endothelial cells (Packard and Libby, 2008). Oxidised LDLs induce an inflammatory/immune response and are taken up by macrophages by endocytosis, becoming lipid-rich foam cells (Siegel-Axel et al., 2008). Lipid-rich macrophages secrete pro-inflammatory cytokines, some of which cause recruitment of T lymphocytes (Packard and Libby, 2008). Disruption of the plaque leads to thrombus formation which results in the occurrence of fatal cardiovascular complications i.e. transient ischemic attack and stroke (Yuan et al., 2002).

Atherosclerosis is thought to occur as an immune/inflammatory response to lipid mediated endothelial cell damage (Siegel-Axel et al., 2008). The involvement of endothelial dysfunction in the early stages of atherosclerosis results in its use as an
indicator of early stage atherosclerosis (Davignon and Ganz, 2004). Since endothelial cells have anti-inflammatory and antithrombotic properties (Landmesser et al., 2004), the dysfunction of endothelial cells can be seen as an early and important factor in the pathogenesis of atherosclerosis.

1.3.2 Mechanism of arsenic induced cardiovascular disease

The endothelium is a vital component of all blood vessels. It forms a metabolically active layer of cells with anti-coagulant and anti-thrombotic properties enabling laminar blood flow. The vascular endothelium also regulates the release of certain mediators e.g. nitric oxide (NO), angiotensin II, cytokines and prostanoids. Therefore, the endothelium can be seen to play a role in allowing the cardiovascular system to fulfil its functions (Balakumar and Kaur, 2009). Endothelial dysfunction has been found to be involved in the pathogenesis of arsenic-induced cardiovascular disease including atherosclerosis (Davignon and Ganz, 2004), hypertension (Savoia and Schiffrin, 2007) and heart failure (Desjardins and Balligand, 2006). Endothelial dysfunction is the imbalance that occurs between endothelial-mediated vasodilation and vasoconstriction. This can be as a result of many factors including a lack NO, inactivation or uncoupling of endothelial nitric oxide synthase (eNOS), increased reactive oxygen species (ROS) and reactive nitrogen species (RNS) generation and a decrease in the antioxidant defence mechanisms (Balakumar and Kaur, 2009; Cai and Harrison, 2000). The proposed effects of arsenic on these factors are shown in figure 1.4.

Arsenic contributes towards atherosclerosis through the enhancement of adhesion factors. Exposure of endothelial cells to arsenic up-regulated the tumour necrosis factor (TNF)-α mediated vascular cell adhesion molecule-1 protein expression (Tsou et al.,
Chapter 1: Introduction

The increased expression of adhesion molecules by TNF-α is through the activator protein (AP)-1 and NF-κB transcription factor signalling pathways, the activities of which are also seen to be enhanced by arsenite in endothelial cells (Barchowsky et al., 1996; Tsou et al., 2004).

Short-term exposure of endothelial cells to a relatively low concentration of arsenic, <650 µg/L, for up to 4 hours, resulted in an increase in ROS (Barchowsky et al., 1996), which correlates with an increased expression of NADPH oxidase (Smith et al., 2000) by arsenic exposure. Furthermore, an increase in glutathione (GSH) activity is seen in endothelial cells treated with low arsenite concentrations; <1,300 µg/L, (Tsou et al., 2003). With the antioxidant function of GSH, this increase implicates an increase in ROS and thus supports an increase in ROS as a possible mechanism of arsenite induced endothelial dysfunction.

An increase in ROS through arsenic exposure could result in the lack of nitric oxide NO bioavailability. NO is known as the endothelium derived relaxation factor as it is responsible for the dilation of blood vessels (Ignarro et al., 1987). However, ROS rapidly react with and therefore diminishes NO (see section 1.5.1), possibly contributing towards the development of atherosclerosis. Arsenic can also bring about this effect by targeting eNOS, the enzyme responsible for NO production in the endothelium (Figure 1.6). Arsenic concentration-dependently inhibits eNOS in endothelial cells by reacting with the vicinal thiol groups, resulting in a dysfunction of blood vessel relaxation and thus promoting cardiovascular complications (Lee et al., 2003; Kumagai and Pi, 2004).
Figure 1.4 Mechanisms by which arsenic may bring about its effects in endothelial cells giving rise to endothelial dysfunction through the increase in oxidative stress. (Adapted from Kumagai and Pi, 2004)
1.4 Cardiovascular ageing

1.4.1 Cardiovascular disease, ageing and senescence

Epidemiological studies have revealed age to be a significant risk factor in the development of CVD, with incidences of diseases such as hypertension, coronary heart disease, congestive heart failure and stroke significantly increasing with age (Najjar et al., 2005). Growing evidence supports the involvement of cellular senescence in the process of human ageing (Faragher and Kipling, 1998). Cellular senescence is the phrase used to describe cells that undergo irreversible cell cycle arrest, displaying changes in their cellular physiology, morphology and gene expression. These changes contribute towards ageing of tissues and have the potential of giving rise to age-related diseases (Faragher and Kipling, 1998).

There are many factors that have been suggested to be involved in the onset of cellular senescence in endothelial cells including oxidants and antioxidants (Furumoto et al., 1998; Kurz et al., 2004), increased blood glucose concentrations (Yokoi et al., 2006), NO (Vasa et al., 2000), angiotensin II (Imanishi et al., 2005; Schleicher et al., 2008), inflammatory molecules (Breitschopf et al., 2001) and mitochondria (Schleicher et al., 2008). These are hypothesised to act by affecting the activity of telomerase; the enzyme responsible for adding the telomeric repeat sequences to the ends of eukaryotic chromosomes and/or to act by influencing the intracellular oxidative stress levels (reviewed in (Erusalimsky, 2009) (Figure 1.5).
1.4.2 Cellular senescence

1.4.2.1 Replicative senescence

As senescent cells display shortened telomeres, telomeric length has become a good marker for the identification of cellular senescence in vivo. Telomeres are structures that form a ‘cap’ at the end of chromosomes. They are an array of DNA repeat sequences; TTAGGG, that along with 6 proteins form the telomere-shelterin complex. This complex has the function of protecting the ends of the chromosomes from damage and degradation during the cycles of DNA replication (de Lange, 2005; Oeseburg et al., 2010). However, this does not render cells immortal. With every cycle of replication, the length of the telomeres shortens until a critical length is reached where cells can no longer undergo replication and become dysfunctional. The cell then enters the state of senescence.
This form of ‘replicative senescence’ was first proposed by Hayflick and colleagues, where they observed the inability of human cells to infinitely proliferate in vitro despite optimum culture conditions for cellular growth (Hayflick and Moorhead, 1961; Hayflick, 1965). Despite the exact mechanism by which cells enter the senescence state not being completely clear, replicative senescence has shown the involvement of the cellular DNA damage response (DDR) triggered by the dysfunctional telomeres. The dysfunctional telomeres are thus recognised as double-strand breaks which are flagged up by the DNA damage checkpoint ceasing the cell cycle progression (d’Adda di Fagagna et al., 2003).

1.4.2.2 Stress-induced premature senescence

Stress-induced premature senescence (SIPS) is the term used to describe the onset of senescence independent of telomeric mechanisms, also known as stress or aberrant signalling induced senescence (STASIS). SIPS occurs due to cells being under a variety of stresses, which can results in the inhibition of genes involved in cellular proliferation and the activation of genes involved in growth inhibition (Chang et al., 2002). Oxidative stress is an effective inducer of premature senescence as seen through the exposure of cells to hydrogen peroxide (Chen et al., 1998) and t-BHP (Dumont et al., 2001), most probably through oxidative DNA damage (Chen et al., 1995) which would lead to cell cycle arrest. Other factors that bring about SIPS include non-oxidative DNA damage (Robles and Adami, 1998) and inadequate cell culture conditions (Ramirez et al., 2001).

Comparing the two main forms of senescence; replicative senescence and SIPS, although occurring through different mechanisms, they share many common properties.
Both senescence cell types display senescence-associated morphological changes e.g. flattened and enlarged appearance. The initiation of senescence involves the recognition of DNA damage, which leads to the activation of the cell-cycle checkpoints and induction of irreversible cell cycle arrest through the p53 and p16INK4A-RB pathways (Wright et al., 1996; Kuilman et al., 2010). The involvement of these tumour-suppressor pathways can be used as biomarkers of senescence as senescent cells show an increased activity of p53, induction of p16INK4A and the accumulation of RB, the accumulation of proteins p21CIP1 and p15INK4B have also been seen in senescent cells (Kuilman et al., 2010). The senescence associated secretory phenotype (SASP) is also common between the both cell forms, in which the senescent cells undergo transcriptional changes resulting in the secretion of many factors such as cytokines and chemokines (Kuilman et al., 2010).

However, whereas in replicative senescence cells that are programmed to undergo a number of replication cycles before senescence is achieved, SIPS is not programmed to occur in such a way. Furthermore, the presence of telomerase can prevent replicative senescence through the constant renewal of the telomeres (Wright et al., 1996), whereas such a phenomenon is not possible for SIPS.

\subsection*{1.4.3 Cellular senescence in cardiovascular diseases}
Observing plaques that are formed in cases of atherosclerosis has revealed insightful information into the replicative ability of vascular cells. Vascular smooth muscle cells (VSMCs) in plaques display an earlier onset of senescence (Ross et al., 1984; Bennett et al., 1995), a slower proliferative ability (Ross et al., 1984; Bennett et al., 1995; Mosse et al., 1985) and higher incidence of apoptosis (Bennett et al., 1995) when compared to
the smooth muscle cells taken from healthy blood vessels. These observations were found to be the result of changes in the activity of cell signalling molecules e.g. p53 and p105^{RB}, in the plaque smooth muscle cells (Bennett <i>et al.</i>, 1998). Vascular endothelial cells located on the surface of plaques also displayed morphological features of senescence i.e. flattened and enlarged appearance, indicating that endothelial cells also undergo early senescence in atherosclerosis (Burris, 1991).

As endothelial cells get older, the production of NO decreases (Sato <i>et al.</i>, 1993), in line with diminished expression of eNOS (Matsushita <i>et al.</i>, 2001). These changes disrupt the vasodilatory ability of blood vessels, providing a possible mechanism for the pathogenesis of CVD in ageing. Along with the decrease in NO, an up regulation of pro-inflammatory cytokines and adhesion molecules seen in senescent endothelial cells makes them more prone to interaction with monocytes, thus enhancing atherogenesis (Maier <i>et al.</i>, 1993).

The endothelium is generally considered to have a low cell turnover, however at regions where the blood flow is perturbed i.e. branching points, the endothelial cells have been found to undergo an increased number of replicative cycles (Caplan and Schwartz, 1973). Such sites in the vasculature are prone to atherosclerosis, where endothelial cell senescence has been found to occur by an accelerated shortening of telomeres, in comparison to the general age-related telomeric shortening (Aviv <i>et al.</i>, 2001, Chang and Harley, 1995). The increased shortening of telomeres in cases of vascular disease is supported by a study looking into coronary artery disease which also found that endothelial cells from the diseased artery had shorter telomeres than endothelial cells in
healthy arteries (Ogami et al., 2004). Thus, replicative senescence occurs at sites prone to atherogenesis, suggesting a direct link between cellular ageing and CVD.

1.4.3.1 Telomeres and CVD

Age is one of the biggest risk factors for CVD development, along with genetic and environmental factors, contributing to an individual’s susceptibility to CVD development. Telomeres have been recently found to play an important role in the onset of CVD through their importance in determining ‘biological age’ which can be used to partly explain why the susceptibility to CVD and the age of onset differs in individuals (Samani and van der Harst, 2008).

As described above (Section 1.4.3), shortening of telomeres may contribute to the onset of CVD through senescence of endothelial cells in atherosclerosis (Aviv et al., 2001, Chang and Harley, 1995). Further support for the role of shortened telomeres in human CVDs has been established in cases of atherosclerosis (Samani et al., 2001), premature myocardial infarction (Brouilette et al., 2003) and chronic heart failure (van her Harst et al., 2007). Additionally, coronary artery disease (CAD) has also been associated with shortening of telomeres. Studying the telomeric lengths in leukocytes of middle-aged individuals with hypercholestrolaemia identified the presence of shortened telomere length prior to CAD development when compared to those of healthy non-hypercholestrolaemic middle-aged individuals, proving telomere shortening as a cause rather than effect of CAD (Brouilette et al., 2007).
1.4.4 Premature ageing and cardiovascular disease

Studying certain human genetic disorders such as Werner’s syndrome (WS) and Hutchinson-Gilford progeria syndrome (HGPS), which gives individuals the phenotype of premature ageing, has proven insightful when studying the effects of ageing on CVD (Capell et al., 2007). Individuals with HGPS have been found to develop cardiovascular complications during childhood resulting in myocardial infarction or stroke by the age of 13 (DeBusk, 1972). Both WS and HGPS display cell cycle abnormalities which result in the onset of premature cellular senescence and ageing with the development of premature atherosclerosis (Capell et al., 2007).

WS occurs as a result of a mutation in the WRN gene giving rise to a truncated form of the WRN protein (Huang et al., 2006). This protein is a tumour suppressor and also plays a role in DNA repair, recombination and replication (Huang et al., 2006). One of its functions involves the repair and maintenance of telomeres, therefore mutations in WRN result in a limited replicative capacity of cells and therefore a higher rate of senescence. This is seen in cell culture experiments when comparing normal human fibroblasts with those of WS patients which showed up to a 6-fold increase in the loss of proliferating cells in the WS fibroblasts (Kill et al., 1994). Study of both HGPS and WS therefore support the concept of senescence being a contributor of ageing, in turn leading to the onset of CVD.
1.5 Oxidative stress

Oxidative stress is brought about by the overproduction or accumulation of ROS, i.e. through the increased ROS generation from the mitochondria and/or as a result of overstimulation of ROS generating enzymes i.e. NAD(P)H oxidase, xanthine oxidase, lipoxygenases and NOS, or through the depletion of antioxidants. Therefore oxidative stress can be defined as an imbalance between ROS and antioxidants.

1.5.1 Reactive oxygen species

The generation of ROS in cells is a by-product of normal cellular metabolism, however, excessive production of ROS leads to oxidative stress. In endothelial cells, oxidative stress results in the lack of NO bioavailability through the rapid reaction of ROS with NO or the uncoupling of eNOS. In endothelial cells, the synthesis of NO is catalysed by eNOS in the presence of many cofactors (Figure 1.6), of which tetrahydrobiopterin (BH4) has been found to be the most important as the absence of BH4 results in significant decrease of NO synthesis through eNOS uncoupling (Kumagai and Pi, 2004).

The uncoupling of eNOS is the term used to describe the effects on NO and ROS generation in the absence of cofactors; BH4 (Kumagai and Pi, 2004). In normal circumstances, eNOS is able to produce abundant amounts of NO with a low level of ROS, namely superoxide, generation. However, in abnormal circumstances e.g. lack of BH4 or of L-arginine (Figure 1.6), there is an increased generation of superoxide and a reduced amount of NO synthesised (Heinzel et al., 1992; Pi et al., 2003).
Figure 1.6 The synthesis of NO involves the substrates L-arginine, NADPH, H\(^+\) and \(O_2\), in which L-arginine is converted by eNOS into L-citrulline and NO along with the generation of NADP\(^+\). This reaction occurs in the presence of many cofactors e.g. BH\(_4\), calcium, calmodulin, flavin mononucleotide and flavin adenine nucleotide, which are required for the activation of eNOS (Kumagai and Pi, 2004).

The reaction between NO and superoxide gives rise to peroxynitrite; a RNS (Table 1.2) (Kumagai and Pi, 2004). Peroxynitrite is a strong oxidising agent and can influence gene expression, interfere with cell signalling pathways and bring about cellular and tissue damage (Uppu *et al*., 2007). In endothelial cells, ROS and RNS, i.e. peroxynitrite, are both produced from highly controlled enzymes, and have both beneficial and harmful effects on the cell (Valko *et al*., 2006). In normal circumstances when present at low levels, they have been found to have roles in cellular responses and signalling pathways (Sundaresan *et al*., 1995; Shirasu *et al*., 1996), however excessive levels can result in damage to cellular biomolecules including DNA, proteins and lipids. ROS are especially considered to have a ‘two-faced’ character as low levels are involved in protecting the cell against ROS mediated oxidative stress and maintaining the cellular redox balance (Storz *et al*., 1990; Schreck *et al*., 1991), whereas high levels induce oxidative damage.

The superoxide anion radical is the primary ROS species, which is formed by many enzymes such as eNOS, NAD(P)H oxidase and xanthine oxidase in endothelial cells (Barchowsky *et al*., 1999), by the addition of an electron to molecular oxygen (Miller *et al*., 1990). It is believed that in most non-phagocytic cells, superoxide is mainly produced in the mitochondria, through the reaction between electrons which leak from
the electron transport chain (ETC) and molecular oxygen (Murphy 2009). Superoxide is considered as the primary ROS in many cell types as it undergoes disproportionation to give rise to hydrogen peroxide by the enzyme superoxide dismutase (SOD). Hydroxyl radicals are also produced by the iron catalysed Haber-Weiss reaction, in which superoxide reacts with hydrogen peroxide giving rise to the very reactive hydroxyl radical (Kumagai and Pi, 2004, Valko et al., 2007, Liochev and Fridovich, 2002).

1.5.2 Antioxidants

Under normal circumstances, cells are protected from the effects of ROS and RNS due to the presence of antioxidants. Antioxidants provide protection against damage through the removal of free radicals and are present in both enzymatic and non-enzymatic forms (Table 1.2) (Valko et al., 2006). SOD is an example of a very efficient enzymatic antioxidant; it is responsible for the dismutation of superoxide to give a less reactive product; hydrogen peroxide, and molecular oxygen (McCord and Fridovich, 1969). Catalase is another enzymatic antioxidant which has a very high turn-over rate in comparison to other enzymes. It acts on hydrogen peroxide and has the ability of catalysing the conversion of approximately 6,000,000 hydrogen peroxide molecules to water and molecular oxygen per minute (Chance et al., 1979; Mates et al., 1999).

Examples of non-enzymatic antioxidants include ascorbic acid (vitamin C) (Mates et al., 1999) and α-tocopherol (vitamin E) which work in partnership in aqueous conditions to convert α-tocopherol radicals found in lipoproteins and membranes, back into α-tocopherol (Kojo, 2004). Vitamin E is also vital for its chain-breaking antioxidant role in preventing free radical reactions occurring in the membranes of cells during the process of lipid peroxidation (Devasagayam et al., 2004).
Reactive species

<table>
<thead>
<tr>
<th>Reactive oxygen species</th>
<th>Antioxidants</th>
</tr>
</thead>
<tbody>
<tr>
<td>Superoxide</td>
<td>Superoxide dismutase</td>
</tr>
<tr>
<td>Hydroxyl radical</td>
<td>Catalase</td>
</tr>
<tr>
<td>Hydrogen peroxide</td>
<td>Glutathione peroxidise</td>
</tr>
<tr>
<td>Peroxyl radical</td>
<td>Peroxiredoxins</td>
</tr>
<tr>
<td>Organic hydroperoxide</td>
<td></td>
</tr>
<tr>
<td>Singlet oxygen</td>
<td>Thioredoxin</td>
</tr>
</tbody>
</table>

Reactive nitrogen species

<table>
<thead>
<tr>
<th>Reactive nitrogen species</th>
<th>Non-enzymatic antioxidants</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitric oxide</td>
<td>Vitamin E</td>
</tr>
<tr>
<td>Peroxynitrite</td>
<td>Vitamin C</td>
</tr>
<tr>
<td>Peroxynitrous acid</td>
<td>Thiol antioxidants</td>
</tr>
</tbody>
</table>

| Table 1.2 | Examples of some antioxidants and reactive oxygen and nitrogen species. (Holmgren, 1985; Hofmann et al., 2002; Wood et al., 2003; Devasagayam et al., 2004; Valko et al., 2006) |
1.5.3 Reactive oxygen species and cardiovascular ageing: potential role of arsenic?

Age is a major risk factor for the development of CVD. One theory which provides insight into the mechanism by which natural ageing occurs is the free radical theory proposed by Harman (1956). This suggests that the free radicals generated in cells during cellular metabolism, specifically reactive oxygen species (ROS) have deleterious side effects on cellular components i.e. bringing about oxidative damage to DNA, proteins and lipids, which accumulate over time and contribute to the ageing process (Harman, 1956). This theory is supported by a study investigating whether the extent of oxidative damage of these three cellular components correlates with ageing by examining muscle biopsy specimens taken from individuals between the ages of 25 and 93 years. An age-dependent increase in 8-oxo-dG; a marker for oxidative DNA damage, malondialdehyde; a marker for lipid peroxidation, and protein carbonyl groups; a marker for protein oxidation, were observed (Mecocci et al., 1999). After a few years, Harman recognised mitochondria as the main sources of intracellular ROS and modified his ageing theory to hypothesise mitochondria as the main culprit in ageing, forming the ‘mitochondrial free radical theory of ageing’ (MFRTA) (Harman, 1972).

Despite being the current most popular theory of ageing, the MFRTA does face some controversy. Studies focussing on the over-expression of antioxidants in animal models to combat the damaging effects of free radicals have not always shown significant increases in maximum life span, which can be seen as evidence against the MFRTA (Sanz and Stefanatos, 2008). Furthermore, studying mice mutant for polymerase gamma (Poly), mitochondrial specific DNA polymerase, have also shown discrepancies between the effects on ageing. Trifunovic (2004) observed the appearance of age-related phenotypes in knock-in mice that express a proof-reading deficient version of
Polyγ, suggesting accelerated ageing, whereas Vermulst et al (2007) found no signs of premature ageing in mice carrying a mutant form of Polyγ, despite having 500-times the increased DNA mutation burden than wild-type mice.

ROS are important for the normal function of cells due to their involvement in many cellular processes such as signal transduction (Mittal and Murard, 1977), immunity (Roth and Droge, 1987), regulating the expression of oxidative-stress response genes (Storz et al., 1990; Schreck et al., 1991) and apoptosis (Buttke and Sandstrom, 1994). The concept of ROS also having deleterious effects was supported by the discovery of antioxidant enzymes such as superoxide dismutase which serve the function of ROS detoxification (McCord and Fridovich, 1969). Such deleterious effects of ROS have been seen to affect the cardiovascular system in an age-related manner, e.g. oxidative stress is found to reduce cell viability and play a role in myocardial atrophy by inducing cell death (Bhatnagar, 1994). Furthermore, through the oxidation of lipids and the expression of ROS-sensitive inflammatory genes, ROS are proposed to be involved in initiating the atherosclerotic processes (Kondo et al., 2009).

The increase in oxidative stress in aged hearts can be explained by the increase in ROS generation from the mitochondria over time (Muscari et al., 1996). ROS from either the mitochondria or from the intra/extra-cellular sources results in damage to the mitochondria and in this way initiates cellular degeneration contributing to the process of ageing. This can therefore be seen to be one of the underlying concepts of the free radical theory of ageing (Cadenas and Davies, 2000).
One of the ways in which arsenic has been proposed to bring about its toxic effects to the cardiovascular system is through the stimulation of ROS generating enzymes i.e. NADPH oxidase, as seen in vascular endothelial cells (Smith et al., 2001), thus inducing oxidative stress (Balakumar and Kaur, 2009). Following the free radical theory of ageing, arsenic exposure can be seen to have the potential to contribute to the process of cardiovascular ageing.

1.5.4 Arsenic induced reactive oxygen species generation in endothelial cells
Arsenic has been hypothesised to bring about its toxicity through the induction of oxidative stress in cells. This hypothesis is supported by the research carried out on the effects of arsenite on endothelial cells.

The involvement of ROS in the cytotoxicity exhibited by arsenic was displayed through the acute exposure of porcine aortic endothelial cells to 650 µg/L arsenite. A significant increase in oxygen consumption was noted over a period of 20 minutes exposure due to the increased formation of superoxide by NADPH oxidase as well as an increase in the generation of hydrogen peroxide measured using the homovanillic acid assay (Barchowsky et al., 1999). The association of arsenite with superoxide generation in porcine aortic endothelial cells was also supported by Smith et al (2001). A two-fold increase in the activity of NADPH oxidase seen after 1 hour exposure to 650 µg/L arsenite, measured using the superoxide-dependent lucigenin chemiluminescence method (Griendling et al., 1994; Smith et al., 2001), thus suggesting an increase in the amount of superoxide generated (Smith et al., 2001).
Arsenic has been found to induce oxidative stress by ROS generation in vascular endothelial cells at sub-cytotoxic concentrations ≤650 µg/L. This is through ROS-induced activation of regulatory enzymes and initiation of cellular pathways. An example of this is seen by observing the activity of NF-κB, a transcription factor that is activated by cellular stress such as oxidative stress (Schreck et al., 1991) and has been found to be activated by the exposure to ≤650 µg/L sodium arsenite and blocked by antioxidants in vascular endothelial cells (Barchowsky et al., 1996). Thus sub-cytotoxic levels of arsenic may contribute to vascular diseases by activating oxidant-dependent signalling pathways in endothelial cells.

More recently, work carried out on human umbilical vein endothelial cells (HUVECs) has shown an increase in ROS in response to arsenite. Sun et al (2009) used the dihydroethidium (DHE) superoxide specific fluorescent-dye with fluorescent microscopy to measure the generation of superoxide after 2 hours exposure to 0.2, 1 and 650 µg/L arsenite, with a concentration-dependent increase detected. In a subsequent study, flow cytometry was used with dichlorodihydrofluorescin diacetate (DCFH-DA), a fluorescent dye that potentially and controversially detects general ROS. In HUVECs treated over an 8 hour period with 650 and 6,500 µg/L arsenite an increase in ROS after 4 hours exposure was observed (Lii et al., 2011). However, using the same method of ROS detection, Shi et al (2010) showed that treating HUVECs for a longer time-point; 24 hours, results in a significant decrease in ROS generation for 650 and 1,300 µg/L arsenite, whereas treatment with 2,600- 5,200 µg/L results in a significant increase in ROS detected.
1.5.5 Arsenic induced DNA damage

Arsenic has been found to induce genotoxicity. The mutagenic effects of arsenic on DNA have been found to occur in a concentration-dependent manner, with arsenic mainly bringing about multi-locus deleterious mutations (Hei and Filipic, 2004). Using the A₅ human hamster hybrid cells (Puck et al., 1971) the mutagenic property of arsenic was observed. Arsenic treatment resulted in the induction of large deleterious mutations and chromosome aberrations, which are found to be as a result of ROS generation, with hydroxyl radicals specifically implicated in the mutagenicity (Hei et al., 1998).

To confirm the role of ROS in mutation induction, the A₅ cells were exposed to dimethyl sulfoxide (DMSO), an oxygen radical scavenger, after treating the cells with sodium arsenite concentrations varying from 0-3,000 µg/L for 24 hours. The mutagenic effects of arsenic were significantly reduced in comparison to cells without the addition of DMSO (Hei et al., 1998). This is supported by another study which showed the addition of antioxidants to cultured human lymphocytes reduced the onset of chromosome aberrations and sister chromatid exchange events that occur in response to arsenic. This further suggests the involvement of ROS in arsenic mutagenicity (Nordenson and Beckman, 1991).

There are many biomarkers that can be used to detect the onset of arsenic induced oxidative damage in human studies, i.e. 8-oxo-dG, a product of guanine oxidation. 8-oxo-dG can be easily detected in individuals as it is excreted in urine after being excised as part of its repair process (Wong et al., 2005). An investigation was carried out on individuals in Cambodia chronically exposed to varying concentrations of arsenic through contaminated drinking water, from ≤1-886 µg/L. Those subjects with higher levels of arsenic in their urine also had higher levels of 8-oxo-dG in comparison to those
with lower levels of arsenic in their urine (Kubota et al., 2006). This provides evidence for the ability of arsenic to induce DNA damage through the generation of ROS, as well as supporting the concentration-dependent nature of this oxidative DNA damage.

1.6 Mitochondria

1.6.1 Mitochondrial respiration, mitochondria ROS and ageing

Mitochondria are the ‘power-houses’ of cells; being the main source of adenosine triphosphate (ATP) production through oxidative phosphorylation. They are divided into 4 compartments; matrix, inner membrane, intermembrane space and outer membrane (Huang and Manton, 2004). The production of ATP occurs through oxidative phosphorylation coupled to ETC in the inner membrane, involving a series of 5 complexes (Figure 1.7). The ETC involves the first 4 complexes; NADH dehydrogenase (I), succinate dehydrogenase (II), Q-cytochrome c oxidoreductase (III) and cytochrome c oxidase (COX) (IV). NADH and FADH2, generated through previous stages of respiration; glycolysis and Krebs cycle (Figure 1.7), are oxidised to give rise to free electrons that are transferred between these complexes. This transfer of electrons gives rise to a proton gradient which fuels the process of oxidative phosphorylation. Oxidative phosphorylation occurs within the matrix involving the last complex (V); ATP synthase. The proton gradient generated catalyses the phosphorylation of ADP and generates ATP (Boekema and Braun, 2007).

The mitochondrial process of ATP formation results in the generation of ROS due to the leaky nature of the electron transport chain. Mitochondria take up approximately 90% of oxygen consumed by the cell (Huang and Manton, 2004), therefore electrons that
‘leak’ out of the chain are able to react with molecular oxygen, reducing it to form superoxide (Khansari et al., 2009) (Figure 1.7). Mitochondrial DNA (mtDNA), multiple copies of 16.5 kb double-stranded circular structures, is prone to oxidative damage. Thus, increases in mitochondrial ROS results in mtDNA damage (Yakes and Van Houten, 1997).

Figure 1.7 An overview of the process of cellular respiration in mammalian cells, highlighting the generation of ROS from the electron transport chain (ETC) in the mitochondria during ATP production. Most cellular ATP comes through the mitochondrial oxidative phosphorylation (OXPHOS) process coupled to the ETC, which involves a series of five complexes, with OXPHOS occurring at the final complex, ATP synthase. (Adapted from Zhuo et al., 2012)
The role of mitochondria in cells however goes beyond that of cellular energy conservation; they also play an important part in cellular development, metabolism, cell cycle control and apoptosis (McBride et al., 2006). Damage to mitochondria is thus detrimental to the cell. The accumulation of oxidative stress induced damage i.e. oxidative damage to mitochondrial biomolecules including DNA, is seen to be one of the underlying mechanisms involved in the process of ageing, contributing towards the ‘free radical theory of ageing’ (Harman, 1956). Increased mitochondrial oxidative stress can contribute to cellular ageing through many routes; increased shortening of telomeres; accelerating the process of apoptosis through the release of apoptotic factors i.e. cytochrome c and apoptosis-inducing factor and inducing mitochondrial dysfunction. Mitochondrial dysfunction has critical consequences for the cell as mitochondria provide cellular protection against stress and damage. Furthermore, mitochondrial dysfunction results in a substantial decrease in ATP available for the cell to carry out the necessary processes required for survival (reviewed in Huang and Manton, 2004).

1.6.2 Arsenic induced mitochondrial DNA damage

Mitochondria are considered the primary targets for arsenic induced oxidative damage as they are the main source for ROS generation. The mitochondrial components are highly susceptible to damage by arsenic; oxidation of protein structures, damage to mtDNA and lipid peroxidation—which could in turn be the mechanism by which membrane impermeable ROS, e.g. superoxide, leak out of the mitochondria and into the cytoplasm causing further cellular damage (Liu et al., 2005).
Chapter 1: Introduction

In order to display its genotoxic effects, arsenic would therefore appear to be dependent on normal functioning of mitochondria. This was demonstrated by a study carried out on A_L cells. The exposure of normal A_L cells to sodium arsenite induced mutagenesis, however mtDNA deficient (ρ) A_L cells with diminished mitochondrial membrane potentials displayed reduced or no mutations above the background level. Furthermore, arsenite-induced nuclear DNA mutation also disappeared in ρ A_L cells, suggesting the presence of mtDNA and therefore functional mitochondria to be important for the genotoxic effects of arsenite (Liu et al., 2005).

Damage to mtDNA was further observed again using A_L cells. Cells were treated with 1,000 µg/L of sodium arsenite for 60 days and the effects on mitochondrial oxidative function were observed by assessing the activity of COX. In comparison to untreated cells, the arsenite treated cells displayed 45% less COX activity; as 3 of the 13 subunits of COX are encoded in mtDNA, this could be due to the genotoxic effects of arsenic on mtDNA (Partridge et al., 2007).

Arsenic has been known to be a chromosomal mutagen and induces deleterious mutations (Liu et al., 2005). On analysis, arsenic was found to induce large heteroplasmic deletions in mtDNA of A_L cells after chronic, 30 days, and acute, 24 hours, exposure to low levels of 250, 500 and 1,000 µg/L. Furthermore, treatment at these low concentrations of arsenite for 60 days resulted in a 65% reduction in the copy number of mtDNA in comparison to that of untreated cells (Partridge et al., 2007).
CHAPTER TWO

Hypothesis and Aims
2: Hypothesis and Aims

Arsenic exposure has been implicated in the onset of CVD, with particular emphasis on atherosclerosis. Studies into the pathophysiology of arsenic-induced CVD suggest an impact of arsenic on cardiovascular ageing, with an induction of oxidative stress being the main mechanism by which arsenic can be hypothesised to bring about premature ageing. Research into the in vitro effects of arsenic have shown an increased production of ROS, in accordance with the mitochondrial free-radical theory of ageing, along with effects on the mitochondria, indicating mitochondrial mediated ROS generation.

The aim of this thesis is to gain an understanding into the mechanisms by which arsenite induces changes within endothelial cells that result in the initiation of atherosclerosis. It can be hypothesised that arsenite exerts its toxicity on endothelial cells through oxidative stress-induced premature senescence, as a result of increased mitochondrial ROS generation, leading to oxidative intracellular damage.

The experimental aims of this project are to:

- Establish whether sub-cytotoxic concentrations of arsenite induce premature senescence in human endothelial cells
- Measure intracellular ROS generation in response to arsenite, and to investigate the source of ROS
- Investigate the impact of arsenite on mitochondrial function in HUVECs
- Identify the effects of arsenite on the in vitro gene expression profile of HUVECs
CHAPTER THREE

Materials and Methods
3. Materials and Methods

3.1 Cell culture

3.1.1 Materials

Human umbilical vein endothelial cells (HUVECs) were purchased from Invitrogen (C0035C). EA.hy926 cells are a fusion of HUVECs with the permanent human cell line A549 derived from a human lung carcinoma (Edgell et al., 1983) and were obtained from ATCC® (CRL-2922). Human hepatocellular liver carcinoma (HepG2) cells were purchased from abcam® (ab14659).

Tables 3.1, 3.2 and 3.3 show the composition of the cell culture growth media for HUVECs, EA.hy 926 cells and HepG2 cells. Table 3.4 shows the composition of the mixtures used to cryopreserve HUVECs, EA.926 cells and HepG2 cells.

<table>
<thead>
<tr>
<th>Cell culture media</th>
<th>Quantity (ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HUVECs</td>
<td></td>
</tr>
<tr>
<td>Medium 200 (Invitrogen M200500)</td>
<td>485</td>
</tr>
<tr>
<td>Low Serum Growth Supplement (Invitrogen S00310)</td>
<td>10</td>
</tr>
<tr>
<td>Penicillin/ streptomycin mix (Lonza, 1U/µg)</td>
<td>5</td>
</tr>
<tr>
<td>EA.hy 926 cells</td>
<td></td>
</tr>
<tr>
<td>Dulbecco's Modified Eagle's Medium (Sigma-Aldrich D5546)</td>
<td>445</td>
</tr>
<tr>
<td>Foetal calf serum (Lonza, lot no: 7SB0014)</td>
<td>50</td>
</tr>
<tr>
<td>Penicillin/ streptomycin mix (Lonza, 1U/µg)</td>
<td>5</td>
</tr>
</tbody>
</table>

Table 3.1 The components required to make up the complete media for culturing HUVECs and EA.hy 926 cells.
<table>
<thead>
<tr>
<th>COMPONENT</th>
<th>QUANTITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>High glucose DMEM</td>
<td>442.5 ml</td>
</tr>
<tr>
<td>Hepes buffer solution 1 M</td>
<td>2.5 ml, final concentration 5 mM</td>
</tr>
<tr>
<td>(Sigma-Aldrich, 83264)</td>
<td></td>
</tr>
<tr>
<td>FBS</td>
<td>50 ml</td>
</tr>
<tr>
<td>Penicillin/streptomycin</td>
<td>5 ml</td>
</tr>
</tbody>
</table>

Table 3.2 Composition of high glucose HepG2 growth media.

<table>
<thead>
<tr>
<th>COMPONENT</th>
<th>QUANTITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>DMEM, no glucose</td>
<td>430.5ml</td>
</tr>
<tr>
<td>Galactose (Sigma-Aldrich G6404)</td>
<td>5ml, final concentration 10 mM</td>
</tr>
<tr>
<td>Hepes buffer solution 1 M</td>
<td>2.5ml, final concentration 5 mM</td>
</tr>
<tr>
<td>(Sigma-Aldrich, 83264)</td>
<td></td>
</tr>
<tr>
<td>L-Glutamine solution 200 mM</td>
<td>2ml, final concentration 6mM</td>
</tr>
<tr>
<td>(Sigma-Aldrich G7513)</td>
<td></td>
</tr>
<tr>
<td>Sodium pyruvate solution 100 mM</td>
<td>5ml, final concentration 1mM</td>
</tr>
<tr>
<td>(Sigma-Aldrich, S8636)</td>
<td></td>
</tr>
<tr>
<td>FBS</td>
<td>50ml’</td>
</tr>
<tr>
<td>1</td>
<td>5ml</td>
</tr>
</tbody>
</table>

Table 3.3 Composition of galactose containing media for HepG2 cell culture.

Trypsin/EDTA (Lonza, 10X concentration; 5 g/L trypsin, 2 g/L EDTA) was used at a trypsin concentration of 0.25% in Dulbecco’s PBS (DPBS). All plastic culture flasks and plates used for growing HUVECs were coated with gelatin (Sigma-Aldrich 2% solution Type B from Bovine skin) as a 1% solution in DPBS, 0.05 mol/L sodium arsenite was purchased from Fluka Analytical Sigma-Aldrich.
Table 3.4

The components required to make up the freeze mix for storing HUVECs and EA.hy 926 cells at -80°C and subsequently in liquid nitrogen.

<table>
<thead>
<tr>
<th>Component</th>
<th>Volume (ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HUVECs</td>
<td></td>
</tr>
<tr>
<td>Dimethyl sulfoxide (Sigma-Aldrich)</td>
<td>4</td>
</tr>
<tr>
<td>1M Hepes buffer (Whittakar®)</td>
<td>0.8</td>
</tr>
<tr>
<td>Media 199 (PAA) (complete)</td>
<td>15.2</td>
</tr>
<tr>
<td>EA.hy 926 and HepG2 cells</td>
<td></td>
</tr>
<tr>
<td>Dimethyl sulfoxide (Sigma-Aldrich)</td>
<td>1</td>
</tr>
<tr>
<td>Foetal calf serum (Lonza, lot no: 7SB0014)</td>
<td>5</td>
</tr>
<tr>
<td>Dulbecco's Modified Eagle's Medium (Sigma-Aldrich D5546)</td>
<td>4</td>
</tr>
</tbody>
</table>

3.1.2 Cell culture methods

3.1.2.1 Resuscitation of frozen cells

A frozen cryotube of cells was taken from liquid nitrogen storage and placed immediately into a container. The cryotube was placed in a 37°C water bath for 1-2 minutes to enable the cells to fully thaw. Immediately upon thawing, the cells were pipetted into a sterile centrifuge tube and re-suspended in 10 ml of culture media, in a class II biosafety cabinet. The cells were centrifuged at 180 g for 5 minutes, the supernatant was discarded and the cell pellet was re-suspended in 1 ml culture media. The cells were added to T75 cm³ flask (gelatin coated flask for HUVECs) (see section 3.1.2.2) which was topped up with 9 ml of culture media and placed into a 37°C, 5% CO₂ incubator.

3.1.2.2 Sub-culturing/passaging cells

For HUVECs, a 1% gelatin solution was pre-heated at 37° for approximately 15 minutes, along with culture media, Dulbecco’s Phosphate buffered saline (DPBS) and 0.25% trypsin/ EDTA. All flasks were coated with gelatin by adding 2 ml of 1% gelatin per T75 cm³ flask and the flasks tilted back and forth to ensure coverage of the bottom surface. Flasks were put back into the incubator and after 5-10 minutes the excess
gelatin was aspirated. These gelatin-coated flasks were kept in the 37°C, 5% CO₂ incubator till required.

Cell flasks near confluent (80-100%) were taken from the incubator and within the class II biosafety cabinet, the media was aspirated and the cells were washed briefly with 5-6 ml of DPBS. Trypsin/EDTA (2 ml) were added to the flask and left for 3-4 minutes in the incubator until cells had detached from the surface; this was monitored by checking under the microscope. The side of the flask was tapped gently to ensure complete detachment of cell from the surface. Culture media (6 ml) was added to the flask and the cell suspension was centrifuged at 180 g for 5 minutes. The supernatant was discarded and the cell pellet was re-suspended in 3 ml of culture media. For a typical 1:3 split ratio, 1 ml of the cell suspension was pipetted into 3 flasks (gelatin coated flasks for HUVECs) and topped up with 9 ml of culture media. The flasks were then incubated 37°C, 5% CO₂ to allow cell attachment and growth.

Cells grown in T25 cm³ flasks were passaged and grown in the same way, with the total volume of the flask made up to 4 ml of culturing media. Therefore, smaller volumes of other reagents were also used; i.e. 1 ml 1% gelatine for HUVEC culture, 1 ml trypsin/EDTA and 2 ml DPBS.

3.1.2.3 Changing cell media

Media in the flasks was changed regularly, every 2 days until the cells were ready to be passaged. Media was aspirated and discarded from the flasks; 5 ml of DPBS (pre-warmed to room temperature) was used to wash over the cells and immediately
aspirated. Culturing media (10 ml pre-warmed to room temperature) was added to the flasks which were incubated at 37°C with 5% CO₂.

3.1.2.4 Cell counting using a haemocytometer
The haemocytometer was first cleaned thoroughly using 70% ethanol and affixed with a cover slip, 10 µl of a 1 ml cell suspension was then pippetted at the edge of the cover slip to enable the cell suspension to flow under the cover slip. Cells were counted in 4X 1 mm² square regions of a haemocytometer, the average of which was calculated and multiplied by the conversion factor of 10⁴ (the volume of the 1 mm² square is equivalent to 10⁴ ml) to give the number of cells in 1 ml.

3.1.2.5 Treating cells with arsenite
For treatment of cells with sodium arsenite, the appropriate concentrations were made-up fresh each time by diluting sodium arsenite from the stock using DPBS under sterile conditions.

3.2 Measuring cell viability

3.2.1 Materials
Sodium arsenite was used to treat HUVECs. Cell viability was determined using the trypan blue exclusion assay (Sigma-Aldrich T8154) and the colorimetric assay, ‘Cell Counting Kit (CCK) 8’ (Sigma-Aldrich 96992). The trypan blue solution (0.4% w/v) contains 0.81% sodium chloride, 0.06% potassium phosphate and bromophenol blue, the cells were counted using a haemocytometer under microscopy The CCK8 reagent contains the tetrazolium salt 2-(2-methoxy-4-nitrophenyl)-3-(4-nitrophenyl)-5-(2,4-
disulfophenyl)-2H-tetrazolium, monosodium salt which is acted upon by
dehydrogenases present in viable cells to form a yellow formazan product. The intensity
of the formazan dye produced was measured using a plate reader at $A_{450\text{ nm}}$.

3.2.2 Method

3.2.2.1 Trypan blue exclusion assay

Cells grown in T25 cm3 flasks were treated with differing concentrations of sodium
arsenite for 24 hours after reaching a confluence of ~90%. 2 mls of 2X trypsin-EDTA
was added to the flasks and kept in the 37°C, 5% CO$_2$ incubator for 3-4minutes, then
tapped gently on the side to completely free the cells from the gelatin-coated surface,
this was assessed by examining the flasks under the microscope. In a class II biosafety
cabinet, the cells suspensions was aspirated from the flasks into centrifuge tubes and
centrifuged at 1000 rpm for 5 minutes. The supernantant was discarded carefully
without touching the cell pellet which was then resuspended in 250 μl culturing media.
20 μl of the cell suspension was mixed with 20μl of the trypan blue dye solution, 10μl
of which was applied to the haemocytometer and used to count the cells under the
microscope (See section 3.1.2.4). In this instance, the 10 μl of cell suspension was
mixed with 10 μl of trypan blue dye and then applied to the haemocytometer, therefore
after calculating the average of the number of cells in the 4X 1 mm2 squares, the
number was divided by 2, taking into account the dilution factor for the trypan blue
solution used. Dead cells appear blue under the microscope due to the ability of the
trypan blue dye to penetrate their cell membranes.
3.2.2.2 Cell Counting Kit 8 (CCK8)

The wells required in a 96 well plate for the assay were coated with 10 µl of 1% gelatin and incubated at 37°C, 5% CO₂ for 10 minutes and then the excess gelatin was pipetted out. The media in a confluent cell flask (~90%) was aspirated and the cells were detached from the surface of the flask using trypsin/EDTA (see section 3.1.2.2) and centrifuged at 180 g for 5 minutes. After discarding the supernantant, the cell pellet was re-suspended in 1ml complete media of which 10 µl were used to count the cells using the haemocytometer (see section 3.1.2.4).

Using the cell count, a dilution of the cell suspension was made so that there were 5000 cells/100 µl. Thus, 100 µl were directly added to each well to give 5000 cells/well in the 96 well plate, with 5 wells prepared for each concentration of arsenite. The cells were left overnight in the incubator and treated with appropriate concentrations of sodium arsenite the following day and incubated for 24 hours at 37°C, 5% CO₂. Ten µl of the CCK-8 reagent was directly added to each well, the plate incubated at 37°C, 5% CO₂ and absorbance recordings were taken every hour for 4 hours using a plate reader at A₄₅₀ nm.
3.3 Measuring ROS levels

3.3.1 The Amplex red assay

The Amplex red assay enables the measurement of hydrogen peroxide produced from cells. Experiments were carried out on HUVECs.

3.3.1.1 Materials

<table>
<thead>
<tr>
<th>Component</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ampliflu red (5mg, Sigma-Aldrich)</td>
<td>1 mg</td>
</tr>
<tr>
<td>Dimethyl sulfoxide (Sigma-Aldrich)</td>
<td>389 µl</td>
</tr>
<tr>
<td>Peroxidase type II from Horse Radish</td>
<td>0.00005 g</td>
</tr>
<tr>
<td>Hydrogen peroxide (Sigma-Aldrich, 30% w/w solution)</td>
<td>As required</td>
</tr>
<tr>
<td>Hanks buffered salt solution (GIBCO™, with CaCl₂ and MgCl₂)</td>
<td>As required</td>
</tr>
<tr>
<td>Menadione (Sigma-Aldrich)</td>
<td>50 mM</td>
</tr>
</tbody>
</table>

Table 3.5 The components required for the Amplex red assay used to detect the production of hydrogen peroxide from HUVECs. Measured using a Cytoflour Plate reader at excitation 530 nm and emission 580 nm.

3.3.1.2 Methods

<table>
<thead>
<tr>
<th>H₂O₂ concentration</th>
<th>1mM H₂O₂ solution (µl)</th>
<th>HBSS (µl)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-</td>
<td>20/well</td>
</tr>
<tr>
<td>15</td>
<td>10</td>
<td>656</td>
</tr>
<tr>
<td>30</td>
<td>20</td>
<td>646</td>
</tr>
<tr>
<td>60</td>
<td>40</td>
<td>626</td>
</tr>
<tr>
<td>120</td>
<td>80</td>
<td>586</td>
</tr>
</tbody>
</table>

1 mM H₂O₂ solution = 5 µl H₂O₂ stock (9.8 M) + 49 ml HBSS

Table 3.6 The dilutions required to make the H₂O₂ standard curve used in the Amplex red assay. The dilutions were made using Hanks buffered salt solution (HBSS).
A 96 well plate was prepared with 5000 cells/ well and left overnight to adhere in a 37°C, 5% CO₂ incubator, the cells were treated with sodium arsenite concentrations in a class II biosafety cabinet and left in the incubator for 24 hours. An hour before the amplex red assay was carried out; 50 µM menadione was prepared and added to untreated cells as a positive control (Menadione preparation; 0.00172 g menadione was dissolved in 10 mls HBSS to give 1mM menadione solution, 5 µl of the 1 mM menadione solution was added to each of the wells containing 100 µl of media giving a 50 µM menadione exposure to the cells).

After an hour of menadione treatment, and 24 hour of sodium arsenite treatment, media in all the wells was discarded, each cell was washed with HBSS once and 20 µl of HBSS was added per well. The H₂O₂ dilutions prepared (Table 3.6) were added in cell free wells, in triplicates, and 100 µl of the Amplex red assay reaction mixture was added to all the wells. Amplex red assay reaction mixture preparation; 0.00005 g horse radish peroxidase was dissolved in 1 ml HBSS (10 U/ml) just before it was required, 100 µl of this was added to 50 µl of 10 mM ampliflu stock and 9850 µl HBSS, the mixture was then heated at 37°C for 10 minutes in the dark. The fluorescence readings for the 96 well plate were taken every 30 minutes for up to 1.5-2 hours using a Cytoflour plate reader at excitation 530nm and the emission 580 nm wavelength.
3.3.2 Assessment of levels of ROS with fluorescent based flow cytometry

3.3.2.1 Materials

Experiments were carried out on HUVECs and EA.hy 926 cells.

<table>
<thead>
<tr>
<th>COMPONENT</th>
<th>Final Concentration/QUANTITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mitosox™Red (Invitrogen, M36008)</td>
<td>5 µM</td>
</tr>
<tr>
<td>Dihydroethidium (Invitrogen, C6827)</td>
<td>2.5 µM</td>
</tr>
<tr>
<td>CM-H2DCFDA (Invitrogen, C6827)</td>
<td>10 µM</td>
</tr>
<tr>
<td>Iscove’s modified Dulbecco’s medium (IMDM), no phenol red (Invitrogen, 21056-023)</td>
<td>As required for assay</td>
</tr>
<tr>
<td>Dimethyl sulfoxide (DMSO) (Sigma-Aldrich, 472301)</td>
<td>As required for assay</td>
</tr>
</tbody>
</table>

Table 3.7 The fluorescent dyes and additional components required to measure ROS.

Table 3.7 identifies all the fluorescent staining dyes used to investigate ROS generation.

The analysis was carried out by flow cytometry using the DakoCytomation CyAn ADP Flow Cytometer.

3.3.2.2 Methods

Assessment of levels of ROS in HUVECs and EA.hy 926 cells was performed using several ROS-reporter dyes and flow cytometry. For each cell type, cells were seeded in 6 well plates (gelatin-coated wells for HUVECs) and harvested when they reached approximately 70% confluence.

3.3.2.2.1 Estimation of superoxide with flow cytometry in EA.hy 926 cells

Superoxide was estimated using the ROS reporter’s dihydroethidium (DHE) and MitoSOX™ Red. When EA.hy 926 cells reached 70% confluence, the cells were washed with PBS, 500 µl of 0.25% trypsin/EDTA was added to each well and incubated for 5 minutes at 37°C and 5% CO₂. Culture media (3 ml) was added to neutralise the
trypsin/EDTA and the cell suspension was centrifuged at 180 g for 5 minutes. The cell pellet was re-suspended in 1ml of culture media and incubated with either MitoSOX™ Red (stock made up in DMSO at 5 mM) at a final concentration of 5 µM or with 2.5 µM DHE for 30 minutes at 37°C and 5% CO₂. The cells were then centrifuged at 180 g for 5 minutes; the pellet was washed with PBS and centrifuged at 180 g for 5 minutes. The cell pellet was re-suspended in PBS with 1% FBS and transferred to 12X 75 mm FACS tubes (BD Biosciences 352235) the cells were then treated with arsenite and a positive control and incubated at 37°C and 5% CO₂ for a specific treatment period. The cells were then analysed using flow cytometry, MitoSOX™ Red and DHE were both excited at 488 nm and data collected at emission wavelength 575/25 nm.

3.3.2.2.2 Assessment of superoxide with flow cytometry in HUVECs

At 70% confluence, HUVECs were treated with different arsenite concentrations and a positive control in 2 ml media and incubated at 37°C and 5% CO₂. Thirty minutes before the treatment time was complete, to each well either MitoSOX™ Red (stock made up in DMSO at 5 mM) at final concentration of 5 µM or DHE at final concentration of 2.5 µM was added with incubation for 30 minutes at 37°C and 5% CO₂. The cells were then washed with PBS, 500 µl of 0.25% trypsin/EDTA was added to each well and incubated for 5 minutes at 37°C and 5% CO₂. Culture media (3 ml) was added to neutralise the trypsin/EDTA and the cell suspension was centrifuged at 180 g for 5 minutes. The cell pellet was re-suspended in 1ml PBS and transferred to FACS tubes for flow cytometric analysis. MitoSOX™ Red and DHE were both excited at 488 nm and data collected at emission wavelength 575/25 nm.
3.3.2.2.3 Measuring general ROS production

At 70% confluence, cells were treated with arsenite and a positive control and incubated at 37°C and 5% CO₂. Once the treatment period was complete, cells were washed with PBS and 500 μl of 0.25% trypsin/EDTA was added to each well and incubated for 5 minutes at 37°C and 5% CO₂. Culture media (3 ml) was added to each well to neutralise the trypsin/EDTA and the cell suspension was centrifuged at 180 g for 5 minutes. The cells were re-suspended in 10 μM CM-H₂DCFDA in 1 ml IMDM and incubated in FACS tubes for 30 minutes at 37°C and 5% CO₂. They were then analysed by flow cytometry. CM-H₂DCFDA was excited by laser light at 488 nm and the data collected at 530/40 nm emission wavelength.

3.4 Measuring apoptosis in EA.hy926 cells

3.4.1 Materials

Apoptosis and necrosis were determined using the Annexin V-FITC Apoptosis Detection Kit (abcam®, ab14085) in EA.hy926 cells. This kit enables the simultaneous staining of cells with Annexin V and PI therefore allowing the measure of both apoptosis and necrosis respectively. The analysis was carried out using the DakoCytomation CyAn ADP Flow Cytometer.

3.4.2 Methods

When EA.hy 926 cells reached 70% confluence, they were treated with arsenite and the positive control compounds in 6 well plates and left to incubate at 37°C and 5% CO₂. After the treatment period, the cells were washed briefly with PBS and 500 μl of 0.25% trypsin/EDTA were added to each well with incubation for 5 minutes at 37°C and 5% CO₂.
Chapter 3: Materials & Methods

CO\textsubscript{2}. Culture media (3 ml) was added to each well to neutralise the trypsin/EDTA and the cell suspension was centrifuged at 180 g for 5 minutes. The resultant cell pellet was washed in PBS and centrifuged at 180 g for 5 minutes. This wash step was repeated and the pellet was re-suspended in 500 μl Annexin V Binding Buffer with 5 μl Annexin V-FITC and 5 μl Propidium iodide (PI) and incubated at room temperature in the dark for 15 minutes before flow cytometric analysis. Annexin V and PI were both excited by laser light at 488 nm and the fluorescence emission was collected at 530/40 nm and 575/25 nm emission wavelength respectively.

3.5 Measuring the Protein levels

Measuring the levels of proteins using the Bradford assay with HUVECs seeded in a in a 96 well plate.

3.5.1 Materials

<table>
<thead>
<tr>
<th>COMPONENT</th>
<th>QUANTITY/AMOUNT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bovine serum Albumin (Sigma-Aldrich)</td>
<td>1 mg/ml</td>
</tr>
<tr>
<td>Protein assay dye reagent (Bio Rad)</td>
<td>2 ml</td>
</tr>
<tr>
<td>Ultrapure water</td>
<td>As required for assay</td>
</tr>
<tr>
<td>CellLyticTM Cell lysis buffer (Sigma-Aldrich)</td>
<td>As required for assay</td>
</tr>
</tbody>
</table>

Table 3.8 The components required for the Bradford assay, measurements taken using a plate reader at A\textsubscript{595 nm}.

49
3.5.2 Methods

<table>
<thead>
<tr>
<th>BSA mg/ml</th>
<th>BSA 1mg/ml stock solution (μl)</th>
<th>CellLytic buffer (μl)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>BSA 1 mg/ml stock solution = 0.01 g BSA + 10 ml ultra pure water</td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>0.4</td>
<td>40</td>
<td>60</td>
</tr>
<tr>
<td>0.3</td>
<td>30</td>
<td>70</td>
</tr>
<tr>
<td>0.2</td>
<td>20</td>
<td>80</td>
</tr>
<tr>
<td>0.1</td>
<td>10</td>
<td>90</td>
</tr>
<tr>
<td>0.0</td>
<td>0</td>
<td>100</td>
</tr>
</tbody>
</table>

Table 3.9 Bovine serum albumin (BSA) dilutions were prepared in order to deduce a protein standard curve for the Bradford assay. The dilutions were prepared and kept on ice.

To measure the amount of proteins present in HUVECs grown at 5000 cells/well in a 96 well plate (media within the wells was discarded and 20 μl CellLytic reagent was added to each well, the plate was kept on a plate shaker for 20 minutes at room temperature to allow cell lysis to occur. The cell lysis samples were diluted 1:5 with CellLytic buffer and briefly vortexed at low speed, 10 μl/well of each of the samples and the BSA dilutions (Table 3.9) were pipetted in triplicates into a new 96 well plate. The diluted protein assay dye reagent was prepared (2 ml protein assay dye reagent with 8 ml ultra pure water) and 200 μl were added to each of the wells carefully avoiding bubbles forming. The plate was left for 5-15 minutes at room temperature before absorbance readings were taken using a plate reader at 595 nm.

3.6 Measuring ATP levels

The effects of arsenite on ATP production was determined using a highly sensitive bioluminescence assay based on the presence of firefly luciferase and D-luciferin. ATP reacts with D-luciferin in the presence of luciferase producing light (emission maximum approximately 560 nm at pH 7.8) which can be detected by a luminometer.
HepG2 cells were grown in media containing either high glucose (25 mM) or containing galactose (10 mM). The ATP determination kit (Invitrogen A22066) was employed to measure the levels of ATP.

3.6.1 Materials

<table>
<thead>
<tr>
<th>COMPONENT</th>
<th>QUANTITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>dH₂O</td>
<td>8.9 ml</td>
</tr>
<tr>
<td>20X Reaction Buffer</td>
<td>500 ml</td>
</tr>
<tr>
<td>0.1 M DTT</td>
<td>100 ml</td>
</tr>
<tr>
<td>10 mM D-luciferin</td>
<td>500 ml</td>
</tr>
<tr>
<td>Firefly luciferase</td>
<td>2.5 µl</td>
</tr>
</tbody>
</table>

Table 3.10 Components used to make the standard reaction solution for the detection of ATP using the ATP determination kit.

3.6.2 Methods

The culture media for the cells grown in 96 well plates was discarded and each well was washed twice with 100 µls PBS. The standard reaction solution was then made up (Table 3.10) and 100 µl were added to each well. The plate was then placed on a plate shaker for 30 seconds and analysed on the NOVOstar multifunctional microplate reader using luminescence.

3.7 Measuring mitochondrial biogenesis

The extracellular flux analyzer (XF analyzer)/ Seahorse assay (Seahorse BioScience) is able to measure mitochondrial function and biogenesis effectively. It does this by very sensitively measuring the real time cellular oxygen consumption rate (respiration) and the extracellular acidification rate/ proton release (glycolysis) in response to known mitochondrial targeted compounds. Measurements are taken regularly every few seconds by sensor probes that sit 200 microns above the cell monolayer during the
sequential addition of the compounds. After each set of measurements, the probes are lifted to enable the micro-media to disperse and restore the cell values back to baseline before the addition of the next drug. Thus, a mitochondrial response profile is formed for both respiration and glycolysis. The comparison of the respiration and glycolytic profiles in un-treated HUVECs and HUVECs pre-treatment with arsenite concentrations was carried out.

3.7.1 Materials

Experiments were carried out on HUVECs.

<table>
<thead>
<tr>
<th>Drug port</th>
<th>Compound</th>
<th>Concentration (μM)</th>
<th>Volume (μl)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Oligomycin A (Sigma-Aldrich, 75351)</td>
<td>5</td>
<td>75</td>
</tr>
<tr>
<td>B</td>
<td>FCCP* (Sigma-Aldrich, C2920)</td>
<td>4</td>
<td>83</td>
</tr>
<tr>
<td>C</td>
<td>Antimycin A (Sigma-Aldrich, A8674)</td>
<td>10</td>
<td>90</td>
</tr>
<tr>
<td>D</td>
<td>Assay specific media</td>
<td>-</td>
<td>75</td>
</tr>
</tbody>
</table>

Table 3.11 The table identifies the mitochondrial targeted compounds used in this study by addition to the drug ports on the assay calibration plates (Seahorse, Bioscience). Drug port D was left compound free and just assay specific media was added. *carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone.

The components used to make the assay specific media (Table 3.12) were dissolved in distilled water, set at pH 7.4 and made up to 1 litre. The media was then filter sterilised.
Chapter 3: Materials & Methods

<table>
<thead>
<tr>
<th>COMPONENT</th>
<th>QUANTITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dulbecco's Modified Eagle's Medium</td>
<td>8.3 g/L</td>
</tr>
<tr>
<td>(Sigma-Aldrich, D5030)</td>
<td></td>
</tr>
<tr>
<td>Glutamax 200 mM (100X), (Gibco, 35050-061)</td>
<td>10 ml</td>
</tr>
<tr>
<td>Sodium Pyruvate 100 mM (Sigma-Aldrich S8636)</td>
<td>10 ml</td>
</tr>
<tr>
<td>D-(+)-Glucose (Sigma-Aldrich G8270)</td>
<td>2 g</td>
</tr>
<tr>
<td>Sodium Chloride (Sigma-Aldrich S3014)</td>
<td>1.85 g</td>
</tr>
<tr>
<td>Phenol Red sodium salt (Sigma-Aldrich P5530)</td>
<td>15 mg</td>
</tr>
</tbody>
</table>

Table 3.12 The components required to make up the assay specific media for the Seahorse/ extracellular flux analyser.

3.7.2 Methods

The assay cartridge sensor plate (Seahorse Bioscience) was left to calibrate in XF Calibration Solution (Seahorse Bioscience) over night at 37°C in a CO₂-free incubator.

HUVECs were grown in gelatin-coated 24 well assay microplates (Seahorse Biosciences) until they reached approximately 90% confluence. They were then treated with 0, 10, 100 and 1000 μg/L arsenite in a total of 1 ml HUVEC growth media with 5 well repeats per arsenite concentration and incubated for a specific treatment time at 37°C and 5% CO₂. After the treatment period was complete, 900 μl media per well was discarded and 900 μl of the assay specific media (Table 3.12) was added to each well, 900 μl was discarded again and 900 μl of fresh assay specific media was re-added per well, this wash step was repeated 3 times in total. Assay specific media (575 μl) was lastly added to the remaining 100 μl media per well and left to incubate at 37°C in a CO₂-free incubator.

The assay cartridge sensor plate drug injection ports were loaded up with the corresponding compounds (Figure 3.1) (Table 3.11) and inserted into the XF24
Chapter 3: Materials & Methods

Analyzer (Seahorse Bioscience) to calibrate. Once the calibration was complete, the HUVEC treatment plate was loaded into the XF24 Analyzer, where the sequential injection of mitochondrial compounds and their individual cellular responses was measured.

![Assay calibration plate](image)

Figure 3.1 The diagram illustrates an assay calibration plate (Seahorse Bioscience), showing the layout of the sensor cartridge surrounded by 4 drug injection ports that is used to sequentially inject mitochondrial targeted compounds; in this study the compounds used were; (A) Oligomycin, (B) carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone (FCCP), and (C) Antimycin A.

3.8 Measuring mitochondrial DNA content and damage using qPCR

3.8.1 Materials

DNA extraction of HUVECs was carried out using the QIAamp® DNA blood mini kit (QIAGEN) following the manufacturer’s instructions. DNA was quantified using a nanodrop ND-8000 8-sample spectrophotometer (Labtech international).

The primers used to measure mitochondrial DNA content, shown in table 3.13 include the amplification of the nDNA region consisting of the reference *RPLPO* gene and the
amplification of the entire mitochondrial genome. The primers used to measure mitochondrial DNA damage have been designed to amplify the D-Loop region of the mitochondrial genome (Table 3.1).

<table>
<thead>
<tr>
<th>Accession no:</th>
<th>Primer name</th>
<th>Sequence</th>
<th>Length (bp)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NM_001002</td>
<td>36B4d (sense)</td>
<td>5’CCCATTCTATCATCAACGGGTACAA3’</td>
<td>1229</td>
</tr>
<tr>
<td></td>
<td>36B4u (antisense)</td>
<td>5’CAGCAAGTGGDAAGGTGTAATCC3’</td>
<td></td>
</tr>
<tr>
<td>J01415</td>
<td>mt14260 (sense)</td>
<td>5’CCCCCACAACCCATTACTAAACCCCA3’</td>
<td>16569</td>
</tr>
<tr>
<td></td>
<td>mt14841 (antisense)</td>
<td>5’TTCATCATGCGGAGATGTTGGATGG3’</td>
<td></td>
</tr>
</tbody>
</table>

Table 3.13 Primers used to measure mitochondrial DNA content, amplifying the mitochondrial genome and a reference nuclear sequence.

<table>
<thead>
<tr>
<th>Primer name</th>
<th>Sequence</th>
<th>Length (bp)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AS1.F (sense)</td>
<td>CCCTAACACCAGCCTAACCA</td>
<td>55</td>
</tr>
<tr>
<td>AS1.R (antisense)</td>
<td>AAAGTGCATAACCAGCCTAACCA</td>
<td></td>
</tr>
<tr>
<td>AL4.F (sense)</td>
<td>CTGTTCTTTTCTGGGGAAAG</td>
<td>972</td>
</tr>
<tr>
<td>AS1.R (antisense)</td>
<td>AAAGTGCATAACCAGCCTAACCA</td>
<td></td>
</tr>
</tbody>
</table>

Table 3.14 Primers used to measure DNA damage at the D-loop region of the mitochondrial region (Rothfuss et al., 2010).

The quantitative real-time PCR (qPCR) reactions were made up using the Sensimix™ SYBR Kit (Bioline), water for molecular biology work (DNase and RNase free)
(Sigma-Aldrich), primers were purchased from Invitrogen (HPLC purified) and Tris-EDTA (TE) buffer (pH 7.4) (Sigma-Aldrich) was used for DNA dilutions. qPCR reactions were made up in ABI compatible frosted and semi-skirted, thin wall 96X 0.2 ml high profile PCR plates (GENEFLOW, P3-0292). The reactions were carried out in the ABI Prism 7900HT Sequence Detection System.

3.8.2 Methods

3.8.2.1 DNA extraction

HUVECs were grown to approximately 70% confluence in T75 cm3 flasks and then treated with arsenite for 24 hours. Following the QIAamp® DNA blood mini kit protocol, DNA was extracted from arsenite treated HUVECs. Cells grown in a flask were trypsinised off the surface and transferred to a centrifuge tube. Cells were pelleted by centrifuging at 180 g for 5 minutes, the supernatant was discarded and the pellets were re-suspended with 200 µl of DPBS with the addition of 20 µl protease and 200 µl Buffer AL. The mixture was vortexed for 15 seconds and the lysate was incubated at 56°C for 10 minutes before centrifuging briefly and transferring into a QIAamp spin column (with collecting tubes to centrifuge for 11,000 g for 1 minute. The column was then placed in clean collecting tubes, 500 µl Buffer AW1 was added and centrifuged at 11,000 g for 1 minute. The column was discarded and replaced with a clean one to centrifuge again ensuring the entire wash buffer was removed. The column was then placed into a sterile 1.5 ml eppendorf tube, 55 µl of Buffer AE was added to the column and left for 5 minutes at room temperature, before centrifuging at 11,000 g for 1 minute to elute the DNA.
3.8.2.2 Quantitative Real-Time PCR

Quantification of the amplified target sequences was carried out using the SYBR green fluorescent dye, a constituent of the Sensimix™ SYBR Kit used to make the qPCRs. SYBR green binds to double-stranded DNA and fluoresces, thus is widely used as a measuring tool for the real-time amplification of DNA sequences in qPCR. The ABI Prism 7900HT sequence detection system is able to detect this fluorescent signal and produces an amplification plot representing the increase in fluorescence, i.e. the amplified target DNA sequence, over the course of the qPCR cycles. The amplified product is measured in terms of the threshold cycle (Ct) value; the number of replication cycles required in order for the fluorescent signal to exceed the threshold i.e. background level. The Ct value is inversely proportional to the amount of target DNA in the reaction, thus the lower the Ct value, the higher the amount of DNA.

The reactions were made up in sterile conditions, ensuring no source of DNA contamination. Each reaction was made up to a final concentration of 25 μl with 1X SensiMix™ SYBR kit, 0.1 μM sense primer, 0.1 μM antisense primer, distilled water and DNA at the appropriate concentration.

The reference DNA to make standard curves was extracted from untreated HUVECs. For measuring mtDNA content, a reference DNA standard curve using the nDNA primers; 36B4d and 36B4u, was made up with TE buffer (pH 7.4) for a 2-fold dilution of DNA concentrations ranging from 3.125 to 50 ng. The DNA from the experimental samples was diluted down to 3 ng/μl and 15 ng was used for each reaction. The reference DNA standard curve for the mtDNA primers; mt14620 and mt14841, was
made up ranging from 62.5 to 1000 pg by a 2-fold serial dilution using TE buffer (pH 7.4), the experimental DNA samples were diluted down to 50 pg/μl and 250 ng used per reaction. For measuring mtDNA damage, both primer sets AS1.F, AS1.R and AL4.F, AS1.R were used. The reference DNA standard curves were made up with TE buffer (pH 7.4) for a 2-fold dilution of DNA concentrations ranging from 62.5-1000 pg, DNA from the experimental samples was diluted down to 50 pg/μl and 250 pg was used in each reaction.

The thermal profile for the qPCR was as follows; 95°C for 10 minutes, 40 cycles of 95°C for 30 seconds, 60°C for 60 seconds and 72°C for 60 seconds. The data was analysed for both measuring the mtDNA content and mtDNA damage following the relative standard curve method (Pfaffl, 2001).

3.9 Measuring nuclear DNA Damage using the Comet assay

3.9.1 Materials

The materials required to carry out the alkaline comet assay are listed below.

<table>
<thead>
<tr>
<th>Component</th>
<th>Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trizma®hydrochloride (pH 8) (Sigma-Aldrich T5941)</td>
<td>10 mM</td>
</tr>
<tr>
<td>EDTA (pH 8) (Sigma-Aldrich E6758)</td>
<td>1 mM</td>
</tr>
</tbody>
</table>

Table 3.15 The components used to make Tris-EDTA (TE) buffer
Table 3.16 Components used to make up lysis buffer, triton-X100 added up to 30 minutes just before use.

<table>
<thead>
<tr>
<th>Component</th>
<th>Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sodium Chloride (Sigma-Aldrich S7653)</td>
<td>2.5 M</td>
</tr>
<tr>
<td>EDTA (Sigma-Aldrich E6758)</td>
<td>100 mM</td>
</tr>
<tr>
<td>Trizma® base (Sigma-Aldrich T1503)</td>
<td>10 mM</td>
</tr>
<tr>
<td>Sodium hydroxide (Sigma-Aldrich S5881)</td>
<td>200 mM</td>
</tr>
<tr>
<td>Adjusted to pH 10</td>
<td></td>
</tr>
<tr>
<td>Triton-X100 (Sigma-Aldrich X100)</td>
<td>1%</td>
</tr>
</tbody>
</table>

Table 3.17 Components required to make electrophoresis buffer. The buffer was made fresh each time in distilled water and adjusted to pH 13.

<table>
<thead>
<tr>
<th>Component</th>
<th>Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sodium hydroxide (Sigma-Aldrich S5881)</td>
<td>300 mM</td>
</tr>
<tr>
<td>EDTA (Sigma-Aldrich E6758)</td>
<td>1 mM</td>
</tr>
</tbody>
</table>

The neutralisation buffer was made up with 400 mM Trizma® base (Sigma-Aldrich T1503) at pH 7.5. 0.6% low melting point (LMP) agarose (Invitrogen 16520050) was made in PBS and 1.2% LMP agarose was made in distilled water.

3.8.2 Methods

The measure of nuclear DNA damage was carried out using the single cell alkaline gel electrophoresis technique (alkaline comet assay) as described below (Figure 3.2).
Before starting the procedure, microscope slides were coated with 1.2% LMP agarose and left to set at 56°C for at least one hour before use. HUVECs were grown in gelatin-coated T25 cm\(^3\) flasks until they reached 70% confluence, they were treated with arsenite concentrations for 24 hours in a 37°C and 5% CO\(_2\) incubator. Cells were then removed from the flask using 0.25% Trypsin/EDTA and centrifuged at 180 g for 5 minutes to form a cell pellet. The supernatant was completely removed and discarded and the cells were re-suspended in 1 ml fresh media. A 300 μl aliquot of the cell suspension was transferred into a sterile eppendorf and centrifuged at 5418 g for 1 minute.

In dark conditions (to minimise adventitious DNA damage due to photosensitivity reactions), the supernatant was discarded and the pellet was re-suspended in 900 μl of 0.6% LMP agarose, 60 μl of this cell suspension (approximately 20,000 cells/slide) was placed on top of a 1.2% LMP agarose coated slide, covered with a cover slip and left on ice for 15 minutes. LMP agarose (60μl of 0.6%) was pipetted on top of the cell layer, covered with a cover slip and left on ice for another 15 minutes. The cells were then lysed by placing then in a Wilson jar filled with cold (~4°C) lysis buffer; the slides were left in there over night at 4°C, protected from the light.
Chapter 3: Materials & Methods

The slides were washed three times in TE buffer for 5 minutes. The cells were then denatured by placing them in a comet assay specific electrophoresis tank containing chilled electrophoresis buffer for 30 minutes before carrying out electrophoresis for 20 minutes at 20 V and 200 mA at 4°C and light protected conditions. The slides were then washed three times in neutralisation buffer and twice in 100% ethanol, 5 minutes per wash. The slides were left to air dry. To stain the cells, slides were re-hydrated with distilled water and exposed to 2.5 μg/ml PI for 20 minutes, washed with distilled water again for 30 minutes and allowed to dry. The comets were analysed at 50 cells per slide with 2 slides per treatment condition per experiment. The comets were detected using a fluorescence microscope (Axioskop; Carl Zeiss,) with an excitation filter of 515-535 nm and a 590 nm barrier emission filter. The Comet Assay IV analysis software, version 4.2 (Perceptive instruments) was used to score the comets and the percentage tail length was recorded.

3.10 Microarray based Transcriptional Profiling

3.10.1 Materials

The extraction of total RNA from HUVECs was carried out using the miRNeasy Mini Kit (Qiagen 217004), chloroform (Sigma-Aldrich 472476) and isopropanol (2-propanol, Sigma-Aldrich I9516). The nucleic acid content of the extracted samples was determined using the nanodrop ND-8000 8-sample spectrophotometer (Labtech international) following the manufacturer’s instructions and using the elution buffer from the miRNeasy Mini Kit as the sample blank. The qualities of the extractions were
observed using the Agilent 2100 bioanalyzer with the Agilent RNA 6000 Nano Kit, following the manufacturer’s instructions.

The RNA amplification and cRNA conversion with Biotin labelling was carried out using the Illumina® TotalPrep RNA Amplification Kit (AMIL1791) and the microarray beadchip hybridisation was carried out using the HumanHT-12 v4 Expression BeadChip Kit (Illumina® BD-103-0204), BeadChip Hyb Chamber (Illumina® 210948), BeadChip Hyb Chamber inserts (Illumina® 222682), BeadChip Hyb Chamber gaskets (Illumina® 210930) and BeadChip wash rack (Illumina® 200037). The beadchip was analysed using the Illumina® Beadarray Scanner Bench Top™.

3.10.2 Methods

![Flowchart of gene expression methodology](image)

Figure 3.3 An overview of the whole-genome gene expression direct hybridisation methodology involved in transcriptional profiling.

3.10.2.1 Total RNA extraction

HUVECs were grown in gelatin coated T75 cm³ flasks until they reached 70% confluency. They were then either treated with 1000 μg/L arsenite or left as untreated controls. After 24 hours they were detached from the flasks using 0.25% Trypsin/EDTA and washed in PBS.
The supernatant was discarded and 700 μl of QIAzol Lysis Reagent was added to each sample, transferred to a 2 ml flat bottom sample tube and homogenised. The homogenate was left at room temperature for 5 minutes, 140 μl chloroform was added to each tube before the samples were vortexed vigorously for 15 seconds and left at room temperature for 3 minutes. They were then centrifuged for 15 minutes at 12,000 g. The resultant samples were split into three phases; upper aqueous phase containing RNA, interphase containing DNA and an organic phase containing protein. The upper aqueous phase was carefully transferred into a sterile eppendorf where 1.5 volumes of 100% ethanol were added and mixed by pipetting. A 700 μl aliquot of the sample was then transferred into an RNeasy® Mini column in a collecting tube and centrifuged at 8,000 g for 2 minutes. The flow through was discarded and the remaining sample was added to the column and again centrifuged.

DNA digestion was then carried out. Isopropanol (45 ml) was added to the Buffer RWT and 350 μl of this was added to the Mini Spin column followed by centrifugation for 2 minutes at 8,000 g DNase I stock solution (10 μl) was added to 70 μl of Buffer RDD and gently inverted to mix. This was then added directly onto the membrane of the Mini Spin column and left at room temperature for 15 minutes. Buffer RWT with isopropanol (350 μl) was added into the Mini Spin column and centrifuged for 2 minutes at 8,000 g.

The flow through from the column was discarded and 500 μl of Buffer RPE was added into the Mini Spin column, left for 5 minutes at room temperature and then centrifuged for 2 minutes at 8,000 g. The flow through was discarded and this step was repeated. The collecting tube was replaced with a new one and the column was centrifuged for
8,000 g for 5 minutes to eliminate any retained buffer. The Mini Spin column was transferred into a new sterile eppendorf and 50 μl of RNase-free water was added directly onto the Mini Spin column membrane, the lid was closed and the column was centrifuged for 2 minutes at 8,000 g. The flow through which contained the eluted RNA was reapplied to the column membrane and centrifuged for another 2 minutes at 8,000 g. The sample was stored at -80°C until required.

3.10.2.2 RNA amplification and cRNA preparation

The extracted samples were prepared to give 500 ng RNA in 11 μl using nuclease-free water in a sterile RNase-free 0.5 ml microcentrifuge tube. The Reverse Transcription Master Mix was prepared (Table 3.18), mixed by gentle vortexing, briefly centrifuged and placed on ice. Master mix (9 μl) was mixed into the RNA samples by pipetting, then briefly centrifuged and incubated for 2 hours at 42°C. The samples were briefly centrifuged (~4000 g) and placed immediately on ice. A Second Strand Master Mix (Table 3.19) was prepared in a nuclease-free tube, mixed by gentle vortexing, briefly centrifuged before 80 μl was added to each sample and mixed by pipetting. The samples were then incubated for 2 hours at 16°C.

After the incubation, 250 μl of cDNA Binding Buffer was immediately added to each sample, mixed well by pipetting and all the sample was transferred onto a cDNA Filter cartridge to centrifuge at 10,000 g. The flow through was discarded and 500 μl Wash Buffer was applied. The columns were centrifuged for 1 minute at 10,000 g and the flow through was discarded and the centrifugation step was repeated to elute all the
wash buffer. The cDNA Filter Cartridge was transferred into a cDNA Elution Tube. Pre-heated (55°C) nuclease-free water (20 μl) was applied to the filter and left at room temperature for 2 minutes before centrifugation for 1 minute at 10,000 g. The cDNA was stored overnight at -20°C.

<table>
<thead>
<tr>
<th>Component</th>
<th>Volume (μl)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T7 Oligo(dT) Primer</td>
<td>1</td>
</tr>
<tr>
<td>10X First Strand Buffer</td>
<td>2</td>
</tr>
<tr>
<td>dNTP Mix</td>
<td>4</td>
</tr>
<tr>
<td>RNase Inhibitor</td>
<td>1</td>
</tr>
<tr>
<td>ArrayScript</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 3.18 Reverse Transcription Master Mix for a single RNA sample.

<table>
<thead>
<tr>
<th>Component</th>
<th>Volume (μl)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nuclease-Free Water</td>
<td>63</td>
</tr>
<tr>
<td>10X Second Strand Buffer</td>
<td>10</td>
</tr>
<tr>
<td>dNTP Mix</td>
<td>4</td>
</tr>
<tr>
<td>DNA Polymerase</td>
<td>2</td>
</tr>
<tr>
<td>RNase H</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 3.19 Second Strand Master Mix for a single reaction.

An IVT Master Mix (Table 3.20) comprising of Biotin-NTPs was prepared, mixed by gentle vortexing and briefly centrifuged before adding 7.5 μl into each cDNA sample and incubating at 37°C over night. cRNA Binding Buffer (350 μl) was added to each cRNA sample and mixed gently by pipetting and the sample was immediately
transferred onto the centre of a cRNA Filter Cartridge. The samples were centrifuged for 1 minute at 10,000 g, the flow through was discarded, 650 μl Wash Buffer was added to each cartridge and centrifuged for 1 minute at 10,000g. The centrifugation was repeated once the flow through was discarded to ensure removal of the entire wash buffer. Pre-heated (55°C) nuclease-free water (200 μl) was added to each filter and the samples were incubated for 10 minutes at 55°C. The resultant Biotin labelled cRNA was eluted by centrifugation for 1.5 minutes at 10,000 g. The quantity and quality of the cRNA was assessed using the nanodrop ND-8000 8-sample spectrophotometer and the Agilent 2100 bioanalyzer respectively, following the manufacturer’s instructions.

<table>
<thead>
<tr>
<th>Component</th>
<th>Volume (μl)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T7 10X Reaction Mix</td>
<td>2.5</td>
</tr>
<tr>
<td>T7 Enzyme Mix</td>
<td>2.5</td>
</tr>
<tr>
<td>Biotin-NTP Mix</td>
<td>2.5</td>
</tr>
</tbody>
</table>

Table 3.20 Components of the IVT Master Mix for a single sample.

3.10.2.3 Beadchip Hybridisation

The cRNA samples were prepared using RNase-free water to yield 750 ng cRNA in 5 μl. Samples were mixed gently by pipetting and left at room temperature for 10 minutes, meanwhile the HYB and HCB tubes were incubated for 10 minutes (or more) at 58°C to allow any salts that had precipitated to dissolve. The tubes were left to cool at room temperature and mixed thoroughly before use. HYB (10 μl) was added to each sample and heated at 65°C for 5 minutes. Meanwhile, the Illumina Hyb Chamber gasket was placed into the BeadChip Hyb Chamber, 200 μl of HCB was added into the humidifying
buffer reservoirs (only for the ones located at the BeadChip loading position). The BeadChip was gently lowered into position on the Hyb Chamber using tweezers, ensuring the barcode was aligned accurately.

The samples were briefly vortexed, centrifuged to collect the sample and allowed to cool at room temperature. They were then immediately loaded onto the BeadChip sample ports; 15 μl per sample. The Hyb Chamber lid was sealed and the chamber was incubated over night at 58°C whilst gently rocking. High-Temp Wash buffer (1X) was prepared by mixing the 50 ml 10X stock with 450 ml RNase-free water and left over night at 55°C.

Block E1 buffer was warmed at room temperature, Block E1 buffer was prepared with streptavidin-Cy3; 2 μl of 1 mg/ml stock streptavidin Cy3 into 2 ml Block E1 buffer (kept protected from the light until used). Wash E1BC solution was made up by mixing 6 ml E1BC buffer into 2 L RNase-free water and 1 L was poured into a sterile RNase-free container. After the incubation period, wearing powder-free gloves the Hyb Chamber was dissembled, the BeadChip was carefully transferred (face upwards) into the bottom of the container and the cover seal was removed from the BeadChip. The BeadChip then transferred in a slide rack and washed in E1BC solution briefly, then incubated in High-Temp Wash buffer for 10 minutes, washed in E1BC solution for 5 minutes whilst on a shaker at high speed, transferred into 100% ethanol and placed on a shaker for 10 minutes. The BeadChip was then washed in clean E1BC solution for 2 minutes on a shaker, immersed in Block E1 buffer face up and rocked for 10 minutes. Next the BeadChip was transferred to Block E1 buffer with streptavidin face up and
placed on a rocker for 10 minutes, and lastly, washed in clean E1BC solution on shaker for 5 minutes in a slide rack.

The BeadChip was then placed and balanced in a plate-holder centrifuge for 275 g for 4 minutes to dry the chip; the chip was then scanned using the Illumina® Beadarray Scanner Bench Top™. Once the chip was scanned, the quality control checks of the data analysis were carried out using GenomeStudio Software (Illumina®). The ArrayTrack™ was used to perform normalisation on the raw data and apply, to eliminate systematic variation; this was done using the quantile normalisation method (Bolstad et al., 2003). The raw data was then subjected to two filters to refine and generate a significant gene list for further analysis, the filters applied were false discover rate (FDR)= 0.05 and fold change (FC) cut off of >1.5, and then analysed using principal component analysis. The significant gene list was then uploaded to the Ingenuity Pathway Analysis (INGENUITY®) to carry out gene expression changes and pathway analysis.

3.11 Induction of SIPS

At 60% confluence, HUVECs grown in 6-well plates were treated incubated with 650 and 1300 µg/L arsenite and 50 µM tert-butyl hydrogen peroxide (tBHP) (Sigma – Aldrich 458139) for 1 hour at 37°C and 5% CO₂, the treatment media was then aspirated, from the wells and the cells were washed in1 ml DPBS and replaced with 2 ml HUVEC culture media (Table 3.1), this treatment was repeated for 3 consecutive
days. After the third treatment, the plates were allowed to recover for 48 hours with fresh culture media at 37°C and 5% CO₂.

3.12 Senescence associated β-galactosidase (SA-β-Gal) staining

3.12.1 Materials

The reagents and materials used to detect senescence in HUVECs include the Senescent Cells Histochemical Staining Kit purchased from Sigma-Aldrich (CS0030) (Table 3.21), glycerol from Sigma-Aldrich (G5516), parafilm purchased from GMBH & Co, Germany and laboratory standard ultra pure (UP) H₂O was used for all dilutions.

<table>
<thead>
<tr>
<th>Reagent</th>
<th>Components</th>
</tr>
</thead>
<tbody>
<tr>
<td>10X Fixation buffer</td>
<td>Solution containing 20% formaldehyde, 2% gluteraldehyde, 70.4 mM Na₂HPO₄, 14.7 mM KH₂PO₄, 1.37 M NaCl, and 26.8 mM KCl</td>
</tr>
<tr>
<td>10X PBS</td>
<td>-</td>
</tr>
<tr>
<td>Reagent B</td>
<td>400 mM Potassium ferricyanide</td>
</tr>
<tr>
<td>Reagent C</td>
<td>400 nM Potassium ferrocyanide</td>
</tr>
<tr>
<td>10X Staining solution</td>
<td>-</td>
</tr>
<tr>
<td>40 mg/ml X-gal solution</td>
<td>-</td>
</tr>
</tbody>
</table>

Table 3.21 The components of the senescence cells histochemical staining kit.

3.12.2 Methods

After inducing SIPS (section 3.11), the HUVECs were trypsinised, counted using a haemocytometer and re-seeded in gelatine coated 6-well plates at a seeding density of 5x10⁴ and allowed to adhere for 24 hours at 37°C and 5% CO₂. The culture media was aspirated and the wells were washed twice with 1 ml 1X PBS per well, 1.5 ml of 1X fixation buffer was added to each well and left to incubate at room temperature for 6-7 minutes while the staining mixture was prepared (Table 3.22). The wells were washed 3
times with 1ml 1X PBS before adding 1 ml staining mixture per well, the plates were then sealed with parafilm to prevent the wells drying out and the plates were incubated at 37°C without CO$_2$ for 24 hours. Since senescent cells specifically stain at pH 6, it is important for cells to not be in a CO$_2$-rich environment to avoid pH alterations of the solution.

The blue stained, senescent, cells were visualised using a Nikon inverted trinocular phase contrast light microscope, with images taken at ×100 magnification, quantification of the blue stained cells was done manually from 5 distinct fields of view from each well. After the wells were analysed, the staining solution was removed and 1 ml of 70% glycerol was added to each well, allowing long-term storage of the plates at 4°C.
CHAPTER FOUR

Effects of Arsenite on Cell Viability, Senescence and ROS
Chapter 4: Effects of arsenite on cell viability, senescence and ROS

4.1 Introduction

4.1.1 Investigating the underlying mechanisms of arsenite cytotoxicity

Arsenic is a known human toxicant, the exposure to which results in the development of a wide spectrum of diseases, including cardiovascular disease (see chapter 1). Since epidemiological studies carried out on the health effects of arsenic investigate individuals chronically exposed to arsenic, it is difficult to mimic these exposure conditions in vitro. Therefore investigations conducted in this thesis, determining the underlying mechanisms by which arsenite impacts endothelial cells, will focus on using sub-cytotoxic arsenite concentrations. The importance of using sub-cytotoxic concentrations is highlighted when investigating the initial intracellular effects of arsenic e.g. determining changes in levels of cellular ROS.

Shi et al (2010) carried out such an investigation, looking at the effects of arsenite on ROS generation in HUVECs. Arsenite induced a concentration dependent increase in ROS levels after 24 hour treatment at concentrations of ≥650 µg/L. However, they also found a significant concentration-dependent increase in the extent of apoptosis in the cell population treated for 24 hour with arsenite concentrations of ≥650 µg/L. Based on this study, it is apparent that the correlation of increased ROS with apoptosis induction makes it hard to distinguish whether the onset of apoptosis was a consequence of increased cellular ROS or vice-versa. Thus, the use of sub-cytotoxic arsenite
concentrations, where arsenite treatment is not inducing significant cell death, appears to be essential when investigating the mechanisms behind arsenite-induced toxicity.

4.1.2 Arsenic and cellular senescence

The relationship between arsenic and cellular senescence has not been researched extensively, however the few studies conducted have shown arsenic to induce premature senescence in a number of cell types i.e. Syrian hamster embryo cells (Liao et al., 2001), human mesenchymal stem cells (Cheng et al., 2011) and rat aortic vascular smooth muscle cells (Martin-Pardillos et al., 2013). The mechanism by which arsenic induces senescence is yet to be fully understood, however oxidative stress seems to be a strong candidate for the onset of stress-induced premature senescence (SIPS).

As described in section 1.4.2.2, oxidative stress has been associated with cellular senescence. The exposure of human diploid fibroblasts to H\textsubscript{2}O\textsubscript{2} has shown the induction of SIPS (Frippiat et al., 2001), with H\textsubscript{2}O\textsubscript{2} resulting in the acceleration of telomere attrition as a result of single-strand breaks within telomeres (von Zglinicki et al., 2000). Oxidative DNA damage has also been associated with replicative senescence. The oxidative DNA damage marker, 8-oxo-dG, increased by 30% in senescent human diploid fibroblast cells compared with non-senescent cells (Chen et al., 1995), indicating replicative senescence occurs as a result of DNA damage accumulation. Furthermore, reducing the oxygen tension of human diploid fibroblasts by decreasing the atmospheric O\textsubscript{2} concentration to 3% resulted in an increase in the population doublings required to reach the senescent phenotype (Chen et al., 1995). Thus,
Chapter 4: Effects of arsenite on cell viability, senescence and ROS

oxidative stress can be seen as a possible mechanism by which arsenite mediates cellular senescence in endothelial cells although this has not been well studied.

4.2 Aims

This chapter is focussed on establishing whether, at sub-cytotoxic concentrations, arsenite causes SIPS in HUVECs and whether arsenite induces acute oxidative stress in HUVECs and EA.hy 926 cells as the primary response.

4.3 Investigative methodology

4.3.1 Determining Cell viability

The trypan blue assay was employed to assess the cytotoxicity of arsenite in HUVECs. The use of this assay to measure cell viability is reliant on the intact cell membrane of viable cells, preventing the penetration of the trypan blue dye (Strober, 2001). Thus, dead cells are distinguished from living cells as they appear blue under microscopy. Along with the trypan blue exclusion assay, the cell counting kit 8 (CCK8) was used to validate the results generated. The CCK8 assay relies on the reduction of the colourless 2-(2-methoxy-4-nitrophenyl)-3-(4-nitropheryl)-5-(2,4-disulphophenyl)-2H-tetrazolium, monosodium salt (WST-8), to an orange/yellow coloured formazan dye in the presence of dehydrogenase activity. Thus, the amount of dye produced is a reflection of the number of viable cells in a cell population due to their ability to express dehydrogenases.
4.3.2 Detecting H$_2$O$_2$ generation

Measurement of H$_2$O$_2$ production in response to arsenite treatment was carried out using the Amplex red assay (Figure 4.1) for cells seeded in 96-well plates (see section 3.3.1). The Amplex red assay consists of the enzyme peroxidase which reduces H$_2$O$_2$ to water with the conversion of Amplex red to resorufin; a red fluorescent molecule. H$_2$O$_2$ produced within the cell diffuses out into the culture media and can be detected by the Amplex reagents. The Amplex red assay is applied to the cell culture and incubated for 1.5 hours at 37°C to allow the production and diffusion of cellular H$_2$O$_2$ and subsequent reaction with the assay reagents before taking the fluorescence readings. Therefore the fluorescence detected is a direct representation of the amount of H$_2$O$_2$ generated by cells. To ensure the readings generated were a representation of arsenite-induced H$_2$O$_2$ and not compromised by cell death, the Bradford assay was applied to the wells after applying the Amplex red assay.

![Amplex red assay diagram](image)

*Amplex red = 10-acetyl-3,7-dihydroxyphenoxazine

Figure 4.1 Basis of the Amplex Red assay for peroxide. Hydrogen peroxide is able to diffuse out of cells and into the culture media where it is reduced by the enzyme peroxidase to water. This reduction occurs via the conversion of Amplex red, which acts as an electron donor for the reduction reaction, to form the red fluorescent molecule resorufin.
The Bradford assay (Bradford, 1976) is a colorimetric assay based on the binding of the Coomassie Brilliant Blue G-250 dye, predominantly present in acidic conditions in its red cationic form with an absorbance maximum at 470 nm, which binds proteins and is converted to its blue unprotonated form measured at $A_{595\text{ nm}}$ (Compton and Jones, 1985; Jones et al., 1989). Thus, this assay will measure the amount of proteins present in each well after the treatment with arsenite, and indicate the amount of cells lost due to the arsenite cytotoxicity.

4.3.3 Measuring ROS and cell death using flow cytometry

Measurements for both ROS generation and cell death i.e. apoptosis and necrosis in arsenite treated HUVECs were carried out using flow cytometry. Flow cytometry is a laser based technique that enables the multi-parameter analysis of individual cells. The crucial aspect of flow cytometry is the point of intersection or the ‘interrogation point’, where each individual cell is hit by the laser beam, resulting in a ‘scatter’ of light wavelengths from the cell. The laser beam will also excite fluorescent molecules found within or attached to the cell, sending out an emission wavelength. The scatter and fluorescent wavelengths are recorded by detectors within the flow cytometer and interpreted by specialist flow cytometry software to give information regarding many of the cellular characteristics (Givan, 2004; Ibrahim and van den Engh, 2007).

Intracellular ROS were measured using flow cytometry with several fluorescent dyes. 5,6-chloromethyl- 2',7'-dichlorohydrofluorescein diacetate (CM-H$_2$DCFDA) is the popular and widely used dye to indicate the levels of intracellular ROS, and was initially used. CM-H$_2$DCFDA, a chloromethyl derivative of H$_2$DCF-DA which provides
more retention in living cells through its reactivity with glutathione and other
intracellular thiols, is a non-fluorescent cell permeable probe that is hydrolysed by
intracellular esterases and then proposed to undergo oxidation by ROS to give the
fluorescent molecule, DCF (Rosenkranz et al., 1992; Tampo et al., 2003).
The generation of intracellular superoxide also was measured using both DHE, as well
as MitoSOX™ which specifically measures mitochondrial superoxide production. DHE
is suggested to undergo oxidation by intracellular superoxide to form 2-
hydroxyethidium (2-OH-Et), which binds to DNA and fluoresces (Zielonka and
Kalyanaraman, 2010). MitoSOX™ is made up of DHE but with a
triphenylphosphonium (TPP) group attached by a hexyl carbon chain. TPP groups are
cations which have properties that enable them to diffuse through phospholipid bilayers.
Since mitochondria are the most negatively charged organelle in the cell, due to the
transfer of hydrogen ions from the matrix to the inter membrane space of the
mitochondria during the ETC, the TPP cations pass through the mitochondrial
phospholipid bilayers and reside within the matrix (Ross et al., 2005).

Cell death was also measured using flow cytometry through the simultaneous staining
of cells with FITC-labelled annexin V and propidium iodide (PI), enabling the
differentiation between the apoptotic and necrotic populations within the sample.
Annexin V belongs to a family of proteins that bind to phospholipids, with annexin V
preferentially binding to phosphatidylserine (PS), usually found on the internally facing
cellular membrane of viable cells. During early apoptosis, PS is translocated to the
external surface of the cell, enabling the binding of annexin V and thus detection of
early apoptosis through the fluorophore FITC (Vermes et al., 1995). Unlike early
apoptotic cells which still maintain an intact cellular membrane, necrotic cells are
damaged cells with damaged membranes. PI is able to diffuse into necrotic cells and
binds to DNA with a resultant increase in fluorescent signal, but is unable to penetrate
the cellular membrane of viable cells. Therefore, PI is used to detect necrotic cells as it
can enter cells with damaged membranes and bind to the DNA (Ormerod et al., 1993).

4.3.4 Detecting stress-induced cellular senescence

SA-β-gal is an established biomarker of cellular senescence. The detection of SA-β-gal
at pH 6 has been found to be exclusively associated with cellular senescence, as
measured in senescent human cells (Dimri et al., 1995). SA-β-gal localises to lysosomes
within the cell (Lee et al., 2006), and the increase is because ageing cells have been
found to accumulate lysosomal mass (Suzuki et al., 1995; Kurz et al., 2000). This forms
a good marker to use for cellular ageing. Thus, the histochemical detection of SA-β-gal
is used as a reliable method of determining senescence in both in vivo and in vitro
investigations.

4.4 Results

4.4.1 Determining cell viability in response to arsenite treatment

To determine the concentrations at which arsenite displayed its cytotoxic effects,
HUVECs were exposed to a 10-fold increasing arsenite concentration range of 1-1000
µg/L, for 24 hours. Subjecting the cells to the trypan blue exclusion assay gave a
measure of cell viability. Arsenite exhibited a concentration-dependent increase in the
percentage of non-viable cells from the total cell population with statistical significance in the percentage of cell death seen for cells treated with concentrations of 1000 µg/L (10.6%, p<0.05) and 10,000 µg/L (26.2%, p<0.001) (Figure 4.2). Based on the trypan blue exclusion assay data, arsenite is cytotoxic at concentrations ≥1000 µg/L.

![Bar chart showing cell death percentage across different arsenite concentrations](image)

Figure 4.2 Percentage cell death induced by 24 hours arsenite treatment assessed using the trypan blue exclusion assay. Values represent mean of n=4 ±SEM. The data were analysed with one-way ANOVA using the Dunnett post-test (* p<0.05, ** p<0.01 compared to untreated control cells).

The CCK8 colorimetric assay was also used to determine the concentration at which arsenite displayed cytotoxicity. Absorbance measurements were taken at a time-point during 1-4 hours incubation of cells with the CCK8 assay, following the manufacturer’s instructions. To ensure optimum absorbance readings were generated from the cells exposed to the CCK8 assay, a seeding density gradient for HUVECs was set up in a 96
well plate (Figure 4.3). Overnight seeding of cells at 5000 cells/well gave the optimum absorbance readings after 4 hour exposure to the CCK8 reagent, where the absorbance readings were not too high, allowing for potential increases as well as decreases in absorbance during the subsequent experiments.

Figure 4.3 Optimisation of CCK8 assay. Cells, 625 to 10,000 per well were seeded into a 96 well plate to deduce the optimum seeding density for 24 hours, recording the absorbance values at 450nm using a plate reader after 1, 2, 3 and 4 hours of adding the CCK8 assay reagent. The values represent the mean ±SEM of n=5.
Figure 4.4 The viability of HUVEC after 24 hour treatment with arsenite concentrations between 1-10,000 µg/L. Absorbance readings at 450nm were taken using a plate reader after (a) 0 hours and (b) 4 hours of applying the CCK8 assay. Values represent means ±SEM of n= 5. The data were analysed using one-way ANOVA with Dunnett post-test, using the untreated cells as the control (* p<0.05, ** p<0.01 compared to the untreated control cells).

Figure 4.5 The viability of HUVEC after 24 hour treatment with increasing arsenite concentrations between 2,500-10,000 µg/L. Absorbance readings at 450nm were taken using a plate reader after (a) 0 hours and (b) 4 hours of applying the CCK8 assay. Values represent means ±SEM of n= 5. The data were analysed using one-way ANOVA with Dunnett post-test, using the untreated cells as the control (*p<0.05, ** p<0.01 compared to the untreated control cells).

This optimised CCK8 assay was used to investigate the effect of arsenite on HUVEC cell viability. HUVECs were treated for 24 hours at an arsenite concentration range between 1-10,000 µg/L. The cytotoxic effect of arsenite became apparent at the arsenite
concentration of 10,000 µg/L, where a significant decrease in cell viability was observed compared to the untreated cells (p<0.01).

To further investigate the precise concentration at which the cytotoxicity of arsenite was exhibited on HUVECs, the concentration range of arsenite was refined to concentrations between 2,500 and 10,000 µg/L (Figure 4.5). After 4 hours incubation with the CCK8 assay, cells treated with arsenite concentrations of 5000, 7500 and 10,000 µg/L displayed a significant concentration-dependent increase in cytotoxicity (p<0.01), interpreted as decreased cell viability. Therefore, concentrations below 2,500 µg/L can be seen to be sub-cytotoxic for 24 hours treatment of HUVECs.

To determine the sub-cytotoxic concentrations of arsenite to use for investigations involving more chronic arsenite treatment, HUVECs were treated for 5 days with an arsenite concentration range of 1,000 to 5,000 µg/L. All of the arsenite concentrations displayed cytotoxicity by 2 hours of incubation with CCK8 assay reagent (Figure 4.6). With significant cell death induced at all these concentrations (p<0.001), the arsenite concentration range tested for cytotoxicity was reduced to 1-1,000 µg/L. HUVECs exposed to these arsenite concentrations daily for 5 days showed significant concentration-dependent cell death at concentrations ≥ 200 µg/L after 3 hours CCK8 incubation (Figure 4.7). Further refinement of the arsenite concentration range between 0.1 and 200 µg/L also showed significant cell death at 200 µg/L arsenite after 5 days treatment (p<0.01), for absorbance readings taken after 3 hour incubation with the CCK8 assay (Figure 4.8). Therefore, the sub-cytotoxic concentrations established for
experiments involving 5 day arsenite exposure with HUVECs appears to be below 200 µg/L.

Figure 4.6 The viability of cells treated with arsenite for 5 days (I). Absorbance readings at 450nm were taken using a plate reader 2 hours after the CCK8 assay was applied. The values represent mean ±SEM of n= 5. The data were analysed using one-way ANOVA with Dunnett post-test, using the untreated cells as the control. (*** p<0.001 compared to the untreated control; 0 µg/L)

Figure 4.7 Effect of 5 day arsenite exposure on HUVEC viability (II). The viability of cells was determined by measuring the absorbance at 450 nm after 3 hours of applying the CCK8 using a plate reader. The values represent mean ±SEM of n= 5. The data were analysed using one-way ANOVA with Dunnett post-test, using the untreated cells as the control. (** p<0.01 compared to control; 0 mg/L)
Chapter 4: Effects of arsenite on cell viability, senescence and ROS

Figure 4.8 Effect of 5 day arsenite exposure on HUVEC viability (III). The viability of HUVEC treated for 5 days with arsenite was determined using the CCK8, the absorbance at 450 nm was measured after 3 hours CCK8 incubation using a plate reader. The values represent mean ±SEM of n= 5. The data were analysed using one-way ANOVA with Dunnett post-test, using the untreated cells as the control (** p<0.01 compared to control; 0μg/L).

4.4.2 Induction of stress-induced premature senescence (SIPS) by arsenite

In this thesis, investigations into whether arsenite induced senescence were carried out by using the senescence-associated β-galactosidase (SA-β-gal) staining assay alone. The induction of SIPS was investigated by subjecting HUVECs to 1 hour treatment consistently for 3 consecutive days at the sub-cytotoxic arsenite concentrations of 650 and 1,300 µg/L and using 50 µM tert-butyl hydrogen peroxide (t-BHP) as a positive control for SIPS. The occurrence of SIPS was assessed through the positive blue staining of cellular cytoplasm for SA-β-gal. Approximately 20% of the control, untreated HUVECs displayed blue staining in the cells when assessed under microscopy, in comparison to arsenite treated cells which had significantly increased number of staining for SA-β-gal (p<0.001) (Figures 4.9 and 4.10). The arsenite-induced
senescent cells display altered morphological characteristics, i.e. larger cytoplasm and elongated appearance, in comparison to the non-senescent HUVECs in the control cell population (Figure 4.9). Arsenite induced SIPS in a concentration-dependent manner, with approximately 60% and 80% senescence induction for cells treated with 650 and 1,300 µg/L arsenite respectively. The percentage of SIPS in HUVECs treated with 1,300 µg/L arsenite was also seen to exceed the extent of SIPS seen as a result of t-BHP treatment (Figure 4.10).

Figure 4.9 Induction of SIPS by arsenite. The images show HUVEC stained for SA-β-gal (blue) representing senescence after 3 days treatment with (a) no treatment, (b) 650 µg/L arsenite, (c) 1300 µg/L arsenite and (d) 50 µM t-BHP. The images were taken at x100 magnification.
Chapter 4: Effects of arsenite on cell viability, senescence and ROS

Figure 4.10 Arsene induced SIPS of HUVEC cultures. The percentage of HUVEC having undergone senescence, stained positive for SA-β-gal, after 1 hour exposure to the stressors each day for 3 consecutive days. The values represent mean +SEM of n= 4. The data were analysed using one-way ANOVA with Dunnett post-test, using the untreated cells as the control (** p<0.001 compared to the control; 0 µg/L).

4.4.3 Determination of arsenite induced ROS

4.4.3.1 Effect of arsenite on H$_2$O$_2$ generation in endothelial cells

The Amplex red assay was used to detect whether arsenite induced the generation of H$_2$O$_2$ in HUVECs treated with a range of sub-cytotoxic and cytotoxic concentrations, 1,000- 5,000 µg/L. To assess the responsiveness of the Amplex red assay, a range of H$_2$O$_2$ concetrations, 0, 20, 40, 60 and 80 µM respectively were investigated (Figure 4.11a). The flourescence response was approximately linear over this concentration range with a limit of detection in the low µM range. The standard curve also provided a reference against which the amount of H$_2$O$_2$ produced from the cells could be quantified.
Chapter 4: Effects of arsenite on cell viability, senescence and ROS

The Bradford assay was employed after measuring H$_2$O$_2$ with the Amplex red assay, to measure the cellular protein levels, giving an estimation of cell mass, at the end of the 24 hour arsenite treatment. This was used to indicate whether arsenite induced cell death at any of the treatment concentrations used and could be used to normalise the data. A standard curve was made using known concentrations of BSA (Figure 4.11b), against which the amount of protein measured in the wells could be quantified.

The data represented in figure 4.11c show no significant differences in the raw estimates of H$_2$O$_2$ produced from any of the sodium arsenite treated cells in comparison to the untreated control cells, with the positive control menadione significantly increasing H$_2$O$_2$ production (p<0.01 compared to the control). However, there was a suggestion of a concentration-dependent decrease in the fluorescence seen with sodium arsenite treated cells; from the 1,196 AFU detected from untreated cells, to 869 AFU from cells treated with 1000 µg/L arsenite and approximately 700-730AFU from cells treated with 2,000-5,000 µg/L. This non-significant trend is probably due to the concentration-dependent decrease in cell mass observed with increasing sodium arsenite concentrations (Figure 4.11d) (at least p<0.05). However, normalising the mean fluorescence values detected from the cells against the protein concentration/well values still showed decreased fluorescence detection from arsenite treated cells compared to the control cells (Figure 4.11e). Therefore, the results in figure 4.11 indicate that no increases in H$_2$O$_2$ generation were measured in HUVECs in response to arsenite.
Figure 4.11 Effects of arsenite on H$_2$O$_2$ production in HUVEC cultures. H$_2$O$_2$; 0, 15, 30, 60, and 80 µM concentrations were used to create a standard curve using the Amplex red assay, the values represent means of n=3 (a) and BSA concentrations; 0, 0.1, 0.2, 0.3, 0.4, and 0.5 mg/ml were used to create a protein standard curve using the Bradford assay, values represent means of n=3 (b). After the exposing HUVECs to arsenite for 24 hours and 50 µM menadione for 1 hour, the Amplex red assay was used to measure the levels of H$_2$O$_2$ generated (c) after which the Bradford assay was applied to quantify the cellular proteins/well after the arsenite treatment to determine cytotoxicity (d). The fluorescence measured in (c) was normalised against the level of proteins/ well (d) to enable direct comparison between levels of H$_2$O$_2$ detected (e) which was plotted as a mean for visualisation. The values (c and d) represent mean +SEM n=5. Data were analysed using the one-way ANOVA with Dunnett post-test, using the untreated cells as the control (*p<0.05, **p<0.01, *** p<0.001 compared to the control; 0 µg/L).
4.4.3.2 Effect of arsenite on ROS production assessed using fluorescent probes

The widely studied HUVEC derived cell-line EA.hy 926 was used in the following experiments due to relative ease and reliability of culture compared with HUVECs. Induction of necrosis and apoptosis was firstly investigated using flow cytometry to define sub-cytotoxic concentrations of arsenite for subsequent experiments. The acute induction of apoptosis and necrosis was assessed after 1 hour and 4 hours treatment with arsenite at 10-fold increasing concentrations from 1-10,000 µg/L. Staurosporine (1 µM) was used as a positive control for apoptosis and 4 mM H$_2$O$_2$ as a positive control for necrosis. Cell death was measured using flow cytometry and the simultaneous staining with FITC-annexin V and PI (Figure 4.12).

![Figure 4.12](image)

Figure 4.12 Annexin V-FITC and PI double staining of EA.hy 926 cells treated with 1 µM staurosporin for 1 hour, analysed using flow cytometry. R4 represents live cells, R5 represents early apoptosis, R3 represents late apoptosis and R2 represents necrotic cells.
As expected, after 1 hour treatment, none of the arsenite concentrations or 1 µM staurosporine resulted in any significant increases in either apoptosis or necrosis compared to the level detected in the control cells. EA.hy 926 cells treated with 4 mM H$_2$O$_2$ did however show a significant increase in both apoptosis and late apoptosis (also considered as necrosis) (p<0.05) after 1 hour treatment (Figure 4.13). Therefore, 1 hour exposure to arsenite did not induce cytotoxicity.

Figure 4.13 The effect of arsenite on apoptosis and necrosis in EA.hy 926 cultures (I). EA.hy 926 cells were treated with increasing arsenite concentrations and positive controls staurosporine (SS) and hydrogen peroxide (H$_2$O$_2$) for 1 hour and the induction of cell death measured. Annexin V and PI were simultaneously used with flow cytometry to determine the induction of apoptosis and necrosis respectively. The values represent means±SEM n=3. The data were analysed using one-way ANOVA with Dunnett post-test, using the untreated cells as the control (*p<0.05 compared to the untreated control cells).
Chapter 4: Effects of arsenite on cell viability, senescence and ROS

The exposure of EA.hy 926 cells to arsenite for 4 hours also resulted in no increase in apoptosis or necrosis compared to the control, untreated cells (Figure 4.14). Although the percentage of late apoptotic cells detected at 10,000 µg/L appeared to increase this did not reach statistical significance (Figures 4.13 and 4.14 respectively). After 4 hours, 1 µM staurosporin induced a significant increase in apoptosis (p<0.001) and 4 mM H₂O₂ induced a significant increase in necrosis and late apoptosis (p<0.001) (Figure 4.14). In conclusion, arsenite at concentrations between 1 and 10,000 µg/L did not induce an increase in apoptosis or necrosis in EA.hy 926 cells after either 1 or 4 hours exposure.

Figure 4.14 The effect of arsenite on apoptosis and necrosis in EA.hy 926 cultures (II). EA.hy 926 cells were treated with increasing arsenite concentrations and positive controls staurosporin (SS) and hydrogen peroxide (H₂O₂) for 4 hours and the induction of cell death measured. Annexin V and PI were simultaneously used with flow cytometry to determine the induction of apoptosis and necrosis respectively. The values represent means+SEM n=5. The data were analysed using one-way ANOVA with Dunnnett post-test, using the untreated cells as the control (**p<0.001 compared to the untreated control cells).
4.4.3.3 Effect of arsenite on ROS measured using CM-H$_2$DCFDA

The effects of arsenite on the intracellular levels of ROS were also measured using flow cytometry with EA.hy 926 cell for the same treatment times as the cell death investigations. HUVECs were also assessed for ROS generation to ensure the data generated from EA.hy 926 cells were a true representation of endothelial cells.

The levels of intracellular ROS in EA.hy 926 cells exposed to 10-fold increasing arsenite concentration of 1 to 10,000 µg/L for 4 hours was measured using the fluorescent reporter CM-H$_2$DCFDA (Figure 4.15). A trend of increasing ROS levels was observed in a concentration-dependent manner, with 1,000 µg/L and 10,000 µg/L arsenite inducing a significant increase compared to the untreated control cells, with over 2-fold increase in ROS levels for both concentrations compared to the control (p<0.05). H$_2$O$_2$ (100 µM) was used as a positive control for ROS detection by CM-H$_2$DCFDA, showing a significant increase in ROS detected after 30 minutes of H$_2$O$_2$ exposure compared to the untreated control cells (p<0.01) (Figure 4.15).

Similarly, a concentration-dependent increase in ROS generation was seen for HUVECs in response to 4 hour treatment with arsenite (Figure 4.16). However, statistical significance for increased ROS generation was achieved for cells treated with lower arsenite concentration, that is at 100 µg/L (P<0.0001), than seen in EA.hy 926 cells. Arsenite induced higher levels of ROS in HUVECs compared to EA.hy 926 cells, with approximately 5-8 fold increases in ROS generation for 100-10,000 µg/L arsenite (Figure 4.16). Treating HUVECs with 1 mM H$_2$O$_2$ for 30 minutes as a positive control for ROS detection showed a significant increase in the level of ROS measured.
Chapter 4: Effects of arsenite on cell viability, senescence and ROS

compared to the untreated control cells (p<0.001). Thus, according to the ROS detecting fluorescent probe, CM-H$_2$DCFDA, assuming this probe faithfully reports ROS in cells, arsenite induces an increase in ROS generation in a concentration-dependent manner for both HUVECs and EA.hy 926 cells after 4 hour treatment.

![Figure 4.15 Effect of arsenite on CM-H$_2$DCFDA fluorescence in EA.hy 926 cultures. A range of arsenite concentrations was used to treat EA.hy 926 cells for 4 hours, with 100 μM hydrogen peroxide (H$_2$O$_2$) as a positive control for 30 minutes. CM-H$_2$DCFDA was used with flow cytometry to determine ROS generation. The values represent means+SEM n=7. The data were analysed using one-way ANOVA with Dunnett post-test, using the untreated cells as the control (*p<0.05 and **p<0.01 compared to the control; 0 μg/L).](image-url)
Chapter 4: Effects of arsenite on cell viability, senescence and ROS

Figure 4.16 Effect of arsenite on CM-H$_2$DCFDA fluorescence in HUVECs. A range of arsenite concentrations was used to treat HUVECs for 4 hours, with 1 mM hydrogen peroxide (H$_2$O$_2$) as a positive control for 30 minutes. CM-H$_2$DCFDA was used with flow cytometry to determine ROS generation. The values represent means±SEM n=3. The data were analysed using one-way ANOVA with Dunnett post-test, using the untreated cells as the control (***p<0.001 and ****p<0.0001 compared to the control; 0 µg/L).

In an attempt to validate the findings from the experiments using CM-H$_2$DCFDA (Figures 4.15 and 4.16), and to determine the source of ROS generation within the cell, DHE and MitoSOX™ were used with both EA.hy 926 cells and HUVECs treated with arsenite to measure general and mitochondrial specific superoxide production respectively.

Exposing EA.hy 926 cells to an arsenite concentration range of 1-10,000 µg/L showed no significant effect on the mitochondrial generation of superoxide for either 1 or 4 hour treatment using MitoSOX™ (Figures 4.17 and 4.18 respectively). The treatment of EA.hy 926 cells with the positive control, 20 µM doxorubicin (DOX), for both the
experiments showed significant increases in mitochondrial superoxide compared to the untreated control cells (p<0.001) (Figures 4.17 and 4.18). Similarly, exposing HUVECs to the arsenite concentration range of 1-10,000 µg/L for 4 hours had no impact on MitoSOX™ fluorescence (Figure 4.19). The positive control, 1 hour treatment with 100 µM antimycin A, did show a significant increase in HUVEC MitoSOX™ fluorescence compared to the untreated control cells (p<0.001). Thus, arsenite does not appear to enhance mitochondrial ROS generation in either EA.hy 926 cells or HUVECs at concentrations of ≤10,000 µg/L for up to 4 hours exposure, suggesting any increased ROS might be from non-mitochondrial sources.

Figure 4.17 The effect of exposure to arsenite for 1 hour on mitochondrial superoxide generation in EA.hy 926 cells. EA.hy 926 cells were exposed to increasing arsenite concentrations and 20 µM doxorubicin (DOX) for 1 hour, mitochondrial superoxide was estimated using MitoSOX™ Red with flow cytometry. The values represent mean+SEM n=3. The data were analysed using one-way ANOVA with Dunnett post-test, using the untreated cells as the control (***p<0.001 compared to the control; 0 µg/L).
Chapter 4: Effects of arsenite on cell viability, senescence and ROS

Figure 4.18 The effect of exposure to arsenite for 4 hours on mitochondrial superoxide generation in EA.hy 926 cells. EA.hy 926 cells were exposed to increasing arsenite concentrations and 20 μM doxorubicin (DOX) for 1 hour and mitochondrial superoxide was estimated using MitoSOX™ Red with flow cytometry. The values represent mean±SEM n=3. The data were analysed using one-way ANOVA with Dunnett post-test, using the untreated cells as the control (***p<0.001 compared to the control; 0 μg/L).
Chapter 4: Effects of arsenite on cell viability, senescence and ROS

Figure 4.19 The effect of exposure to arsenite for 1 hour on mitochondrial superoxide generation in HUVECs. HUVECs were exposed to increasing arsenite concentrations and 100 μM antimycin A (AA) for 1 hour and mitochondrial superoxide was estimated using MitoSOX™ Red with flow cytometry. The values represent mean±SEM n=3. The data were analysed using one-way ANOVA with Dunnett post-test, using the untreated cells as the control (**p<0.001 compared to the control; 0 μg/L).

Further investigation into ROS generation in endothelial cells was undertaken using DHE as a reporter of cellular superoxide. The generation of cellular superoxide in EA.hy 926 cells was not altered by 1 or 4 hour arsenite exposure at concentrations of 1-10,000 μg/L (Figures 4.20 and 4.21). The exposure of the cells to 20 μM DOX as a positive control, for both 1 hour and 4 hours (Figures 4.20 and 4.21 respectively) gave a significant increase in superoxide compared to the control untreated cells (p<0.05).
Figure 4.20 The effect of exposure to arsenite for 1 hour on superoxide generation in EA.hy 926 cells. EA.hy 926 cells were exposed to increasing arsenite concentrations and 20 μM doxorubicin (DOX) for 1 hour and superoxide was estimated using DHE with flow cytometry. The values represent mean±SEM n=3. The data were analysed using one-way ANOVA with Dunnett post-test, using the untreated cells as the control (*p<0.05 compared to the control; 0 μg/L).
Chapter 4: Effects of arsenite on cell viability, senescence and ROS

Figure 4.21 The effect of exposure to arsenite for 4 hours on superoxide generation in EA.hy 926 cells. EA.hy 926 cells were exposed to increasing arsenite concentrations and 20 µM doxorubicin (DOX) for 1 hour and superoxide was estimated using DHE with flow cytometry. The values represent mean±SEM of n=3. The data were analysed using one-way ANOVA with Dunnett post-test, using the untreated cells as the control (*p<0.05 compared to the control; 0 µg/L).

Exposing HUVECS to arsenite concentrations of 1-10,000 µg/L for 4 hours (Figure 4.22) was consistent with the EA.hy 926 results (Figure 4.21), showing no increase in the levels of superoxide generated compared to the control, untreated cells using DHE. Treating HUVECS with the positive control of 25 µM menadione for 30 minutes showed a significant increase in ROS levels compared to the untreated control cells (p<0.05), confirming that arsenite does not induce detectable superoxide generation in cells after 4 hour exposure.
To assess whether increasing the treatment time of arsenite resulted in an enhanced superoxide level, HUVECs were treated with arsenite for 12 and 24 hours (Figures 4.23 and 4.24 respectively). There were no significant changes in the level of superoxide detected with DHE for either time point at concentrations \(\leq 1,000 \, \mu g/L \). At 10,000 \(\mu g/L \) arsenite treatment however, 12 hours exposure resulted in a significant increase in superoxide levels compared to the untreated control cells \((p<0.0001)\). Therefore, at the highest, and cytotoxic concentration (Figures 4.2, 4.3 and 4.4), arsenite induced oxidative stress in HUVECS after 12 hour treatment. The 24 hour treatment of HUVECs with 10,000 \(\mu g/L \) arsenite also resulted in an increase in the level of superoxide measured, although the increase did not reach statistical significance. An increase in the level of superoxide measured for the positive control \((p<0.0001)\), 1 hour treatment with 100 \(\mu M \) antimycin A, was observed in both the experiments.
Figure 4.22 The effect of exposure to arsenite for 4 hours on superoxide generation in HUVECs. HUVECs were exposed to increasing arsenite concentrations and 25 μM menadione (MEN) for 30 minutes and superoxide was estimated using DHE with flow cytometry. The values represent mean±SEM of n=3. The data were analysed using one-way ANOVA with Dunnett post-test, using the untreated cells as the control (*p<0.05 compared to the control; 0 μg/L).
Chapter 4: Effects of arsenite on cell viability, senescence and ROS

Figure 4.23 The effect of exposure to arsenite for 12 hours on superoxide generation in HUVECs. HUVECs were exposed to increasing arsenite concentrations and 100 μM antimycin A for 1 hour and superoxide was estimated using DHE with flow cytometry. The values represent mean±SEM of n=3. The data were analysed using one-way ANOVA with Dunnett post-test, using the untreated cells as the control (****p<0.0001 compared to the control; 0 μg/L).
Figure 4.2 The effect of exposure to arsenite for 24 hours on superoxide generation in HUVECs. HUVECs were exposed to increasing arsenite concentrations and 100 μM antimycin A for 1 hour, superoxide was estimated using DHE with flow cytometry. The values represent mean+SEM of n=3. The data were analysed using one-way ANOVA with Dunnett post-test, using the untreated cells as the control (**p<0.0001 compared to the control; 0 μg/L).
4.5 Discussion

4.5.1 Establishing sub-cytotoxic arsenite concentrations for subsequent investigations

The focus of this thesis is to assess the mechanisms that lead to the onset of arsenite-mediated human endothelial cell dysfunction. In such investigations it is important to use precise concentration and treatment times, to ensure any effects observed might contribute to mechanistic information and are not effects mediated by cytotoxicity. Therefore, it is essential to first establish the appropriate sub-cytotoxic treatment conditions before carrying out these investigations.

Using the trypan blue exclusion assay, the sub-cytotoxic concentration established for arsenite over a 24 hour treatment time was \(\leq 100 \ \mu g/L \). However, since this method relies on the manual counting of cells, a lack of stringency and reproducibility in experimental repeats can occur, as shown by the increasing error bars with increasing arsenite concentration. Therefore in order to supplement the trypan blue exclusion data, a more quantitative method of measuring cell viability was employed, using the colorimetric CCK8 assay.

Based on the CCK8 assay, for investigations involving 24 hours treatment with arsenite, sub-cytotoxic concentrations were established at below 2,500 \(\mu g/L \), with concentrations \(\geq 5,000 \ \mu g/L \) inducing significant cell death. For an increased experimental treatment time of 5 days, the sub-cytotoxic concentrations of arsenite were identified below 200 \(\mu g/L \), with concentrations \(\geq 200 \ \mu g/L \) inducing significant cell death.
Comparing the results obtained from both these assays, a clear difference is observed for the concentration at which arsenite begins to induce cytotoxicity in HUVECs after 24 hours treatment, 1,000 µg/L with the trypan blue exclusion assay and 5000 µg/L with the CCK8 assay. This discrepancy may be due to the differences in the method of quantifying cell viability for both the assays, with the trypan blue exclusion assay being more subject to error due to the manual counting of cells. Thus, this may have resulted in an overestimation of the extent of arsenite induced cell death.

4.5.2 Stress induced premature senescence in arsenite treated HUVEC

The onset of senescence in endothelial cells results in cellular dysfunction, associated with a lack of NO generation, loss of antithrombogenic properties, and promotion of platelet aggregation (Goligorsky et al., 2009), hence promoting the atherosclerotic process. Epidemiological studies of humans chronically exposed to arsenic have found the prevalence of atherosclerosis (Zaldivar, 1980; Wang et al., 2002). We hypothesise that arsenite may induce senescence and this may therefore be one of the mechanisms by which arsenite initiates atherogenesis. There is however limited research carried out looking into the relationship between arsenic and senescence induction.

The results generated in this chapter show the novel finding of arsenite exposure leading to SIPS in HUVECs. This is also the first study to show arsenite inducing SIPS in any endothelial cell type and indicates the substantial impact arsenite may have on human endothelial cells. Since endothelial senescence is involved in the process of atherosclerosis (Vasile et al., 2001; Minamino et al., 2003; Hayashi et al., 2006),
arsenite-mediated SIPS can be seen as a potential mechanism by which arsenite causes accelerated atherosclerosis.

To gain a better understanding of the impact arsenite has on human endothelial cells, the intracellular changes that occur as a result of arsenite exposure, leading to premature endothelial senescence, need to be investigated. As outlined in section 1.4, many factors have been associated with the onset of premature endothelial senescence including oxidative stress (Furumoto et al., 1998, Kurz et al., 2004), NO (Vasa et al., 2000), inflammatory molecules (Breitschopf et al., 2001) and mitochondrial function (Schleicher et al., 2008). Since arsenic has been associated with the induction of oxidative stress in endothelial cells (see section 1.5.4), it is important to determine whether sub-cytotoxic arsenite concentrations induce oxidative stress in HUVECS, as a possible mechanism for SIPS.

4.5.3 Does arsenite induce ROS after short-term exposure?

Arsenic has been found to increase the generation of ROS in human and animal endothelial cells at both cytotoxic and sub-cytotoxic concentrations (see section 1.5.4). An arsenite concentration of 650 µg/L reportedly increased the generation of ROS in porcine aortic endothelial cells during 20 minutes exposure, measured using the homovanillic acid assay (Barchowsky et al., 1999), and after 1 hour exposure, measured using the superoxide-dependent lucigenin chemiluminescence method (Smith et al., 2001). Furthermore, an increase in ROS generation in HUVECs exposed to ≥650 µg/L arsenic has been detected after 2 hours using DHE with fluorescent microscopy (Sun et al. 2009) and 4 hours exposure using DCFH-DA with flow cytometry (Lii et al., 2011).
Shi et al (2010) also measured ROS using the fluorescent probe DCFH-DA with flow cytometry, however they found arsenic concentrations of 650 and 1300 µg/L to decrease ROS generation in HUVECs after 24 hours treatment, with concentrations of 2600-5200 µg/L causing an increase in ROS.

In this chapter, the effects of arsenite on acute ROS generation were assessed in both EA.hy 926 cells and HUVECs. Comparisons between the two cell types showed consistency in the levels of ROS measured, however inconsistencies were observed amongst the results obtained from the different ROS detection probes used.

The fluorescent probe DCF has been very widely recognised and used for in vitro investigations as a detector of oxidative stress (Cathcart et al., 1983; Kroll et al., 1998; Rothe et al., 1990; Duranteau et al., 1998; Aon et al., 2003). Thus, CM-H\textsubscript{2}DCFDA was used to indicate the effects of arsenite on general cellular ROS generation. After 4 hours exposure to arsenite, both EA.hy 926 cell and HUVECs displayed a concentration-dependent increasing trend in DCF fluorescence, with EA.hy 926 cells showing significant increases with 1000 and 10,000 µg/L arsenite concentrations. HUVECs appeared more sensitive to arsenite with respect to DCF fluorescence, as significant increases were observed from a lower arsenite concentration of 100 µg/L.

The use of DCF based fluorescent probes for ROS detection, i.e. DCFH-DA, has recently been criticised for lack of specificity for measuring ROS. It has been suggested to react with many other species e.g. hydroxyl radicals, hypochlorous acid and reactive species formed from peroxynitrite decomposition (Kalyanaraman et al., 2012).
Chapter 4: Effects of arsenite on cell viability, senescence and ROS

The processes of cell death, whether apoptosis or necrosis, has shown the involvement of increased cellular ROS from mitochondrial or non-mitochondrial sources as a late response to cellular stress (reviewed in Fiers et al., 1999), therefore it is important to distinguish whether the increase in cellular ROS observed after arsenite exposure is a primary response or a later stress response in a cell death pathway. Hence, the induction of both apoptosis and necrosis were measured in the EA.hy 926 cells in response to 1 and 4 hour arsenite treatment. For both the time-points, the cells did not display any significant increases in the induction of either apoptosis or necrosis, which may as a result of these time-points being too early to detect the induction of cell death. However, after 4 hours, there was a trend towards an increase in the level of late apoptosis observed for cells treated with 10,000 µg/L, although this did not reach statistical significance. This is reflective of the cell death measured using the CCK8 assay in HUVECs after 24 hours treatment with 5-10,000 µg/L, suggesting apoptosis as a possible mechanism of arsenite-induced cell death. This is supported by a study carried out by Shi et al (2010), in which increases in the induction of apoptosis in HUVECs after 24 hour treatment with ≥650 µg/L of arsenite were observed. Similarly, apoptosis was also observed in microvascular endothelial cells at 24 hours after treatment with ≥650 µg/L arsenite (Suriyo et al., 2012).

Furthermore, the fluorescent molecule DCF has been suggested to undergo rapid reaction with oxygen to generate superoxide, which can go on to produce further ROS, particularly H$_2$O$_2$. With H$_2$O$_2$ suggested to be involved in the process of DCF formation (Bonini et al., 2006), the increases in fluorescence seen by CM-H$_2$DCFDA in response to arsenite treated cells may be indicating increases in H$_2$O$_2$ that are not a consequence of arsenite exposure directly. Moreover, the release of cytochrome c from mitochondria
During apoptosis can lead to the oxidisation of DCFH to form DCF (Burkitt et al., 2001; Karlsson et al., 2010). This implies that, under certain conditions, CM-H_2DCFDA provides a measure of apoptosis rather than ROS generation.

Further investigations into establishing whether the increased fluorescent signals observed using CM-H_2DCFDA were a measure of arsenite mediated oxidative stress and/or other factors mentioned above would be required. In this project, DHE and MitoSOX™ were also used to detect ROS in both arsenite treated HUVECs and EA.hy 926 cells, as well as to indicate the possible source of potential ROS generation. Surprisingly, treating either cell type for up to 4 hours with arsenite (1-10,000 µg/L) revealed no increases in the generation of general or mitochondrial specific superoxide.

On the whole, the findings support studies suggesting that DCFH-DA probes may not be reliable for the measure of true ROS levels in cells alone and may give rise to false positives (Kalyanaraman et al., 2011). Furthermore, it was found through the exposure of HUVECs and EA.hy 926 cells to sub-cytotoxic concentrations of arsenite that increased oxidative stress does not appear to be the initial effect in arsenite-mediated cytotoxicity. However this is not consistent with previous research. Sun et al (2009) used DHE with fluorescent microscopy to measure the generation of superoxide in HUVECs after 2 hours exposure to ≤650 µg/L arsenite, observing an increase in superoxide generation. Furthermore, sub-cytotoxic arsenite exposure (650 µg/L for 20-60 minutes) of porcine aortic endothelial cells resulted in increased in ROS generation, measured using the homovanillic acid assay and superoxide-dependent lucigenin chemiluminescence method (Barchowsky et al., 1999; Smith et al., 2001).
Chapter 4: Effects of arsenite on cell viability, senescence and ROS

It is possible that the lack of superoxide measured from arsenite treated cells was a result of using DHE and MitoSOX™ to measure superoxide. The sub-cytotoxic treatments of EA.hy 926 cells and HUVECs may have generated low levels of ROS that were not detectable by the technique used. That is, this method is unsuitable for the detection of low levels of superoxide. Moreover, the use of DHE in superoxide detection has been criticised. DHE has been seen to react with superoxide to generate 2-OH-Et rather than ethidium (Zielonk and Kalyanaraman, 2010). Ethidium may also be generated by the hydroxylation of DHE by enzymes such as cytochrome P-450 (Kalyanaraman et al., 2011). Since the chemical structure of MitoSOX™ is similar to that of DHE, the same principle applies (Zielonka et al., 2008; Zielonka et al., 2010). Improved assays rely upon HPLC separation of DHE/MitoSOX™ products and specific detection of superoxide adducts such as 2-OH-Et (Laurindo et al., 2008). Therefore, the use of either DHE or MitoSOX™ with flow cytometry is not recommended to be exclusively relied on for the accurate measure of intracellular superoxide levels.

4.5.4 Summary

Arsenite was observed to display significant cell death in HUVECs at concentrations ≥2500 µg/L for 24 hour treatment and ≥200 µg/L for 5 days treatment. This identified the sub-cytotoxic concentrations of arsenite to use for investigating the mechanisms of arsenite mediated toxicity. At sub-cytotoxic conditions, arsenite was shown to induce premature senescence in HUVECs, a novel finding which sheds light on the potential mechanism by which arsenite may initiate the process of atherogenesis.
This chapter also suggests DCFH-DA based probes to have non-specificity for measuring intracellular ROS levels, indicating the possible measurement of early apoptotic events instead, such as cytochrome c release from mitochondria. Apoptosis may therefore be the mechanism by which arsenite induces cell death in HUVECs. Furthermore, contrary to the literature, sub-cytotoxic concentrations of arsenite did not increase ROS as determined using the Amplex red assay, DHE and MitoSOX™ with flow cytometry using either EA.hy 926 cells or HUVECs.
CHAPTER FIVE

Effects of Arsenite on DNA Damage
Chapter 5: Effects of Arsenite on DNA damage

5.1 Introduction

This chapter is focussed on determining the effects of arsenite on DNA damage in endothelial cells. Since endothelial dysfunction is one of the earliest events to occur in atherogenesis, identifying whether DNA damage is induced in response to arsenite treatment in endothelial cells can suggest a mechanism by which arsenite mediates endothelial dysfunction, instigating the process of atherosclerosis in exposed individuals.

5.1.1 DNA damage in atherosclerosis

It has become apparent in recent years that DNA damage plays an important role in the onset and progression of atherosclerosis (Oumouna-Benachour et al., 2007; Mercer et al., 2010). Despite not being extensively researched, this phenomenon has been supported by a number of in vivo and in vitro investigations (reviewed in Malik and Herbert, 2012). Studying patients with atherosclerosis has revealed increased levels of DNA damage, with patients displaying a high micronucleus index; a biomarker for determining genetic instability, which correlated with the extent of disease severity (Botto et al., 2001). Autopsies of humans with atherosclerosis has also displayed higher levels of bulky DNA adducts compared to autopsies of non-atherosclerotic humans (Binkova et al., 2002). Evidence for DNA damage has also been seen in cells involved in the formation of atherosclerotic plaques. Oxidative DNA damage was detected in human atherosclerotic plaques through the strong immunoreactivity response to the oxidative DNA damage marker 8-oxo-dG within the nucleus of smooth muscle cells, macrophages and endothelial cells (Martinet et al., 2002). Animal models for atherosclerosis have shown evidence of DNA damage, for example in the plaques of
atherosclerotic rabbits which display elevated levels of 8-oxo-dG (Martinet et al., 2001).

Research into atherosclerosis has also revealed the specific involvement of mtDNA damage. The mtDNA 4977 bp deletion, a common mitochondrial mutation seen in humans, is found at significantly higher incidence in patients with coronary artery disease and also observed in 21.7% of patients examined with atherosclerosis (Botto et al., 2005). Furthermore, carrying out investigations into the presence of mtDNA damage in human atherosclerotic specimens has shown a correlation between mtDNA damage and disease severity (Ballinger et al., 2002). Observations in mice have also suggested that mtDNA damage may cause atherosclerosis. Young apolipoprotein E (apoE) knock-out mice reveal the onset of mtDNA damage prior to the development of atherosclerosis pathology, thus implicating mtDNA damage as an early event in the pathogenesis of atherosclerosis rather than a result of the disease state (Ballinger et al., 2002).

5.2 Aims
The aim of this study was to determine whether nDNA damage and changes in the mitochondrial genome i.e. changes in mtDNA content and mtDNA damage, are seen as a result of arsenite exposure to HUVECs. This sheds light upon the possible mechanism by which arsenite brings about endothelial dysfunction to induce atherosclerosis.
5.3 Investigative methodology

All investigations were carried out on HUVECs, between passages 2-6, grown to approximately 80% confluence before being studied with the comet assay or qPCR techniques. The effect of arsenite treatment on HUVECs for 24 hour and 5 days, with the replacement of media containing arsenite each day, was observed.

5.3.1 Comet Assay

The comet assay or single-cell gel electrophoresis is a popular technique, widely used to measure DNA damage due to its simplicity, inexpensiveness, versatility and sensitivity. The alkaline comet assay developed by Singh et al (1988) was employed in this study, which involved the lysis of cells at pH 10 and electrophoresis at pH 13. The high salt content of the lysis buffer enabled the removal of the cellular components, leaving behind the nucleoid embedded in agarose gel. The DNA retained in the gel was able to migrate along the electrophoresis current revealing a tail of broken DNA stands, with the smallest fragments travelling furthest away from the intact DNA cluster, forming the comet-like appearance. The high alkali electrophoresis condition is suggested to aid the pronounced formation of the comet tail; assisting with the unwinding of the two DNA-strands. The comet tail represents both single- and double-stranded DNA damage (Collins, 2004; Collins et al., 2008). The percentage tail length, indicating the percentage of DNA present in the tail, was used as a measure for the extent of DNA damage within the samples.

5.3.2 Quantitative (real-time) polymerase chain reaction

Unlike conventional PCR assays which involve detection of the PCR amplicon at the end of the reaction, the qPCR method allows the detection to occur throughout the
exponential amplification period, where each cycle is undergoing doubling of the product, enabling the entire PCR reaction to be observed. The reaction was carried out using the SYBR green fluorescent dye, which binds to double-stranded DNA to give off a strong fluorescent signal. On the basis of the signal generated, the cycle threshold (Ct) value can be deduced for each reaction. The Ct value represents the amplification cycle at which the fluorescence of the amplicon exceeds that of the background fluorescence (Denman and McSweeney, 2005).

Direct quantification was used in this study where the Ct values generated were directly used against the standard curves of known concentrations for either mtDNA or nDNA (Figures 5.3 and 5.4 respectively), allowing quantification of the Ct values and extrapolation of the DNA concentration. Comparisons were made against the test sample and the reference sample to determine the differences in response to arsenite exposure. The fold-difference between the test and reference samples was calculated by first normalising each sample and then dividing the normalised test sample by the normalised reference sample:

\[
\text{(1) Normalised target (test)} = \frac{\text{Arsenite treated sample}}{\text{Internal control sample}}
\]

\[
\text{Normalised target (reference)} = \frac{\text{Arsenite treated sample}}{\text{Internal control sample}}
\]

\[
\text{(2) Fold difference in target} = \frac{\text{Normalised test target}}{\text{Normalised reference target}}
\]
In the case of mitochondrial content investigations, the test sample represents the mitochondrial genome and the reference represents the nuclear RPLPO gene (Table 3.13). In the mtDNA damage study the test sample represents a 972 bp area within the D-loop region of the mitochondrial genome and the reference sample represents a 55 bp area of the D-loop region (Table 3.14).

![Standard Plot](image)

Figure 5.1 An example of the DNA standard curve used for determining the changes in mtDNA content, using the primers mt14260 and mt14841 which amplify the total mtDNA, in response to arsenite treatment. The standard curve shows the concentration range of mtDNA used to make the standard curve, with DNA concentration range made using a 2-fold dilution series 1000-62.5 pg. The standard curve for determining mtDNA damage uses the same DNA concentration range but using the primers AL4.F and AS1.R to amplify the D-loop region of the mitochondrial genome. Each blue square represents a technical replicate, with n=3 for each DNA concentration.
Chapter 5: Effects of arsenite on DNA damage

Figure 5.2 An example of the DNA standard curve used for determining the concentration of the reference nuclear gene *RPLO*, using the primers 36B4d and 36B4u, when measuring the mtDNA content in response to arsenite treatment. The standard curve shows the concentration range of nDNA used to make the standard curve, with DNA concentration range made using a 2-fold dilution series from 50-3.125 ng. Each blue square represents a technical replicate, with n=3 for each DNA concentration, the blue crosses represent the Ct values for the experimental DNA samples, with unknown DNA quantities that can be extrapolated from the standard curve.
5.4 Results

As shown in Chapter 4, the impact of continued exposure to arsenite in HUVECs results in cells undergoing stress-induced premature senescence (SIPS), a phenotype that could accelerate the onset of age-related diseases such as atherosclerosis in humans (Kunieda et al., 2006). To elucidate the mechanism by which arsenite-induced stress leads to this senescent phenotype, the effect of arsenite on DNA damage was studied. The effect of exposing HUVECs to sub-cytotoxic concentrations of arsenite and investigating the impact on nDNA and mtDNA would reveal whether DNA damaging effects of arsenite might be involved in the mechanism leading to the irreversible cell cycle arrest state seen in HUVECs.

5.4.1 Arsenite-induced DNA damage in HUVECs

The results obtained from employing the comet assay to investigate the effects of exposing HUVECs to sub-cytotoxic concentrations of arsenite for 24 hours are shown in figure 5.4. DNA damage was measured by the percentage of tail DNA, with 50 comets analysed per treated sample and two replicates of each treated sample per experiments. Arsenite induced a concentration-dependent increase in DNA damage, with the highest arsenite concentration; 1,000 µg/L, resulting in a statistically significant 3-fold increase in DNA damage (p<0.01 compared to the control). The damage seen represents the extent of single-stranded and double-stranded DNA damage present in the endothelial cell nucleus. Figure 5.3 shows an example of the comet results seen for each sample, illustrating the increasing tail length with increasing concentration of arsenite exposure.
Chapter 5: Effects of arsenite on DNA damage

Figure 5.3 Fluorescence microphotography of propidium iodide stained HUVECS after the comet assay, analysing the effects of 24 hour arsenite exposure at the following concentrations; 0 (a) 1 (b), 10 (c), 100 (d) and 1,000 (e) µg/L. The images show an increase in comet tail length (highlighted by white arrows) reflecting a concentration-dependent increase in DNA damage as a result of arsenite exposure.

Figure 5.4 Nuclear DNA damage in HUVEC after 24 hour arsenite treatment detected using the comet assay. DNA damage is represented as the mean percentages of DNA present in the tail of the ‘comets’, n=4 +SEM. The data was analysed using one-way ANOVA with Dunnett post-test using the untreated cells as the control. (**p<0.01 compared to the control; 0 µg/L)
5.4.2 Impact of arsenite on mitochondrial DNA

In order to determine the effects of arsenite on mtDNA content and mtDNA damage, HUVECs were exposed to a range of non-cytotoxic concentrations of arsenite for 24 hours (Figures 5.5 and 5.7), and for 5 days (Figures 5.6 and 5.8). The concentrations used for each time-point were based on the cytotoxicity investigations carried out using the CCK8 assay for cell viability, described in chapter 4. Using non-cytotoxic concentrations ensured any effects seen were as a result of arsenite-mediated events and not the result of cell death. The highest two concentrations of arsenite used in figures 5.6 and 5.8; 200 and 400 µg/L, have been shown to be cytotoxic by significantly reducing cell viability (Figure 4.7), allowing a comparison between the effects of non-cytotoxic and cytotoxic concentrations of arsenite on the mitochondrial genome.

The mitochondrial genome is a very important aspect of cellular function and maintenance. The copies of mtDNA not only vary in different cell types, but alter in response to the energy demands of the cells (Niu et al., 2012). Investigating mtDNA content gives an indication of mitochondrial biogenesis, impairment of which has been associated with cardiovascular diseases (Ren et al., 2010; Karamanlidis et al., 2011).

Interestingly, qPCR investigations on HUVECs exposed to a range of non-cytotoxic concentrations of arsenite for 24 hours showed no statistically significant effect on the level of mtDNA content (Figure 5.5). However, one could argue for a trend towards increased mtDNA at higher arsenite concentrations. Consistent with this was the data from 5 days treatment of HUVECs with arsenite for both cytotoxic and non-cytotoxic concentrations, which also showed no significant differences in the fold difference of mtDNA content from the control cells (Figure 5.6). However, a concentration-
dependent increase in the fold-difference of mtDNA content again was seen for cells treated with the highest two arsenite concentrations. This observation is suggestive of an increase in the mtDNA content in response to increasing arsenite concentration.

Applying a sample size calculation with the mean fold change values for control cells against cells treated with 1,000 µg/L arsenite for 24 hours (Figure 5.5) and cells treated with 400 µg/L arsenite for 5 days (Figure 5.6) suggested a required sample size of n=11 and n=6 respectively to achieve significance (alpha error level of 5% and power of 0.80).

![Figure 5.5](chart.png)

Figure 5.5 Mitochondrial DNA content in HUVEC treated with arsenite for 24 hours measured using qPCR. The values represent a mean of n=6 ±SEM. The data were analysed using one-way ANOVA with Dunnett post-test, using the untreated cells as the control (No significant differences between the results were observed at p<0.05 when compared to the control; 0 µg/L).
Figure 5.6 The graph represents the change in mitochondrial DNA content in HUVEC treated with arsenite for 5 days measured using qPCR. The values represent a mean of \(n=3 \) +SEM. The data were analysed using one-way ANOVA with Dunnett post-test, using the untreated cells as the control (No significant differences between the results were observed at \(p<0.05 \) when compared to the control; 0 μg/L).

Due to the highly oxidative environment of the mitochondria, mtDNA is more prone to oxidative DNA damage than nDNA, with mtDNA damage also suggested to be more persistent (Yakes and Van Houten, 1997). Since mtDNA encode many genes that are required for the production of ATP, damage to mtDNA can prove detrimental to the cell through a lack of ATP supply, as well as leading to mitochondrial and thus cellular dysfunction.

Using qPCR to assess mtDNA damage in HUVECs exposed to non-cytotoxic concentrations of arsenite showed no significant changes in the fold difference of DNA damage compared to the control cells. These findings were seen for both 24 hours and 5
days exposure time-points (Figures 5.7 and 5.8 respectively). HUVECs exposed to cytotoxic arsenite concentrations of 200 and 400 µg/L, for 5 days exposure, also show no significant changes in levels of mtDNA damage. For both time points there was a suggestion of a slight decrease in mtDNA damage with increases in concentrations of arsenite, although they did not reach statistical significance (Figures 5.7 and 5.8).

![Figure 5.7 DNA damage levels at the D-loop region of the mitochondrial DNA. HUVECs were treated for 24 hours and mtDNA damage was measured using qPCR. The values represent the mean of n=4 +SEM. The data were analysed using one-way ANOVA with Dunnett post-test, using the untreated cells as the control. (No significant differences between the results were observed at p<0.05 when compared to the control; 0 µg/L)](image_url)
Figure 5.8 DNA damage levels at the D-loop region of the mitochondrial DNA. HUVECs were treated for 5 days and mtDNA damage was measured using qPCR. The values represent a mean of n=3 ±SEM. The data were analysed using one-way ANOVA with Dunnett post-test, using the untreated cells as the control. (No significant differences between the results were observed at p<0.05 when compared to the control; 0 μg/L)
5.5 Discussion

5.5.1 Arsenite induced nuclear DNA damage

The induction of irreparable DNA damage results in the two fates; cell death or cellular senescence. The mechanism behind this decision is yet to be fully understood, however, the extent to which DNA damage is induced does play a role i.e. cells with lower levels of damage are reported to undergo senescence (Ben-Porath and Weinberg, 2005). DNA damage can result in damage to the repair machinery itself, in which case cells cannot undergo DNA damage repair (DDR) and consequently enter premature senescence (Duan et al., 2005). Furthermore, regions of the genome that have been identified as irreparable i.e. telomere tracts, presumably as a result of their function in avoiding the occurrence of chromosomal end fusion, result in the accumulation of DNA damage (Fumagalli et al., 2012). This therefore is associated with cellular ageing as a result of decreased telomere length, consequently the induction of replicative senescence.

Treating HUVECs with sub-cytotoxic concentrations of arsenite revealed a concentration-dependent increase in the level of nDNA damage measured. Due to the exposure of just 24 hours, this effect can be seen as one of the initial impacts of arsenite on the cells. As mentioned above, DNA damage can lead to the onset of stress-induced premature senescence, as well as initiate replicative senescence through damage at the telomere site (Ben-Porath and Weinberg, 2005; Fumagalli et al., 2012). Thus, DNA damage poses as an underlying mechanism through which arsenite induces premature senescence in endothelial cells. Moreover since these low concentrations of arsenite used to treat HUVECs exhibit low levels of DNA damage, the cells are likely to enter senescence rather than apoptosis (Ben-Porath and Weinberg, 2005).
Since these are novel findings in human endothelial cells, gaining an insight into the nature of the DNA damage would involve looking into similar *in vitro* investigations conducted on other endothelial cell types. Liu and Jan (2000) found an increase in the level of oxidative DNA damage in bovine aortic endothelial cells after 4 hours exposure to 650-26,000 µg/L arsenite, measured using the comet assay. This finding, together with the data outlined in previous literature on the increased generation of ROS from arsenic-exposed endothelial cells (Section 2.4.4), argue oxidative stress to be the cause of arsenite-mediated DNA damage observed in HUVECs.

Oxidative DNA damage is suggested to result in the onset of endothelial cellular senescence (Erusalimsky, 2009), with endothelial cellular senescence being associated with atherosclerosis (Burri, 1991). Therefore, the occurrence of oxidative DNA damage forms a potential mechanism for the development of atherosclerosis in response to arsenite. This is supported by the elevated levels of oxidative DNA damage seen in human atherosclerotic plaques (Martinet et al., 2002) and the oxidative DNA damage observed in endothelial cells exposed to the CVD risk factors; high glucose and angiotensin II (Mazza et al., 2003; Farhangkhoee et al., 2005; Quagliaro et al., 2005; Malik and Herbert, 2012).

5.5.2 Impact of arsenite on mitochondrial DNA

As previously mentioned, mitochondria are organelles rich in oxygen, therefore resulting in a constant background level of mitochondrial ROS, rendering mtDNA highly susceptible to oxidative damage. Therefore, any increase in oxidative stress in the mitochondria would result in a rise in the level of mtDNA damage. Investigating
endothelial mitochondrial ROS in response to arsenite showed no significant differences from the background ROS levels, which seems to be supported by results obtained from qPCR measurements of mtDNA content and mtDNA damage also displaying no significant differences from the control cells.

Mitochondria are organelles that play a vital role in the function and survival of cells therefore it is essential that they are able to maintain and preserve their functions under stressful conditions. Mitochondria have been seen to increase their mtDNA copy number as a feedback response under stressful conditions, to compensate for any mitochondrial damage and to maintain their normal function (Lee and Wei, 2000). Analysing the mitochondrial genome in aged, high passage, human cells showed an increase in the mtDNA copy number, suggesting the need for mitochondria to respond to accumulative stress seen in the process of senescence (Shmookler and Goldstein, 1983). This observation has been mirrored in ageing rats, which also displayed increased mtDNA copy number (Gadaleta et al., 1992).

Interestingly, when assessing mtDNA content, a concentration-dependent increase was suggested in response to arsenite concentrations after both 24 hours and 5 days exposure. Furthermore, a decrease in the level of mtDNA damage was also observed in arsenite exposed HUVECs at both time-points of exposure. These trends indicate a similar stress-induced compensatory mechanism occurring in the HUVEC mitochondria as mentioned above. Increased biogenesis of mitochondria in response to possible arsenite-induced mitochondrial damage would explain the increased copy number, and this would also account for the decreasing levels of mtDNA damage as a result of the newly synthesised mtDNA.
The stress-mediated compensatory increase in mitochondrial biogenesis seen in the literature, however, is suggested to be as a result of increased oxidative stress, as seen in aged rats (Gadaleta et al., 1992) and the lung and brain of aged humans (Lee et al., 1998; Barrientos et al., 1997). Furthermore, increased mitochondrial biogenesis has been seen as a stress-response to senescence. Human IMR90 fibroblasts with increased oncogenic ras expression, leading to increased cell growth and division, showed an increase in mtDNA copy number prior to the onset of senescence (Moiseeva et al., 2009). Senescent human lung fibroblasts also displayed an increase in mtDNA copy number, which was similarly noticed in non-senescent cells exposed to H$_2$O$_2$ (Lee et al., 2002). Moreover, increased mtDNA content was found to occur in the cardiovascular system of aged mice, seen through examining the senescent cardiac tissue (Schneider et al., 1995). Together, these studies suggest arsenite to potentially result in an increase in HUVEC mitochondrial biogenesis in response to the cellular stress associated with senescence, supporting the association between arsenite and SIPS seen previously (see section 4.4.2). However, the studies also imply a strong correlation between oxidative stress and increased mitochondrial biogenesis in senescent cells.

5.6 Summary

Investigations carried out in this chapter focus on the impact of arsenite on nDNA and mtDNA in HUVECs. Measuring the impact of sub-cytotoxic arsenite exposure for 24 hours on nDNA revealed the induction of DNA damage in a concentration-dependent manner. Investigations carried out into arsenite-mediated effects on the mitochondrial genome however displayed no statistical significant changes after both 24 hours and 5
days exposure, although interesting trends were observed. Arsenite influenced the mitochondrial genome through inducing increased mtDNA content and decreased levels of mtDNA damage in comparison to that of unexposed control cells. Since these trends were not significantly significant, mitochondria do not appear to be direct targets of arsenite.

The genotoxic effect of arsenite seen on nDNA provides a mechanism for arsenite-induced senescence in endothelial cells. The induction of senescence is further supported through the increased levels of mtDNA content observed, a trend that has also been linked to senescence by other research groups, as a compensatory feedback mechanism of the cell to enable a normal mitochondrial response to stress. Furthermore, literature based on the association between both nDNA and mtDNA alterations and senescence suggest this cellular outcome as a consequence of increased oxidative stress. This implies the possible involvement of oxidative stress in the arsenite-mediated changes seen in the nDNA and mitochondrial genome in HUVECs.
CHAPTER SIX

Effects of Arsenite on Mitochondrial Function
Chapter 6: Effects of Arsenite on Mitochondrial Function

6.1 Introduction

6.1.1 Effects of cellular oxidative stress on mitochondria

With mtDNA being in an environment of constant ROS generation, it is prone to oxidative damage. Thus mtDNA accumulate more oxidative damage than nDNA which persists for longer despite mtDNA damage repair mechanisms being in place (Richter et al., 1988). Increased oxidative mtDNA damage leading to mitochondrial dysfunction is seen with several diseases associated with ageing, i.e. neurological degeneration and CVD (Yakes & Van Houten, 1997). ROS induced mtDNA damage has been measured using qPCR in the SH-SY5Y neuroblastoma cell line showing a concentration-dependent increase of mtDNA damage by Rothfuss et al (2010). The regulatory D-Loop region of mtDNA was found to be the most vulnerable to oxidative damage, displaying greatly increased lesions in response to hydrogen peroxide (Rothfuss et al., 2010).

Interestingly, investigating the effects of defective mitochondria, with depleted mtDNA, in HeLa cells resulted in an increase in mitochondrial biogenesis (Miranda, 1999). The cells had increased intracellular oxidative stress in comparison to control cells with intact mitochondria, which caused enhanced expression of nuclear genes specific for mitochondrial biogenesis (Miranda, 1999). This can be seen as a protective cellular mechanism to restore normal mitochondrial function. Similarly, compensatory mechanisms of increased mitochondrial biogenesis are seen in response to stresses other than oxidative stress i.e. ageing. Samples of lung tissue from aged human individuals showed an increase in mtDNA copy number, seen as a feedback mechanism to compensate for the accumulated mtDNA damage and consequently the decline in respiratory function (Lee et al., 1998). Furthermore, human lung fibroblasts treated with
sub-lethal concentrations of hydrogen peroxide resulted in the induction of a senescence-like phenotype in the cells, with increased mitochondrial biogenesis and mtDNA copy number (Lee et al. 2000).

The accumulation of oxidative stress in mitochondria has also been shown to have an impact on mitochondrial bioenergetics. The effect of ROS on mitochondrial bioenergetics was observed through the exposure of the redox cycler dimethoxy-naphthoquinone (DMNQ) to endothelial cells, which results in the generation of intracellular superoxide and hydrogen peroxide. Increased ROS resulted in a significant decrease in the ‘reserve capacity’ of the mitochondria measured using the extracellular flux analyser (XF analyzer) (Dranka et al., 2010). The reserve capacity is a term used to describe the ability of the mitochondria to increase bioenergetic capacity to respond to increased energy demands from the cell, such as in instances of oxidative stress, in order to provide protection against damage and to maintain normal cellular function (Hill et al., 2009). Therefore, a decline in the reserve capacity in response to increased ROS suggests a mechanism by which ROS renders endothelial cells more susceptible to cellular damage and death. Furthermore, this effect was also observed in response to increased NO. NO acts as a modulator of mitochondrial function, with increased NO causing an inhibition of mitochondrial respiration in endothelial cells (Clementi et al., 1999). The addition of exogenous NO to endothelial cells resulted in a 4-fold decrease in the mitochondrial reserve capacity (Dranka et al., 2010).

6.1.2 Role of mitochondria in CVD

Research carried out on the mechanisms of CVD in mice (Dai et al., 2010) and human studies (Cizkova et al., 2008; Mayr et al., 2012) implicated the involvement of the
mitochondria, particularly in cases of atherosclerosis (Madamanchi and Runge, 2007). The involvement of mitochondrial dysfunction in the pathogenesis of atherosclerosis has been seen through the study of arterial samples from humans with atherosclerosis and in apoE knock-out mice that display early atherosclerosis (Ballinger et al., 2002). The results revealed a correlation between the amount of mtDNA damage present and the extent of atherosclerosis in all the samples, with young apoE knock-out mice displaying mtDNA damage prior to the onset of atherosclerosis, suggesting mtDNA as a contributor to the atherogenic process (Ballinger et al., 2002).

6.1.3 Endothelial cell mitochondria and atherosclerosis

Endothelial cells have been shown to rely mainly on glycolysis for their cellular energy requirements rather than mitochondrial oxidative phosphorylation (Culic et al., 1997). However, this in no way should undermine the importance of mitochondria in the function of the endothelium. Along with the many roles that mitochondria play in the cell, being the main source of cellular ROS generation renders them highly important organelles in any cell type due to both the importance of ROS-based cellular signalling pathways, and the detrimental effects excessive ROS generation can have on the function of the cells (Section 1.5).

The importance of normal functioning mitochondria in endothelial cells can be seen through their contribution to the atherosclerotic process. Mitochondria play a role in endothelial dysfunction, one of the primary events seen in the pathogenesis of atherosclerosis (Anderson et al., 1995), through increased mitochondrial superoxide generation which depletes the NO availability (Cai and Harrison, 2000). Increased mitochondrial ROS has also been associated with the role of oxidised-LDL in
endothelial cell dysfunction during the pathogenesis of atherosclerosis. The exposure of endothelial cells to oxidised-LDLs results in the alteration of the intracellular redox balance through increasing mitochondrial ROS and RNS generation (Zmijewski et al., 2005), contributing to the damaging effects seen in atherogenesis. Furthermore, mitochondria are involved in the apoptosis of endothelial cells. Oxidised LDL disrupt the mitochondrial membrane potential, leading to the release of apoptotic factors that stimulate the process of apoptosis in endothelial cells (Walter et al., 1998), contributing to atherosclerosis.

Increased cellular ROS generation is seen as one of the main contributors to the onset of cellular senescence (Erusalimsky and Kurz, 2006). Endothelial senescence is found to contribute to atherogenesis, with senescent endothelial cells found in human atherosclerotic lesions (Minamino et al., 2003). This implies a potential role of mitochondria in the development of atherosclerosis as they are a major source of cellular ROS. Other than inflicting oxidative damage on telomeres (Henle et al., 1999), increased ROS can bring about senescence in endothelial cells through telomere-independent mechanisms, i.e. through mitochondrial damage. The significance of mitochondrial dysfunction and mitochondrial ROS in inducing endothelial cell senescence is seen through the study of prohibitin-1 (PHB1); a protein found in the inner membrane of mitochondria (Schleicher et al., 2008). These proteins play an important role in maintaining mitochondrial integrity (Steglich et al., 1999), the knockout of which in endothelial cells increased mitochondrial ROS through inhibition of complex I of the ETC, resulting in senescence (Schleicher et al., 2008).
6.1.4 Arsenic induced effects on mitochondria

As discussed in section 1.6.2, arsenite exposure has proven to have damaging effects on the mitochondria, through the induction of mtDNA mutation and reduction of mtDNA copy number observed in arsenite exposed A549 cells (Partridge et al., 2007). Other forms of arsenic have also proven to be detrimental to mitochondria. Arsenic trioxide exposure to myoblasts resulted in an increase in cellular ROS along with the release of cyt c from mitochondria and a decrease in the mitochondrial membrane potential, leading to apoptosis (Yen et al., 2012). Similar effects were also seen from the exposure of rat liver mitochondria to methylated forms of arsenic, MMA and DMA, which also induced apoptosis through a release of cyt c from the voltage-dependent anion channels of mitochondria and altering the mitochondrial membrane potential (Naranmandura et al., 2012). Together, these findings reveal an impact of arsenic on the mitochondria in many cell types, influencing the mitochondrial genome and inducing the mitochondrial intrinsic apoptotic pathway.

6.2 Aims

Mitochondria are very important cellular organelles, involved in vital cellular processes i.e. cell cycle, growth, signalling and apoptosis, the disruption of which has detrimental effects on the cell. This chapter will investigate the *in vitro* effects of arsenite on the mitochondrial function of endothelial cells and whether mitochondria play a significant role in arsenite-mediated toxicity. The investigations will include study of arsenite-mediated effects on mitochondrial function by investigating mitochondrial bioenergetics and ATP generation.
6.3 Investigative Methodology

6.3.1 Mitochondrial function

Mitochondrial function was investigated in early passage HUVECs, (passages 2-6) and EA.hy 926 cells, using the XF analyzer; the current gold standard platform for measuring cellular metabolism. Respiration was assessed through measurements of the cellular oxygen consumption (OC) in response to the sequential addition of known mitochondrial inhibitors. To investigate the effects of arsenite on mitochondrial respiration, oxygen consumption rate (OCR) was compared between arsenite exposed and non-exposed cells during mitochondrial inhibition. The compounds used have either stimulatory or inhibitory effects on the mitochondrial OCR. Based on these responses different parameters of mitochondrial respiration and function were deduced (see figure 6.1).

To accurately measure cellular bioenergetics using the XF analyzer, an important initial step was to ensure cells were grown to a confluent monolayer prior to OC measurements. This ruled out any variation in the results being a result of differences in the number of cells present per well. Therefore, cells were observed via microscopy to ensure confluence was reached before progressing with the experiment.

6.3.2 ATP generation

Despite mitochondria being the main source of ATP in cells, highly proliferative cells such as cancer cell lines rely on glycolysis for cellular energy conservation. This is known as the ‘Warburg effect’ (Warburg, 1956). The dependence of cells on glycolysis often results in the concealment of mitochondrial toxicity exhibited by a xenobiotic (Marroquin et al., 2007). This can be overcome by replacing the glucose in cell culture...
media with galactose, forcing the cell to use mitochondrial oxidative phosphorylation for ATP production since unlike the conversion of glucose to pyruvate, the conversion of galactose to pyruvate does not involve ATP generation (Rossignol et al., 2004).

Most studies looking into the toxic effects of xenobiotics in vitro use cell lines over primary cells due to the limitations that are linked with primary cell culturing, i.e. more expensive, difficulties of cell isolation and limited cell survival in culture conditions. The process of adapting cells to grow under galactose conditions in vitro, requires cells to undergo a number of passages in galactose media, therefore HUVECs were not suitable for this purpose. Contrary to primary cells such as HUVECs, cell lines have an extended replicative life span whilst maintaining the cellular characteristics of their particular cell type, therefore initially EA.hy 926 cells were used in this experiment. However, EA.hy 926 cells did not show any signs of adaptation to the galactose media; in fact galactose resulted in cell death after just a few passages. After several unsuccessful attempts to adapt EA.hy 926 cells to galactose culture conditions, human hepatoma cell line; HepG2, was used following the protocol of Swiss and Will (2011). HepG2 cells are the current standard cell line to use in in vitro toxicology investigations as they are the most adaptable (Mersch-Sundermann et al., 2004).

6.3.2.1 HepG2 cell conditioning in Galactose containing media

Conditioning cells to use galactose instead of glucose forces the cell to rely on the mitochondria for its source of energy. This enables the identification of whether a compound affects a cell through specific mitochondrial targeting.
Cells were cultured in either high glucose or galactose containing media in T75 cm³ flasks. In order to assess their conditioning, at every 2 passages cells were seeded into 96 well plates at 5,000 cells/ well and left over night to adhere. They were then treated with an antimycin A gradient of 300-2.3 nM in doubling dilutions in replicates of 3 wells/antimycin A concentration for 24 hours. ATP levels were then determined using the luciferase kit according to the manufacturer’s instructions (see section 3.6). Conditioned galactose grown cells had significantly diminished ATP readings compared cells grown in high glucose containing media in response to antimycin A.

6.3.2.2 Measuring ATP levels in HepG2 cells
Conditioned HepG2 cells were seeded in two 96 well plates at 5,000 cells/ well, one with galactose grown cells and the other with high glucose grown cells, they were then incubated over night at 37°C and 5% CO₂. Each plate was treated with a range of arsenite concentrations and the antimycin A concentration gradient for 24 hours in a 37°C and 5% CO₂ incubator, the ATP determination kit was then applied and the ATP levels measured (see section 3.6).
6.4 Results

6.4.1 Assessing mitochondrial function

The mitochondrial respiratory chain was assessed through the sequential addition of the compounds; oligomycin, FCCP and antimycin A (Figure 6.1). Prior to the addition of the compound, the basal OCR was measured at 3 time points over a period of 20 minutes. The addition of oligomycin, a compound that targets the last complex of the respiratory chain; ATP synthase, reduced the OCR revealing the proportion of basal OC that is used to generate ATP. This was followed by the addition of FCCP, an ‘uncoupler’ or ionophore which disrupts the proton gradient across the inner mitochondrial membrane by increasing the permeability of the inner mitochondrial membrane to protons and electrons. Thus, FCCP stimulates the OCR of cells to their maximum potential. Lastly, the addition of antimycin A; an inhibitor of complex III in the respiratory chain, drastically reduces the OCR in mitochondria, revealing the remaining proportion of oxygen consumption that is used in the cell for non-mitochondrial work. Consequently, the mean value generated for antimycin A treatment needs to be subtracted from the mean values of all the basal, Oligomycin and FCCP measurements, to deduce the mitochondrial-specific parameters. One further parameter that is deducible from this response curve is the reserve capacity of the mitochondria. The reserve capacity is determined by calculating the difference between the maximum OCR and the basal OCR (Dranka et al., 2010). All the calculated parameters are schematically represented in figure 6.1.
Both HUVECs and EA.hy 92 cells were used to investigate the effect of arsenite on endothelial cell mitochondrial function. Both cell types were acutely exposed to sub-cytotoxic concentrations of arsenite for 1 hour and 4 hours prior to the measurement of OCR. With EA.hy 926 cells being immortalised HUVECs, similar outcomes for the mitochondrial function were expected in response to arsenite treatment with that of HUVECs, surprisingly however the cell types gave different outcomes.

Figure 6.2 and 6.6 show the effects of arsenite on the mitochondrial reserve capacity of endothelial cells after 1 and 4 hour exposure respectively. For HUVECs, 1 hour arsenite exposure induced a concentration-dependent decrease in the reserve capacity, with a
significant decrease (p<0.01) seen in cells exposed to the highest experimental arsenite concentration; 1,000 µg/L. The mitochondrial reserve capacity approached 50% of the control value at this concentration. However, this trend was not observed in EA.hy 926 cells, which showed no significant differences to the untreated control cells due to wide variability in response (Figure 6.2). Exposing HUVECs to arsenite for 4 hours showed an initial significant increase (p<0.05) at 10 µg/L arsenite against the control, followed by a concentration-dependent decrease, with the reserve capacity at 1,000 µg/L decreasing to approximately 75% of the control value. Again, no significant changes were seen in EA.hy 926 cells after 4 hour arsenite exposure (Figure 6.6).

Arsenite did not have a significant impact on the maximum OCR in either cell type after 1 hour exposure (Figure 6.3). The exposure of cells to arsenite for 4 hours resulted in a significant increase in the maximum OCR at 10 µg/L in HUVECs (p<0.05) followed by a concentration-dependent decrease with the subsequent arsenite concentrations, restoring the OCR back to basal level at 1,000 µg/L (Figure 6.7). EA.hy 926 showed no change in the maximum OCR from the basal level in control cells in response to 4 hour arsenite exposure (Figure 6.7).

Arsenite has no apparent significant effect on the ATP-linked OCR in HUVECs or EA.hy 926 cells compared to the control cells after 1 hour or 4 hours exposure. A significant decrease in the levels of OCR at 100 and 1,000 µg/L arsenite concentrations compared to the increased OCR at 10 µg/L was observed (p<0.05) (Figure 6.4). In response to the 1 hour arsenite exposure, OCR was not affected in EA.hy 926 cells (Figure 6.4). Both HUVECs and EA.hy 926 cells displayed a non-significant decrease in levels of ATP-linked OCRs in response to 4 hour arsenite treatment (Figure 6.8).
There was also no significant effect of arsenite seen on the non-mitochondrial OCR at either 1 or 4 hour treatment for HUVECs or EA.hy 926 cells (Figures 6.5 and 6.9). However, they both displayed a clear trend for increases in the OCR after 1 hour arsenite exposure (Figure 6.5). In the case of HUVECs, this affect appeared to be concentration-dependent and a 3-fold increase in non-mitochondrial OC was observed for 1,000 µg/L arsenite (Figure 6.5a).

Figure 6.2 Percentage change in mitochondrial reserve capacity with increasing arsenite concentrations in (a) HUVEC and (b) EA.hy 926 cells treated for 1 hour. The values represent means and (a) n=3 +SEM and (b) n=6 +SEM. The data were analysed using one-way ANOVA with Tukey post-test (**p<0.01 compared to the control cells).
Figure 6.3 Percentage change in the maximum oxygen consumption of mitochondria with increasing concentrations of arsenite in (a) HUVEC and (b) EA.hy 926 cells treated for 1 hour. The values represent means and (a) n=3 +SEM and (b) n=6 +SEM. The data were analysed using one-way ANOVA with Tukey post-test, no significance was observed.

Figure 6.4 Percentage change in mitochondrial ATP-linked oxygen consumption in HUVEC treated for 1 hour with arsenite. The values represent (a) n=3 +SEM and (b) n=4 +SEM. The data were analysed using one-way ANOVA with Tukey post-test.
Chapter 6: Effects of arsenite on Mitochondrial Function

Figure 6.5 The percentage change in non-mitochondrial oxygen consumption in (a) HUVEC and (b) EA.hy 926 cells treated with arsenite for 1 hour. The values represent means and (a) n=3 ±SEM and (b) n=6 ±SEM. The data were analysed using one-way ANOVA with Tukey post-test, no significance was observed.

Figure 6.6 Percentage change in mitochondrial reserve capacity with increasing arsenite concentrations in (a) HUVEC and (b) EA.hy 926 cells treated for 4 hours. The values represent the means and (a) n=3 ±SEM and (b) n=4 ±SEM, the data were analysed using one-way ANOVA with the Tukey post-test (*p<0.05 compared to the untreated control cells).
Figure 6.7 Percentage change in the maximum oxygen consumption of mitochondria with increasing concentrations of arsenite in (a) HUVEC and (b) EA.hy 926 cells treated for 4 hours. The values represent means and (a) n=3 +SEM and (b) n=4 +SEM. The data were analysed using one-way ANOVA with the Tukey post-test (*p<0.05 compared to the control; 0 µg/L).

Figure 6.8 Percentage change in mitochondrial ATP-linked oxygen consumption in HUVEC treated for 4 hours with arsenite. The values represent mean and (a) n=3 +SEM and (b) n=4 +SEM. The data were analysed using one-way ANOVA with the Tukey post-test, no significance was observed.
Chapter 6: Effects of arsenite on Mitochondrial Function

Figure 6.9 The percentage change in non-mitochondrial oxygen consumption in (a) HUVEC and (b) EA.hy 926 cells treated with arsenite for 4 hours. The values represent the means and (a) n=3 +SEM and (b) n=4 +SEM. The data were analysed using one-way ANOVA with the Tukey post-test, no significance was observed.

6.4.2 Determining mitochondrial toxicity

In order to assess whether arsenite directly targets mitochondria to elicit its toxicological effects in cells, HepG2 cells were forced to rely on their mitochondria as a source of energy by being cultured in glucose-free and galactose-containing media. To ensure the cells had fully adapted to using oxidative phosphorylation as their energy source rather than glycolysis, the cells were treated with the mitochondrial inhibitor antimycin A, at a 2-fold concentration range from 2.3 to 300 nM for 24 hours (Figure 6.10a and b) and ATP levels were compared between cells grown in galactose-containing media and glucose-containing media.

Antimycin A was toxic to HepG2 cells grown in either monosaccharide condition. In glucose-containing media, HepG2 cells responded to antimycin A treatment with a concentration-dependent loss of ATP for concentrations between 1 and 40 nM. Beyond 40 nM there were no apparent increases in ATP depletion and the maximum loss of
ATP was ~50% of control. HepG2 cells grown in galactose-containing media also showed an antimycin A concentration-dependent inhibition of ATP levels (Figure 10a) but the shape of the concentration-response curve was quite different to that of HepG2 cells grown in glucose-containing media, although this did not reach significance (Figure 6.10). At low antimycin A conditions, 2.3 and 4.6 nM, cells seemed slightly less sensitive to the toxic effects of antimycin A than the HepG2 cells grown in glucose-containing media (Figure 10a and b). However, the subsequent increased antimycin A concentrations revealed a remarkable inhibitory effect on the HepG2 cells, with a rapid loss of ATP in response, such that at 37 nM only ~5% control ATP remained.

A significant difference between the response to higher antimycin A concentrations; 37.5-300 nM, was seen between the two experimental cell conditions (p<0.001), with these concentrations having apparent lethal effects on the HepG2 cells grown in galactose-containing media. Thus, the cells successfully adapted to relying on their mitochondria for ATP production.
Figure 6.10 The response of HepG2 cells to a 24 hour treatment with a doubling concentration range of antimycin A; 2.3-300 nM. Cells were grown in media containing glucose (red) or galactose (green). The values represent means (n=5±SEM) and data is plotted in two ways to allow easy access to antimycin A concentrations. Data were analysed using 2-way ANOVA with the Bonferroni post-test which enabled a direct comparison between the effects of each antimycin A concentration on HepG2 cells grown in glucose-media and HepG2 cells grown in galactose-containing media (**p<0.01).
HepG2 cells of both experimental conditions were exposed to concentration ranges of arsenite. Figure 6.11a shows the response of the cells to an arsenite concentration gradient with 10-fold increases from 1-100,000 µg/L. No significant differences between the responses of the HepG2 cell types were seen over the whole range of concentrations. Interestingly an increase in ATP generation at 10,000 µg/L arsenite was observed in the response of both HepG2 cells in either sugar (Figure 6.11a). At 100,000 µg/L cells appeared to die in both glucose and galactose media (Figure 6.11a). Looking closer at this arsenite concentration range in a subsequent experiment between the ATP-generation peak at 10,000 µg/L and cell lethality at 100,000 µg/L was used to reveal whether this was a real effect.

Once again the responses of both cell types showed no significant differences (Figure 6.11b). Interestingly, an increase in ATP generation, ~2-fold compared to control, was observed at 5000 µg/L. The HepG2 cells responded to 10,000 µg/L arsenite with a further increase in ATP generation, ~3-fold increase compared to the control, yet neither of the increases were significantly different to the control. The lack of significance can be explained by the variability present in the data represented by the large error bars. The response seen of the HepG2 cells to increasing arsenite concentrations between 20,000 and 80,000 µg/L appeared to be a combination of cells producing increased levels of ATP compared to the control, i.e. 5000-10,000 µg/L, and a concentration-dependent increase in cytotoxicity and thus loss of cells, i.e. from 10,000-100,000 µg/L, (Figure 6.11b).
Figure 6.11 The response of HepG2 cells to a 24 hour treatment with arsenite in media containing glucose (red) or galactose (green). The values represent means (n=4±SEM). Data were analysed using 2-way ANOVA with the Bonferroni post-test which enabled a direct comparison between the effects of each arsenite concentration on HepG2 cells grown in glucose-media and HepG2 cells grown in galactose-containing media. No significant differences in the response of the cells to arsenite in the different conditions were seen.
6.5 Discussion

The aim of this chapter was to determine whether mitochondria were primary targets for arsenite-mediated toxicity. Previous work investigating the \textit{in vitro} effects of arsenic on a number of cell types has shown arsenic-induced mitochondrial disruptions, leading on to cellular damage and apoptosis (Liu \textit{et al.}, 2005; Partridge \textit{et al.}, 2007; Naranmandura \textit{et al.}, 2012; Yen \textit{et al.}, 2012). Thus, mitochondria have been implicated as targets of arsenic. Furthermore, the effects of arsenite on mitochondrial function were assessed, looking into the impact of arsenite on the respiratory capacity of mitochondria and the ability of mitochondria to fulfil its role in providing cellular protection.

6.5.1 Are mitochondria direct targets of arsenite?

The toxicity of compounds that target the mitochondria are often masked when carrying out \textit{in vitro} investigations due to the high glucose concentration in culture media; often 25 mM. This concentration of glucose is 5-fold higher than physiological concentrations and allows cells to use glycolysis to make sufficient ATP for cellular functions, including proliferation. Such a phenomenon has been seen in cancer cells, where the cells rely on glycolysis for cellular energy over oxidative phosphorylation, described as the Warburg effect (Warburg, 1956). This effect can be overcome by adapting cells to galactose-containing media instead, forcing them to rely on their mitochondria for ATP. However, not all cells are able to adapt well to utilising galactose instead of glucose and this approach may not give reproducible results. In this thesis, EA.hy 926 cells were investigated using this technique but found not to survive, the reason for which remains unclear. Therefore, HepG2 cells were used (Swiss and Will, 2011). HepG2 cells are human a hepatocellular carcinoma cell line that is used in toxicity studies due it being highly differentiated and retaining many of the genotypic features of normal liver cells.
(Sassa et al., 1987; Gerets et al., 2012). These cells have been suggested as a useful means of assessing mitochondrial toxins *in vitro* (Swiss and Will, 2011).

The Warburg effect was clearly illustrated by comparing the ATP generation between HepG2 cells cultured in galactose media and normal glucose media in response to increasing concentrations of the mitochondrial toxin antimycin A. Antimycin A acts by disrupting the ETC, specifically binding to complex III, consequently preventing the transport of electrons between cytochrome b and c (Maguire et al., 1992). This causes a collapse of the protein gradient across the inner membrane and breakdown of the mitochondrial membrane potential (Campo et al., 1992). Abolishing the mitochondrial membrane potential results in the release of apoptotic factors such as cytochrome C, inducing apoptosis (Wolvetang et al., 1994). The significantly lower levels of ATP detected in galactose-adapted HepG2 cells reveal the extent to which mitochondrial toxicity is masked by cells grown in high glucose culture conditions.

Galactose-adapted HepG2 cells showed no difference in their response to arsenite when compared to HepG2 cells grown in high-glucose conditions. Thus, it is apparent that arsenite does not directly target the mitochondria, particularly not their respiratory capacity. Looking at these findings it can be concluded that arsenite-mediated mechanisms of toxicity do not rely on the mitochondria, rather any mitochondrial disturbances observed can be regarded as secondary effects of the initial arsenite-mediated cellular damage.

Despite there being limited literature available on the impact of arsenic on mitochondrial respiration, the results of this thesis are inconsistent with previous work.
Dwivedi et al (2011) looked into the chronic effects of arsenite on mitochondrial respiration in rats treated for 4 weeks. Examining their neuronal cells revealed diminished levels of ATP generation as a result of arsenite exposure when compared to non-exposed rat neuronal cells. However, examining brain slices of the rats also revealed a 5-fold increase in the levels of cyt c, providing strong support for apoptosis. Therefore, it is unclear whether the decreased levels of ATP are due to arsenite directly targeting the mitochondrial or as a result of cellular damage leading to apoptosis. Investigating the effects of arsenic trioxide does however suggest the mitochondria as direct targets. The exposure of arsenic trioxide has been shown to decrease ATP generation in the mitochondria by inhibiting complex IV of the ETC in T47D breast cancer cells (Sun et al., 2011). The difference between the effects on ATP generation in response to arsenite as observed in this thesis and that of arsenic trioxide (Sun et al., 2011) can be explained by the different cell types used in both these investigations. Furthermore, Hornhardt et al (2006) have shown these forms of arsenic to have very different cytotoxic outcomes on exposure, and are therefore regarded as mediating their effects by targeting distinct cellular pathways.

6.5.2 Impact of arsenite on the mitochondrial function

6.5.2.1 Stimulatory effects of arsenite

Assessing the effects of arsenite on the mitochondrial function of endothelial cells using the XF analyzer revealed the stimulatory effects arsenite has on mitochondrial function at low concentrations. After 4 hours exposure to 10 µg/L arsenite, HUVECs displayed a significant increase in the maximum OCR, followed by a reduction with increasing arsenite concentrations; 100 and 1,000 µg/L. This pattern was also seen in the effects of 4 hour arsenite exposure on the mitochondrial reserve capacity in HUVECs, with a
significant increase in reserve capacity at 10 µg/L followed by a concentration-dependent reduction with higher arsenite concentrations. This supports the notion of arsenite having a stimulatory effect on cellular processes at low concentrations, as seen in the increase in cell viability noted at low arsenite concentrations (see chapter 4). Thus arsenite significantly enhances the function of endothelial mitochondria at low concentrations; 10 µg/L, albeit after short-term exposure in vitro.

The significant increase in the reserve capacity can be regarded as a protective mechanism of the mitochondria to the initial, potentially harmful effects arsenite has on the cells. Endothelial mitochondrial reserve capacity has been hypothesised to play an important role in providing protection against oxidative stress (Dranka et al., 2010), suggesting an acute increase in ROS to be the possible immediate effects of arsenite exposure in HUVECs, resulting in a compensatory stress response which may include increasing antioxidant protection. Such a protective response to stress, to prevent stress-induced damage, is known as ‘stress-response hormesis’ (Gems and Partridge, 2008). A similar ‘stress-response hormesis’ effect involving the mitochondria has been seen previously when investigating the effects of statins, a medication prescribed for cardiovascular disease, on mitochondrial biogenesis (Bouitbir et al., 2012). Statins are found to provide protection against cardiovascular-morbidity in patients, however also causing skeletal muscle injury (Echaniz-Laguna et al., 2010; Bouitbir et al., 2012). Investigating the effects of statins on both humans and rats found the statins to lead to transcriptional activation of mitochondrial biogenesis genes in the myocardium along with antioxidants through ROS signalling mechanisms, with the myocardium showing low ROS levels. Whereas the skeletal muscle showed low antioxidant activity and deactivation of mitochondrial biogenesis gene expression, with high levels of oxidative stress.
stress (Bouitbir et al., 2012). Thus, this study carried out by Bouitbir et al (2012) demonstrates the ability of the cardiovascular system to respond to ROS by stimulating a protective stress response, providing support for the possible involvement of ‘stress-mediated hormesis’ as a protective response by endothelial cells to arsenite exposure.

6.5.2.2 Inhibitory effects of arsenite

Even the acute exposure of 1 hour to non-cytotoxic concentrations of 1,000 µg/L arsenite resulted in a significant decline in the mitochondrial reserve capacity in HUVECs. A similar decline in reserve capacity was seen by Dranka et al (2010) when investigating the effects of low levels NO and ROS-generating redox-cycling agent 2,3-dimethoxy-1,4-napthoquinone (DMNQ) exposure on endothelial cells. Both treatments resulted in a decline in the reserve capacity of mitochondria, rendering the cells more vulnerable to oxidative damage. Therefore the reserve capacity is hypothesised to protect cells against oxidative stress (Dranka et al., 2010). Furthermore, despite the significant increase in the reserve capacity seen after 4 hours exposure to 10 µg/L arsenite, this increase was significantly reduced when compared to the reserve capacity measured at 1,000 µg/L arsenite exposure in HUVECs. Thus, higher levels of arsenite appear to overcome the stimulation of the mitochondrial reserve capacity at lower concentrations.

By inducing a decline in the reserve capacity, HUVECs are less able to meet the increased energy demands on the cells due to arsenite-mediated stress. Reducing this ability of endothelial mitochondria to provide protection against cellular damage could lead to the onset of endothelial dysfunction. Furthermore, with the important role of mitochondria in cellular signalling and processes i.e. cell cycle control, cellular
development, metabolism and apoptosis (see section 1.6.1), defects in the mitochondria could prove detrimental to the cell. Collectively, the decline in the reserve capacity either through inducing mitochondrial dysfunction or bringing about damage to the cell, i.e. oxidative damage, would lead to endothelial dysfunction, revealing a potential mechanism by which arsenite initiates the pathogenesis of atherosclerosis.

6.5.3 Effects of arsenite on non-mitochondrial oxygen consumption

The XF analyzer enables the analysis of oxygen consumption by the cell that is used for non-mitochondrial processes. HUVECs showed a concentration-dependent increasing trend in the non-mitochondrial OCR after 1 hour arsenite exposure compared to the non-exposed cells, with EA.hy 926 cells also displaying a trend towards increased OCR in cells treated with arsenite at all concentrations. Together with the significant increase in the reserve capacity, which potentially implicates an acute increase in cellular oxidative stress (Dranka et al., 2010), the increase in non-mitochondrial OCR may be due to an acute increase in ROS production from non-mitochondrial sources.

Research carried out by several groups has shown arsenic to increase ROS generation via the activation of NADPH oxidases in many cell types (Lynn et al., 2000; Lemarie et al., 2008; Wang et al., 2008), including endothelial cells (Barchowsky et al., 1999; Edwards et al., 2013). NADPH oxidase are suggested to be the major source for ROS generation in endothelial cells (Frey et al., 2009), which are activated by a number of stimuli i.e. cytokines, growth factors, hypoxia and stress (Griendling et al., 2000). Phagocyte NADPH oxidases comprise of the membrane bound cytochrome b558 complex that consists of catalytic subunit gp91phox (Nox2) and a regulatory subunit p22phox, as well as cytosolic subunits; p40phox, p47phox, p67phox and the GTPase Rac
In endothelial cells, the gp91phox human homologs Nox\textsubscript{1}, Nox\textsubscript{2}, Nox\textsubscript{4} and Nox\textsubscript{5} have been identified with Nox\textsubscript{2} being critical for endothelial NADPH oxidase (Jones \textit{et al.}, 1996; BelAiba \textit{et al.}, 2007; Frey \textit{et al.}, 2009). Smith \textit{et al} (2000) have shown porcine endothelial cell to express the two NADPH oxidase regulatory proteins p67phox and Rac1, however contrary to phagocytes, p67phox was expressed in the membrane of the endothelial cells as opposed to the cytosol.

In macrophages, the activation of NADPH oxidase by arsenic was suggested to occur through the stimulation of the p38-mitogen activated protein kinase (MAPK) pathway (Lemarie \textit{et al.}, 2008), a pathway stimulated by environmental stress and proinflammatory factors (Obata \textit{et al.}, 2000). Lemarie \textit{et al} (2008) found arsenic-induced stimulation of this pathway to lead to the phosphorylation and membrane bound translocation of the NADPH oxidase subunit p47phox, and increased translocation of Rac1 and p67phox, resulting in an increase in ROS. This therefore forms a possible mechanism by which arsenic may bring about NADPH oxidase activation in endothelial cells, resulting in the increase in the usage of oxygen to generate ROS, which would explain the increase in non-mitochondrial oxygen consumption observed.

When carrying out these investigations to assess the effects of arsenite on mitochondrial function, there were many discrepancies between the mitochondrial responses to compounds between HUVECs and EA.hy 926 cells. It has therefore become apparent that the EA.hy 926 cells derived from primary HUVECS do not retain all their characteristics. This raises the question of whether using EA.hy 926 cells is an appropriate model to employ \textit{in vitro}, particularly when assessing endothelial
mitochondrial function. Moreover, the importance of using primary cells in *in vitro* investigations is thus highlighted.

6.5.3 Summary

Studying the effects of arsenite on mitochondria strongly suggests that arsenite is not a direct mitochondrial toxicant, indicating that mitochondria are not the primary cellular targets. The exposure of arsenite to HUVECs for 1 hour suggests a potential increase in the generation of non-mitochondrial ROS, which could lead to subsequent damaging effects in the cell, i.e. including the decrease in the mitochondrial reserve capacity observed after 1 hour arsenite exposure. This suggests the occurrence of mitochondrial dysfunction as an early, rather than primary, cellular response in arsenite-mediated cytotoxicity.

Furthermore, the significant boost in the HUVEC mitochondrial reserve capacity and maximum OC capacity in response to 4 hour exposure to a low-arsenite concentration implies a protective/adaptive response to the early damaging effects of arsenite seen at 1 hour exposure that is a ’stress-mediated hormesis’ effect. Conclusively, despite mitochondria not being primary targets, they are still affected by arsenite, and possibly undergo dysfunction. This could lead to the onset of endothelial dysfunction providing a potential mechanism for the arsenite-induced initiation of atherosclerosis.
CHAPTER SEVEN

Transcriptomics
Chapter 7: Transcriptomics

7.1 Introduction

Preceding chapters in this thesis described the *in vitro* effect of inorganic arsenite on HUVEC ageing, production of ROS, DNA damage and mitochondrial function. The original hypothesis proposed arsenite to be a mitochondrial toxin, which caused an increase in the generation of mitochondrial ROS as an initial response, leading to further toxic effects. However, investigations carried out in chapters 5 and 6 have suggested that arsenite has limited direct effects on mitochondria. Arsenite did not induce mtDNA damage. With mtDNA being highly susceptible to damage in response to stress-induced mitochondrial ROS, if arsenite directly targeted the mitochondria an increase in mtDNA damage would have been likely. Further support for this was obtained from assessing mitochondrial function. Although a decrease in the mitochondrial reserve capacity was observed due to arsenite, no direct disruptions to the ETC or oxidative phosphorylation process and no alterations in ATP generation were measured. Therefore, as there is no strong evidence to suggest mitochondria being the primary target of arsenite, the original hypothesis can be rejected. In order to generate an alternative hypothesis on the mechanism of action for arsenite on endothelial cell function and ageing, and to build upon the positive observations made, this chapter focuses on the genome-wide effects of arsenite exposure.

Microarray-based transcription profiling was employed to analyse the mRNA changes in HUVECs *in vitro* in response to arsenite exposure. Microarray is a powerful tool used to examine the unique pattern of gene expression changes in cells and tissues. In the context of toxicology it has been used to generate a molecular signature for specific toxins (Gatzidou *et al.*, 2007). This is useful when conducting mechanistic studies as
well as identifying appropriate biomarkers for toxicity investigations (Waters and Yauk, 2007). The use of microarray for *in vitro* studies is useful for such investigations, giving an indication of the cellular targets of a toxin without having to conduct lengthy and expensive *in vivo* studies (van Hummelen and Sasaki, 2010; Zimmer *et al.*, 2008).

Looking at the changes in mRNA through microarray allows the comparison of transcriptional profiles derived from treated against control samples, enabling the identification of the early toxicological responses, subtle gene expression changes and potential molecular pathways affected. This is an important aspect of *in vitro* toxicogenomics as it reveals information about the immediate toxicant-mediated response to the cell. In most cases, the initial response identified is that of expression changes in genes involved in cellular protection. The effects in gene expression seen later with continued exposure or with a higher toxicant concentration may be as a result of the irreversible damage to the cells rather than a direct toxicant response (Zhou *et al.*, 2007; Zhou *et al.*, 2009).

7.2 Aims

The aim of this study was to observe the transcriptional profiles of HUVECs that were exposed to inorganic arsenite, in comparison to untreated control HUVECs. This was done to suggest the immediate gene targets and molecular pathways implicated in arsenite mediated endothelial toxicity.
7.3 Investigative Methodology

Six biological repeats of HUVECs of early passage (2 to 4), were either treated with 1,000 μg/L arsenite for 24 hours or left untreated (n=6) before undergoing mRNA extraction (as described in section 3.10). The dosage of arsenite was determined based on the cell viability test carried out using the CCK8 assay (see section 4.4.1). Exposing HUVECs to 1,000 μg/L arsenite for 24 hours did not induce significant cell death. This was important as the aim of this study was to investigate the immediate effects of arsenite exposure, without having induced substantial cellular damage.

The Illumina Whole-Genome Gene Expression BeadChip Human HT-12 v4 used for the transcriptomic investigations (see section 3.10) and consists of 12 sample arrays, comprising more than 47,000 probes (Illumina®). Each probe represents a specific sequence used to make a 50-mer oligonucleotide, which is attached to a 29-mer address sequence that binds to a bead (Figure 7.1). The beads sit in microwells on the arrays and the address sequences enable the location of the bead to be mapped along the BeadChip. Each bead represents one probe, with hundreds of thousands of copies of that specific probe oligonucleotide bound. There are on average 30 beads that represent the same probe, randomly placed on the beadchip with 99.98% of each bead type being present in each of the 12 arrays. The 50-mer sequence of each probe binds to biotin labelled cRNA by direct hybridisation. The hybridised BeadChip is exposed to steptavidin-Cy3; a fluorescent cyanine dye bound protein with a high affinity for biotin. The Cy3 yellow/green fluorescing molecules are detected by the microarray laser detection system.
7.4 Results

7.4.1 Generating Transcriptional Profiles

The raw data from the microarray were visualised and analysed using the GenomeStudio Software and entered into Array Track™ for normalisation and analysis. The raw data were normalised to ensure any systematic variation that may interfere with the identification of real gene expression changes was eliminated from the datasets; this was done using the quantile normalisation method. The quantile normalisation method (explained in Bolstad et al., 2003) has been seen as the most favourable in comparison to other methods with respect to its speed and the level of bias and variability measured (Bolstad et al., 2003). Principal component analysis (PCA) was then carried out on the data set prior to further analysis into gene expression changes.

PCA is a mathematical means of reducing the dimensionality of a dataset that consists of many inter-related variables, while retaining as much of the variation as possible (Jolliffe, 2002). This is done by implementing new sets of variables; i.e. principal
components (PCs), which recognise and form relationships between the key variables in the dataset. In this way, the same level of variability is retained with only a few PC variables, as was present in the many original variables (Jolliffe, 2002). PCs are orthogonal, linear combinations of the original variables, with the first few PCs retaining most the variation of the dataset (Raychaudhuri et al., 2000; Jolliffe, 2002).

Using PCA enables a simplified visualisation of complex data, such as that generated by microarray investigations, enabling outlier identification and pattern recognition to observe differences within datasets.

Carrying out PCA on the six biological repeats of each experimental condition; i.e. untreated controls and samples treated with 1,000 µg/L arsenite for 24 hours, showed clear differential gene expression patterns for the two experimental conditions, both of which formed distinct clusters. PCA also revealed an outlier amongst the biological repeats for the arsenite treated samples, which was thus excluded from further analysis (Figure 7.2). There was no obvious reason for this sample to be so different from the other test samples. The corrected microarray data were subjected to two filters in order to identify genes that significantly differed in expression; false discovery rate (FDR) of 0.05 and a fold change (FC) cut off of >1.5. This gave a total significant gene list of 2084 genes of which 989 genes were up-regulated and 1095 genes were down-regulated.
7.4.2 Gene expression analysis

7.4.2.1 Arsenite induced differential gene expression

The acquired significant gene list (FDR=0.05 and FC>1.5) with corresponding gene expression fold changes was uploaded to the Ingenuity pathway analysis (IPA) software (Ingenuity® Systems). Gene lists of the ten most significantly up and down-regulated genes in response to the arsenite treatment were identified (Table 7.1 and 7.2 respectively). The ten most significantly up-regulated genes listed in table 7.1 were comprised mainly of the metallothioneins (MTs), with six of the ten genes being MTs. The metallothionein 1X (MT1X) protein coding gene was the most up-regulated with a 15.2 fold increase in expression, followed by metallothionein 1G (MT1G) and metallothionein 1H (MT1H) with a fold change increase of 10.3 and 9.7 respectively.
This indicates the functional importance of metallothioneins in the cellular toxicological response to arsenite exposure.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Entrez Gene Name</th>
<th>Fold Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>MT1X</td>
<td>metallothionein 1X</td>
<td>15.2</td>
</tr>
<tr>
<td>MT1G</td>
<td>metallothionein 1G</td>
<td>10.3</td>
</tr>
<tr>
<td>MT1H</td>
<td>metallothionein 1H</td>
<td>9.7</td>
</tr>
<tr>
<td>RASD1</td>
<td>RAS, dexamethasone-induced 1</td>
<td>7.0</td>
</tr>
<tr>
<td>MT1M</td>
<td>metallothionein 1M</td>
<td>6.3</td>
</tr>
<tr>
<td>MT1F</td>
<td>metallothionein 1F</td>
<td>6.1</td>
</tr>
<tr>
<td>GDF15</td>
<td>growth differentiation factor 15</td>
<td>5.2</td>
</tr>
<tr>
<td>MT1E</td>
<td>metallothionein 1E</td>
<td>5.1</td>
</tr>
<tr>
<td>SLC7A11</td>
<td>solute carrier family 7 (anionic amino acid transporter light chain, xc-system), member 11</td>
<td>5.1</td>
</tr>
</tbody>
</table>

Table 7.1 The 10 most significantly up-regulated genes in response to 24 hour, 1000 µg/L arsenite treatment. The gene list was generated using IPA (FDR=0.05 and FC>1.5).
The most down-regulated gene was regulator of G-protein signalling 4 (RGS4) the expression of which was down-regulated by 8.7 fold (Table 7.2). A significant down-regulation was also observed in the GPCR binding chemokine (C-C motif) ligands 14 and 15 (CCL14 and CCL15 respectively). The expression of CCL14 was found to be decreased by 5.5 fold and the expression of CCL15 by 5.3 fold in response to arsenite exposure.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Entrez Gene Name</th>
<th>Fold Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>RGS4</td>
<td>regulator of G-protein signaling 4</td>
<td>-8.7</td>
</tr>
<tr>
<td>PLAT</td>
<td>plasminogen activator, tissue</td>
<td>-6.3</td>
</tr>
<tr>
<td>CCL14</td>
<td>chemokine (C-C motif) ligand 14</td>
<td>-5.5</td>
</tr>
<tr>
<td>EFEMP1</td>
<td>EGF containing fibulin-like extracellular matrix protein 1</td>
<td>-5.5</td>
</tr>
<tr>
<td>CCL15</td>
<td>chemokine (C-C motif) ligand 15</td>
<td>-5.3</td>
</tr>
<tr>
<td>FAM107A</td>
<td>family with sequence similarity 107, member A</td>
<td>-5.0</td>
</tr>
<tr>
<td>CDCA7</td>
<td>cell division cycle associated 7</td>
<td>-4.9</td>
</tr>
<tr>
<td>NR2F1</td>
<td>nuclear receptor subfamily 2, group F, member 1</td>
<td>-4.7</td>
</tr>
<tr>
<td>KLF2</td>
<td>Kruppel-like factor 2 (lung)</td>
<td>-4.7</td>
</tr>
<tr>
<td>CLDN11</td>
<td>claudin 11</td>
<td>-4.7</td>
</tr>
</tbody>
</table>

Table 7.2 The 10 most significantly down-regulated genes in response to 24 hour 1000 µg/L arsenite treatment, gene list obtained using IPA (FDR=0.05 and FC>1.5).
IPA enabled the identification of functional pathways affected by arsenite exposure through the differential transcriptional effects on gene expression. Study of these pathways enables the identification of possible mechanisms leading to arsenite toxicity. With the proposed role of arsenite on oxidative stress, as suggested by other research groups (see section 1.5), the consequence of arsenite on the expression of antioxidant genes was studied (Table 7.3). Interestingly, of the three antioxidant genes affected, two were significantly up-regulated; NAD(P)H dehydrogenase, quinone 1 (NQO1) displayed a 2.3 fold increase and superoxide dismutase 1 (SOD1) a 1.6 fold increase in expression. Interestingly, the gene for the mitochondrial specific antioxidant, superoxide dismutase 2 (SOD2), was down-regulated by 1.7 fold.

7.4.2.2 Arsenite induced gene expression changes in cellular pathways

Research carried out in chapter 4 revealed the effects of arsenite on cell viability and premature senescence. Investigating the impact of arsenite on the genes involved in these pathways would therefore help elucidate the underlying mechanisms leading to these cellular phenotypes. Tables 7.4 and 7.5 list the genes differentially expressed in the IPA pathways termed ‘vascular endothelial cell viability’ and ‘vascular endothelial cell proliferation’ respectively. DNA damage-inducible transcript 3 (DDIT3) was the most significantly up-regulated gene in the ‘vascular endothelial cell viability’ pathway with a 2.3 fold increase in expression and the most down-regulated was the heat shock 70kDa protein (HSPA5) gene which had a 2.9 fold decrease in expression (Table 7.4). Arsenite affected many more genes involved in the ‘vascular endothelial cell proliferation pathway’, with the up-regulation of seven genes and down-regulation of fifteen genes. The most up-regulated being interleukin 8 (IL8) with a 2.9 fold increase
in gene expression and the most down-regulated being the gene for angiopoietin 2 (ANGPT2) with a 3.1 fold decrease in expression (Table 7.5).

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Entrez Gene Name</th>
<th>Fold Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>NQO1</td>
<td>NAD(P)H dehydrogenase, quinone 1</td>
<td>2.3</td>
</tr>
<tr>
<td>SOD1</td>
<td>Superoxide dismutase 1, soluble</td>
<td>1.6</td>
</tr>
<tr>
<td>SOD2</td>
<td>Superoxide dismutase 2, mitochondrial</td>
<td>-1.7</td>
</tr>
</tbody>
</table>

Table 7.3 Transcriptional changes for antioxidant genes observed in response to 24 hour 1000 µg/L arsenite treatment identified using IPA (FDR=0.05 and FC>1.5).

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Entrez Gene Name</th>
<th>Fold Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>DDIT3</td>
<td>DNA-damage-inducible transcript 3</td>
<td>2.3</td>
</tr>
<tr>
<td>LPAR2</td>
<td>lysophosphatidic acid receptor 2</td>
<td>2.0</td>
</tr>
<tr>
<td>DAB2</td>
<td>disabled homolog 2, mitogen-responsive phosphoprotein (Drosophila)</td>
<td>1.6</td>
</tr>
<tr>
<td>NDP</td>
<td>Norrie disease (pseudoglioma)</td>
<td>-1.6</td>
</tr>
<tr>
<td>HSPA5</td>
<td>heat shock 70kDa protein 5 (glucose-regulated protein, 78kDa)</td>
<td>-2.9</td>
</tr>
</tbody>
</table>

Table 7.4 Transcriptional changes for genes involved in vascular endothelial cell viability in response to 24 hour 1000 µg/L arsenite treatment, identified using IPA (FDR=0.05 and FC>1.5).
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Entrez Gene Name</th>
<th>Fold Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>IL8</td>
<td>interleukin 8</td>
<td>2.9</td>
</tr>
<tr>
<td>CDKN1A</td>
<td>cyclin-dependent kinase inhibitor 1A (p21, Cip1)</td>
<td>2.7</td>
</tr>
<tr>
<td>MDK</td>
<td>midkine (neurite growth-promoting factor 2)</td>
<td>2.5</td>
</tr>
<tr>
<td>LPAR2</td>
<td>lysophosphatidic acid receptor 2</td>
<td>2.0</td>
</tr>
<tr>
<td>HIF1A</td>
<td>hypoxia inducible factor 1, alpha subunit (basic helix-loop-helix transcription factor)</td>
<td>1.9</td>
</tr>
<tr>
<td>DAB2</td>
<td>disabled homolog 2, mitogen-responsive phosphoprotein (Drosophila)</td>
<td>1.6</td>
</tr>
<tr>
<td>PTPN1</td>
<td>protein tyrosine phosphatase, non-receptor type 1</td>
<td>1.6</td>
</tr>
<tr>
<td>KDR</td>
<td>kinase insert domain receptor (a type III receptor tyrosine kinase)</td>
<td>-1.6</td>
</tr>
<tr>
<td>RGS5</td>
<td>regulator of G-protein signaling 5</td>
<td>-1.6</td>
</tr>
<tr>
<td>NDP</td>
<td>Norrie disease (pseudoglioma)</td>
<td>-1.6</td>
</tr>
<tr>
<td>ANG</td>
<td>angiogenin, ribonuclease, RNase A family, 5</td>
<td>-1.7</td>
</tr>
<tr>
<td>COL18A1</td>
<td>collagen, type XVIII, alpha 1</td>
<td>-1.7</td>
</tr>
<tr>
<td>SKP2</td>
<td>S-phase kinase-associated protein 2, E3 ubiquitin protein ligase</td>
<td>-1.8</td>
</tr>
<tr>
<td>SEMA6B</td>
<td>sema domain, transmembrane domain (TM), and cytoplasmic domain, (semaphorin) 6B</td>
<td>-1.8</td>
</tr>
<tr>
<td>KLK3</td>
<td>kallikrein-related peptidase 3</td>
<td>-1.9</td>
</tr>
<tr>
<td>FABP4</td>
<td>fatty acid binding protein 4, adipocyte</td>
<td>-1.9</td>
</tr>
<tr>
<td>TNFRSF6B</td>
<td>tumor necrosis factor receptor superfamily, member 6b, decoy neuropilin 1</td>
<td>-2.3</td>
</tr>
<tr>
<td>NRP1</td>
<td>neuropilin 1</td>
<td>-2.3</td>
</tr>
<tr>
<td>ENG</td>
<td>endoglin</td>
<td>-2.4</td>
</tr>
<tr>
<td>THBS1</td>
<td>thrombospondin 1</td>
<td>-2.6</td>
</tr>
</tbody>
</table>
Table 7.5 continued

<table>
<thead>
<tr>
<th>Genes</th>
<th>Description</th>
<th>Log fold change</th>
</tr>
</thead>
<tbody>
<tr>
<td>DKK1</td>
<td>dickkopf 1 homolog (Xenopus laevis)</td>
<td>-3.0</td>
</tr>
<tr>
<td>ANGPT2</td>
<td>angiopoietin 2</td>
<td>-3.1</td>
</tr>
</tbody>
</table>

Table 7.5 Transcriptional changes for genes involved in vascular endothelial cell proliferation in response to 24 hour 1000 µg/L arsenite treatment, identified using IPA (FDR=0.05 and FC>1.5).

7.4.3 Molecular pathway analysis

Carrying out molecular pathway analysis is important to begin to understand how individual gene expression changes combine to contribute to the pathophysiology of diseases and toxic mechanisms. Through IPA, genes were arranged into networks that were made up of specific pathways related to biological functions and diseases (Table 7.6). The networks were organised in order of significance through a scoring system. The scores were derived using the Fisher exact test, which reflected that the assignment of genes to groups was not due to chance alone. The networks were ranked in order of score, with the highest score representing the network that contains the most statistical significant interconnected genes (Nakou et al., 2010).

The fifteen most significant networks identified were listed in table 7.6. The diseases most significantly associated with arsenite exposure were cancer and CVD, in close agreement with epidemiological evidence in human studies (see section 1.2). The biological processes most frequently listed were the ones involved in cell viability, genome maintenance i.e. DNA damage repair and recombination processes, and the cell cycle; the interactions between the genes involved in these biological processes are illustrated in a gene-signalling map (Figure 7.3). The map illustrates an overall down-regulation (green) of these processes through high number of genes that have decreased
expression in response to arsenite. Interestingly, a large proportion of gene expression changes showed a connection to histone H3, an important component of the nucleosome which packages DNA in eukaryotic cells. Since epigenetic modifications at the histone N-terminal tails are crucial for modulating gene expression (Zhou et al., 2008), altering these modifications poses as a potential mechanism by which arsenite brings about its differential gene expression effects.

The effects of gene expression changes on signalling pathways involved in specific biological functions such as response to ‘cellular stress and injury’ (Figure 7.4), ‘cellular growth, proliferation and development’ (Figure 7.5) and ‘toxicological response’ (Figure 7.6) were also determined using IPA, giving a detailed account of the number of genes up and down-regulated for all the pathways affected within each biological network. The pathways involved in the response network for ‘cellular stress and injury’ and ‘toxicity response’ were examined to further understand the mechanisms underlying arsenite induced cytotoxicity in endothelial cells.

The pathways with the highest number of genes affected for both of these networks are those involved in the cellular response to stress. The ‘cellular stress and injury’ network shows the p38 MAP kinase (MAPK) signalling pathway to have the highest number of genes affected, with ~65% of the affected genes being up-regulated (Figure 7.4). Similarly for the ‘toxicological response’ network, the NF-E2 related factor-2 (NRF2)-mediated oxidative stress response pathway appears to have the highest number of genes affected, with ~72% of these up-regulated (Figure 7.6). Since the MAPK signalling pathway is involved in managing cellular stresses such as inflammation, DNA damage and oxidative stress, together with the NRF2-mediated oxidative stress
response pathway, the overall up-regulation of these pathways gives an insight into the impact arsenite has on the cell. Additionally, the overall down-regulation of some of the DNA damage response pathways (Figure 7.4) and the cell cycle DNA damage checkpoint regulation pathways (Figure 7.6) imply the induction of DNA damage as a toxic response of arsenite.

The pathways involved in the ‘cell growth, proliferation and development’ networks (Figure 7.5) were used to give an insight into the mechanisms of arsenite-induced premature senescence, which was observed in chapter 4. The mammalian target of rapamycin (mTOR) signalling and the P13K/AKT (serine-threonine kinase) signalling pathways were both found to be largely up-regulated, while the insulin-like growth factor (IGF-1) signalling pathway showed an overall down-regulated in response to arsenite.
<table>
<thead>
<tr>
<th>ID</th>
<th>Genes in Network</th>
<th>Score</th>
<th>Top Functions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ABL2,ADNP,ARID1A,CCNE2,CDKN1A,EXO1,FH ,HOXA5,IMPDH2,KIAA0101,LDAH,LTBP2,MIK67,MIK67IP,MTFH2D,MXI1,MYCN,NCL,PRPF19,RBICC1,RNF144B,RRM1,RRM2,RRM2B,SIVA1,SLC29A1,SNORD3A,SNRPG,SPHK2,STMN1,SYNM,TIP60,TP53INP1,USP11,ZBTB17</td>
<td>31</td>
<td>Cancer, Reproductive System Disease, Nucleic Acid Metabolism</td>
</tr>
<tr>
<td>2</td>
<td>AADAC,ATP2A2,CTSB,DAB2,DHRS3,DVL3,FBXL13,FILIP1L,FSH,GK,GOT1,HBP1,LAMB3,Lb,LRRFIP2,MCOLN1,MGEA5,MSMO1,MT1X,MYC1,PDLIM3,PAIP1,POF5,FPIA4,PP1H,PPRC1,RAB5C,RGS5,SIGIRR,TFP12,TK1,TM6SF1,TUBA1A,UBR4</td>
<td>29</td>
<td>Cancer, Reproductive System Disease, Carbohydrate Metabolism</td>
</tr>
<tr>
<td>3</td>
<td>ASNS,ATF3,ATF4,C1QB,P20orf11,CDCA5,CTH,DDT3,EGFR1,ERK,GADD45B,GARS,GDF15,Hdac,HLX,IFRD1,KDM5B,KLF6,MAP2K1/2,MIR155,H,GMN2K,MT1E,MT1F,MT1H,NDRG1,NDRG4,P AOR3,PCK2,PHF15,PSPH,RGS4,SCD,SPTSSA,ST C2,TRIB3</td>
<td>27</td>
<td>Digestive System Development and Function, Endocrine System Development and Function, Organ Morphology</td>
</tr>
<tr>
<td>4</td>
<td>ADD3,ADRB2,ASF1B,BTG3,CD24,Ctbp,CXCR7,E RMAP,Histone h3,Histone h4,H0X9A,JMJD1C,KIF4A,KIFC1,LPP,MBNL1,M T1G,MTUS1,NCAPD2,NCAPG,OSGIN1,PALLD,P PP2R2B,PRC1,RACGAP1,RP56K3A,RUNX1T1,SB F1,SLC30A1,SMC4,SPTA1,TM4SF18,TFD1,TYM,S UBB</td>
<td>27</td>
<td>DNA Replication, Recombination, and Repair, Cellular Assembly and Organization, Cell Cycle</td>
</tr>
<tr>
<td>5</td>
<td>ABCA1,ARHGAP28,CXCL16,ECE1,ERAP2,FABP 4,GNL3L,HLA,IL1,IL33,IRAK1,IRAK2,KSR2,LDB 2,LDL,MICU1,MLKL,NFkB (complex),NOP14,NOS3,OPTN,PEL1,PEL2,PLIN 2,RIOK3,RIPIK2,RNF11,RUSC2,SCARB1,ST3GAL 1,TAX1BP1,TJP2,TNFSF18,TRIM8,WDR34</td>
<td>25</td>
<td>Cardiovascular Disease, Organismal Injury and Abnormalities, Lipid Metabolism</td>
</tr>
<tr>
<td>6</td>
<td>Actin,FBL,GBP1,GBP4,HERC5,HIP1R,ICMT,IFI6,1 IFI27,IFI1M1,IL7R,IRF9,KIAA0430,MAP1B,MICA L1,NF2L3,NME1,NOP56,NOP58,P2A2,G,PABPN1 ,PDXP,PECAM1,Rb,RIOK1,SEMA3A,STK38,TCR, USP18</td>
<td>25</td>
<td>RNA Post-Transcriptional Modification, Protein Folding</td>
</tr>
<tr>
<td>7</td>
<td>APH1B,CALD1,CAPRIN1,CDH11,COL13A1,COL 4A1,COL4A5,Creb,DCHS1,DHCR7,EMP1,errogen receptor,FABP5,FASN,HMGC,HRNPD,L,HSP90A A1,HSPA1A,HSPA1B,IF35,IgG,JAG1,JUP,KRT15, KRT19,LDLR,LRN5A2,N7SE,PCDH7,PCDH10,PCD H19,PSEN1,PTPRF,Sectase gamma,TACSTD2,TNPO1</td>
<td>25</td>
<td>Cancer, Lipid Metabolism, Small Molecule Biochemistry</td>
</tr>
<tr>
<td>8</td>
<td>ACVR1,ADAMTS1,BDNF,BMP4,CYR61,DKK1,D LL3,Eotaxin,ERK1,2,GATA2,HEY1,IGF2R,IL1RL1 ,ITGA5,ITGB3,KDR,LIMS1,LRP5,NEU1,NOTCH4, Notch,NR2F2,NRP1,PPTKFB4,PQOR,PGGER4,PPTP RE,RAB4B,S1PR1,SFRP1,SMAD1/5,SMOOTH MUSCLE ACTIN,SULF2,TIMP2,TSPY1L</td>
<td>24</td>
<td>Cardiovascular System Development and Function, Organismal Development, Cellular Development</td>
</tr>
</tbody>
</table>
Table 7.6 continued

<table>
<thead>
<tr>
<th>ID</th>
<th>Genes in Network</th>
<th>Score</th>
<th>Top Functions</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Proteasome, ADRM1, AURKB, BIRC5, BNIP3, CIQ, TNF5, CCNG2, CDC42EP3, CDC6A, CYLD, DYNL, FLNB, Fcer1, FOXO3, GMNN, H6PD, IER3, IKBKG, LNMB2, MAP1LC3B, MCM3, MCM4, MCM5, MCM6, MCM7, mir</td>
<td>24</td>
<td>Cancer, Cell Cycle, DNA Replication, Recombination, and Repair</td>
</tr>
<tr>
<td>10</td>
<td>AKAP12, ATP6V0C, CHKA, CTPS1, Cyclin E, DLEU1, E2F2, E2F4, FAM53C, FHL2, Gamma tubulin, HIF1A, HIFNP, HIST1H2B2, HIST1H2B2K, HIST1H4A, HTATIP2, KIF15, MCM10, NASH, NOX4, NUDCD2, NUSAP1, OIP5, PLK4, POLA1, PP2c, PT TG1, RUVBL1, SESN2, SKA2, TPX2, TTK, TUBB2A, TUBG1, VEGF</td>
<td>24</td>
<td>Cell Cycle, DNA Replication, Recombination, and Repair, Infectious Disease</td>
</tr>
<tr>
<td>11</td>
<td>APC(complex), Cbp/p300, CCNA1, CCNF, CDC20, CDC25B, CDK1, CDT1, CKS1B, CSNK2A1, Cyclin A, Cyclin B, FBXO5, FEN1, FOXM1, FST, GTSE1, HSPB1, HSPB2, IFGFBP3, IFGBP4, ITPR1, LYE1, MAD2L1, MAD2L1B, Ncor, P38MAPK, PKB, RANBP1, RND3, SKP2, TRIB1, UBE2C, ULK1</td>
<td>22</td>
<td>Cancer, Cell Cycle, Reproductive System Disease</td>
</tr>
<tr>
<td>12</td>
<td>ABCE1, ADORA2A, Akt, ANGPT2, Calcinurin protein(s), Cg, DUSP6, EDNRB, ENG, FOXC2, GAB BR2, HTRA1, IGF1, ITGB4, KITLG, KLHL21, LY AR, Mapk, MDK, Mek, mir-21, NDP, OSBP-L8, PDGF BB, PK3CG, PI3Kp110a, PLAT, PPAT, PUS7, PYCARD, RGS2, SPRY1, TPM1, VEGFC, ZYX</td>
<td>22</td>
<td>Cardiovascular System Development and Function, Cellular Movement, Organismal Development</td>
</tr>
<tr>
<td>13</td>
<td>AMD1, ANPEP, BCR(complex), caspase, CNA2, CD 3, CEL, CHTF18, CLIP1, CXC4R4, DNMT1, FTH1, GA DD45A, GBP2 (includes EG: 14468), GRN, Igm, IKK (complex), JUND, KLF9, LIG1, LPXN, MRAS, MSR B2, PARP1, PARP2, PCNA, PINK1, PLK2, Rap1, RIN 1, SAT1, SERPINB2, TFDP1, TFRC, USP1</td>
<td>22</td>
<td>DNA Replication, Recombination, and Repair, Cancer, Cell Cycle</td>
</tr>
<tr>
<td>14</td>
<td>14-3-ANG, ASB9, ASGR1, CASP6, Caspase3/7, CDC25A, CKB, CTGF, DNAJB1, DPP3, DUSP16, HCR LS1, HMGB2, Hsp27, Hsp70, Hsp90, HSPA8 Jnk, KL F2, MAP1LC3A, MAP3K3, MAP3K5, NADPH oxidase, NQO1, NRG1, PARD6A, PIM1, SPHK1, SQS TM1, TP53BP2, TRA2B, TRIP10, UCHL1, YWHAH</td>
<td>20</td>
<td>Cell Death and Survival, Protein Synthesis, Cardiovascular System Development and Function</td>
</tr>
<tr>
<td>15</td>
<td>Actin, AKAP8L, ANTXR1, APOL3, ASC2, CAP2, C D34, CD46, COL1A1, DXD58, DHX9, GEMIN4, IF N, Beta, I12(complex), Immunoglobulin, INSIG1, Interferon alpha, KLF11, MAFF, MAPK, Rac1, RAD51, RELB, RNA polymerase II, SOD2, SPOCK1, TBC1D10A, TICAM1, TNF-WSF1, TRIM25, TRIP 3, TRIP4, TXNRD1, TYMP, WDR36</td>
<td>20</td>
<td>Organ Morphology, Cell Signaling, Small Molecule Biochemistry</td>
</tr>
</tbody>
</table>

Table 7.6 The 15 most significant networks determined using IPA for biological functions affected by 24 hours treatment with 1000 µg/L arsenite (FDR=0.05 and FC>1.5).
Figure 7.3 Gene-signalling map showing direct (unbroken lines) and indirect (broken lines) relationships between genes involved in DNA replication, recombination and repair and cellular assembly, organisation and cycle. Genes illustrated in green represents down-regulation and red represents up-regulation of gene expression.
Figure 7.4 Gene expression changes in several pathways involved in the ‘cellular stress and injury’ response. HUVECs were treated for 24 hour with 1000 µg/L arsenite and gene-expression was analysed by microarray (FDR=0.05 and FC>1.5). The functional categorisation of genes and pathways was performed in IPA.
Figure 7.5 Gene expression changes in several pathways involved in the ‘cellular growth, proliferation and development’ response. HUVECs were treated for 24 hour with 1000 µg/L arsenite and gene-expression was analysed by microarray (FDR=0.05 and FC>1.5). The functional categorisation of genes and pathways was performed in IPA.
Figure 7.6 Gene expression changes in several pathways involved in the ‘toxicological response’. HUVECs were treated for 24 hour with 1000 µg/L arsenite and gene-expression was analysed by microarray (FDR=0.05 and FC>1.5). The functional categorisation of genes and pathways was performed in IPA.
7.5 Discussion

The results presented in this chapter focused on the effects of a non-lethal concentration of arsenite on HUVECs in order to suggest early targets/pathways by which arsenite promotes endothelial cell dysfunction which may subsequently lead to CVD development and/or progression. Using the IPA platform for the analysis of the transcriptional expression profile data, the impact of arsenite on the expression of specific genes as well as the analysis of pathway responses was possible. These results are discussed further in sections 7.5.1 and 7.5.2.

The original hypothesis for this thesis suggested arsenite to induce oxidative stress in endothelial cells, by targeting mitochondria, resulting in intracellular oxidative damage and the onset of premature senescence. The proposed role for mitochondria as primary targets of arsenite can now be rejected after observing the results in chapter 6. In this chapter studying the genes and pathways most affected in response to arsenite \textit{in vitro} has enabled the generation of a new hypothesis, which indicates arsenite-mediated toxicity to occur via non-mitochondrial oxidative stress, resulting in the onset of stress-induced premature senescence (SIPS) in endothelial cells.

7.5.1 Gene expression analysis

7.5.1.1 Metallothionein gene family up-regulation

Of the up-regulated genes, the most striking up-regulation of the MTs can be rationalised in terms of the toxic nature of arsenite and the functions of MTs in cells. MTs have been shown to maintain metal ion homeostasis in cells as well as carrying out metal detoxification (Sutherland \textit{et al.}, 2010). MTs are proteins containing several
cysteine residues with two thiol-rich metal binding domains (Babula et al., 2012). They have a high affinity for binding to the monovalent and divalent periodic table group 11 and 12 metals respectively, particularly Zn\(^{2+}\). Therefore, MTs are predominantly found in cells as Zn-MT species (Sutherland and Stillman, 2011). Despite arsenite (As\(^{3+}\)) being suggested to bind to MTs with a slower rate than the group 11 and 12 metals (Ngu and Stillman, 2006), the extent of up-regulation of MT genes in table 7.1 suggests the MT gene-family to be substantially involved in the responsiveness of HUVECs to arsenite exposure at least in vitro. As the known mechanisms of arsenite detoxification in the human body involve thiol-based proteins (DeMel et al., 2004), the significant increase in expression of cysteine-rich MTs as an immediate response, suggests their possible involvement in arsenite metabolism (Ngu et al., 2008). Ngu et al (2008) found that with the two-domain structure of MTs, they can bind to As\(^{3+}\) at a faster rate than they previously reported (Ngu and Stillman, 2006). With the ability of binding six As\(^{3+}\) ions per MT protein, MTs prove efficient scavengers of As\(^{3+}\), thus supporting the up-regulation of MTs as an initial response to arsenite exposure.

Furthermore, MTs also have an important role in cellular protection against oxidative damage, particularly when bound to Zn. MTs are found in the cytosol and within cellular organelles but predominately in mitochondria (Sutherland and Stillman, 2011), which is believed to be the main source of ROS generation in many cell types. ROS such as H\(_2\)O\(_2\) bind to the Zn-MT complexes resulting in the release of Zn\(^{2+}\), which goes on to initiate further MT expression (Zhang et al., 2003). Therefore, the increased generation of ROS leads to an increased expression of MTs as an oxidative stress response. Despite MTs being recognised as antioxidants, the exact mechanism through which they bring about their protective effects is still unknown (Babula et al., 2012),
however in vitro investigations have shown the level of MTs to increase in response to H₂O₂ (Kling and Olsson, 2000) and a role for MTs as hydroxyl radical scavengers has been described (Thornalley and Vasak, 1985). Together, these findings allude to arsenite inducing oxidative stress in endothelial cells as a mechanism of toxicity, which would be counteracted by the antioxidant properties of MTs that are expressed as a result of Zn²⁺ displacement by ROS.

Moreover, section 7.5.1.2 discusses the effects of arsenite on cellular pathways and gene expression changes that indicate an increase in oxidative stress. Despite the lack of evidence for direct increases in ROS by arsenite in chapter 4, this further supports the ROS-mediated increase in MT expression.

7.5.1.2 Effect of arsenite on oxidative stress and inflammation

HUVECs treated with arsenite showed a significant up-regulation in the expression of cytoplasmic antioxidants NQO1 and SOD1, indicating an increase in ROS generation as an arsenite response. The increase in the antioxidant gene expression may be as a result of the NRF2- mediated oxidative stress response pathway which is also shown to be partly up-regulated. Activation of the transcription factor NRF2 in response to arsenite has been seen previously in a number of cell types, e.g. bladder urothelial cells (Wang et al., 2007), keratinocytes (Pi et al., 2003), and placental choriocarcinoma cells (Massrieh et al., 2006). Arsenite has also been shown to evoke a NRF2 signalling pathway-mediated antioxidant response in the human bladder urothelium cell line (UROtsa cells). Interestingly, 4 hour exposure to 2,600 µg/L arsenite resulted in the increase in the NRF2 half-life from 9 minutes to 19 minutes, furthermore, 16 hours
exposure to 1,300 µg/L arsenite revealed an increase in the expression of antioxidants NQO1 and HO-1 (Wang et al., 2008).

The activation of NRF2 occurs as a result of an increase in electrophiles, oxidative stress or inflammation (Osburn and Kensler, 2008), which in turn regulates the gene expression of antioxidants, maintaining the cellular redox balance (Hybertson et al., 2011). Since the gene expression of NQO1 and SOD1 are induced by NRF2 (Venugopal and Jaiswal, 1996; Dreger et al., 2009), the increase in this cellular protective pathway supports the apparent increase in arsenite mediated cellular ROS.

An increase in ROS generation was not observed in this thesis either through detection of superoxide (total cellular and mitochondrial) or H₂O₂. This may be due to the redox balance being rapidly restored by the antioxidant activity or the inherent lack of sensitivity of the ROS reporters used.

Oxidative stress can lead to endothelial dysfunction, one of the primary events in the pathogenesis of atherosclerosis (Victor et al., 2009). It can also lead to an increase in inflammation through the increased secretion of interleukin 8 (IL8), such an increase (~3-fold) was seen in this study. IL8 is a proinflammatory chemokine which is present at very low levels under normal circumstances, but in response to stress its secretion rapidly increases (Hoffman et al., 2002). IL8 goes on to bring about an inflammatory response by activating and causing accumulation of neutrophils (Baggiolini and Clark-Lewis, 1992). This observation is supported by the overall up-regulation of the p38 MAPK signalling pathway, which responds to stress and inflammatory stimuli and has been found to be activated in inflammatory diseases (Herlaar and Brown, 1999).
Furthermore, the increase in expression of the lysophosphatidic acid receptor 2 (LPAR2) also indicates a cellular inflammatory response to arsenite. LPAR2 is a GPCR that binds to lysophosphatidic acid (LPA), a signalling molecule that has been associated with endothelial dysfunction, LDL uptake and monocyte recruitment and adhesion (Lin et al., 2010), thus an up-regulation in LPAR2 can lead to an increase in LPA binding. Of the many LPA binding receptors, a study carried out on LPAR1/LPAR2 double knock-out mice showed the specific involvement of these receptors in the pathogenesis of atherosclerosis (Panchatcharam et al., 2008). The regulation of such inflammatory diseases involves transcription factors such as NRF2 which, as well as oxidative stress, also control inflammatory gene expression (Liu et al., 2010). Therefore the increase seen in the NRF2-mediated response pathway further supports the possible increase in oxidative stress and inflammation in response to arsenite, as a mechanism of atherosclerosis development.

7.5.1.3 Arsenite mediated effects on GPCR signalling

Of the top ten down-regulated genes, the expression of the regulator of G-protein signalling 4 (RGS4) was the most significantly affected in response to arsenite. This is an interesting outcome, given the importance of RGS4 in the cardiovascular system. G-proteins are important signal transducers coupled to specific receptors; GPCRs. These receptors play a vital role in our physiological response to external and internal stimuli, therefore enabling communication between intracellular and extracellular environments (Rosenbaum et al., 2009). The binding of ligands to GPCRs activates the G-proteins that go on to bind effector proteins and cause a cascade of downstream effects (Rosenbaum et al., 2009).
In the cardiovascular system, GPCRs are involved in the regulation of many processes such as contractility of the heart, the heart rate and vascular tone (Tang and Insel, 2004). GPCRs are substantially involved in the stimulation of vasoconstriction, i.e. angiotensin II AT₁, endothelin-1 ET₅ receptors, α₁ and α₂-adrenoceptors (Maguire and Davenport, 2005), and vasodilation through G-protein signalling in endothelial i.e. muscarinic M₁ and M₃ receptors, and vascular muscle cells i.e. β-adrenoceptors (Hendriks-Balk et al., 2008). Consequently, abnormal levels of GPCR signalling have been linked to the development of cardiovascular complications.

RGS proteins have the important role of assisting the deactivation of G-proteins to prevent the over stimulation of effector proteins (Gu et al., 2009). RGS are crucial in cardiovascular homeostasis (Heximer, 2012) and RGS4 has been suggested to have a protective role in CVD. This has been specifically seen in hypertrophic mouse models where over-expression of RGS4 prevented cellular growth and myofilament organisation in neonatal cardiac myocytes (Tamirisa et al., 1999), preventing the onset of a hypertrophic phenotype mouse hearts in response to pressure overload by transverse aortic constriction (Rogers et al. 1999). The increase in RGS4 expression was also seen in the failing left ventricular myocardium of human hearts as a potential protective mechanism (Mittmann et al., 2002).

Therefore, the down regulation of RGS4 expression observed here in endothelial cells suggests that arsenite exposure renders cells (i.e. cardiac myocytes) more sensitive to G-protein mediated damage through the over stimulation of effector proteins. With the onset of endothelial dysfunction seen in experimentally-induced myocardial hypertrophy (MacCarthy et al., 2000; MacCarthy et al., 2001) and the important role the
endothelium plays in cardiac myocyte function, particularly through the production of NO (Tirziiu and Simons, 2008), arsenite-mediated effects on endothelial cells also may be indirectly involved in the pathophysiology of hypertrophy.

The link of arsenite with hypertrophy is further supported by a study carried out on mice that showed chronic consumption of arsenite contaminated drinking water gave rise to hypertrophy and hypertension (Sanchez-Soria \textit{et al.}, 2012). Signs of left ventricular hypertrophy have also been detected in individuals from Bangladesh that were exposed to arsenic. This was assessed using electrocardiography, which also showed signs of ischemic heart disease amongst other cardiovascular abnormalities (Ahmad \textit{et al.}, 2006).

Two members of the chemokine family are also significantly down-regulated in response to arsenite; CCL14 and CCL15. Since chemokines function as ligands for GPCRs, this is surprising and inconsistent in comparison with the cardiovascular outcomes potentially associated with the down-regulation of RGS4. The levels of chemokines are generally up-regulated in cardiovascular dysfunction (Tarzami, 2011); a predictable outcome given the function of chemokines in leukocyte activation. Chemokines can be seen to contribute to atherogenesis as atherosclerotic plaques involve the accumulation of leukocytes and lipids at the innermost layer of the blood vessel wall. However, chemokines have also been suggested to have inhibitory roles in atherogenesis, depending on the receptors they target (reviewed in Wan and Murphy, 2012). Thus, the down-regulation of CCL14 and CCL15 in response to arsenite may suggest these specific chemokines as having inhibitory role in the process of
atherogenesis, therefore down-regulation in their expression would decrease the inhibitory signals for atherogenesis.

7.5.1.4 Transcriptional response indicating changes in to cell viability

Observing the transcriptional changes for specific genes i.e. DNA-damage-inducible transcript 3 (DDIT3) and heat shock 70kDa protein 5 (HSPA5) revealed the involvement of the endoplasmic reticulum (ER) in arsenite induced apoptosis. The ER has an important role in protein folding and protein secretion, malfunctions in which trigger the unfolded protein response (UPR) to restore normal ER function (Scull and Tabas, 2011). The significant down regulation of HSPA5, which is involved in the accurate folding of proteins (Lee, 2005), may lead to ER stress.

DDIT3 is involved in the UPR to ER stress in endothelial cells, observed as a result of atherosclerosis-promoting factors such as modified LDL (Civelek et al., 2009). Therefore it can be hypothesised that the transcriptional change in DDIT3 plays a role via ER stress in arsenite mediated atherosclerosis.

Arsenite seems to trigger an apoptotic response through the down-regulation of HSPA5 which has anti-apoptotic properties (Lee, 2005) and the up-regulation of DDIT3 which is proapoptotic (Scull and Tabas, 2011). Endothelial cells having undergone apoptosis are associated with atherosclerosis progression as they have shown to manifest procoagulant activity; inducing thrombogenesis, (Bombeli et al., 1997) and becoming proadhesive to the binding of platelets, further contributing to the thrombotic pathology (Bombeli et al., 1999). The up-regulation of hypoxia-inducible factor-1α (HIF1A) indicates apoptotic responses. Lida et al (2002) investigated the effects of transfecting
the HIF1A gene into endothelial cells, with apoptosis as one of the cellular outcomes, along with a decrease in the expression of the anti-apoptotic gene, BCL2. The implicated role of arsenite in inducing endothelial cell apoptosis would hence contribute in the progression of atherosclerosis.

The study carried out by Lida et al (2002) also saw cellular senescence, reduced cell proliferation, cycle arrest and an increase in the expression of CDKN1A (also known as P21) in the HIF1A transfected endothelial cells. CDKN1A is shown to be up-regulated in SIPS in endothelial cells (Oh et al., 2001) and in other cell types (Li, 2009). Thus the up-regulation in CDKN1A seen here indicates is consistent with the onset of SIPS in response to arsenite, supporting the findings in chapter 4. Although not studied to date, arsenite could contribute to cardiovascular complications, particularly atherosclerosis through the induction of SIPS. Aged endothelial cells can result in the onset of endothelial dysfunction as a result of impaired NO production (Erusalimsky, 2009) and senescent endothelial cells have been observed in atherosclerotic plaques of humans (Burrig, 1991). Since endothelial dysfunction is seen to be one of the earliest events in the occurrence of atherosclerosis, arsenite mediated SIPS could be a possible initiator of arsenite induced atherosclerosis, although this requires further investigation.

7.5.1.5 Role of arsenite in epigenetic modifications

The gene signalling map showed a visual representation of the interactions between the genes involved in DNA replication, recombination and repair and cellular assembly, organisation and cycle, with the effects of arsenite on their expression. A large proportion of the differentially expressed genes, interestingly, revealed a link back to histone H3. Literature published on the mechanisms by which arsenite brings about
gene expression changes has found epigenetic alterations as one of the proposed mechanisms. Changes to the DNA methylation status of the genome has been seen to occur in arsenite induced carcinogenesis, with hypomethylation resulting in over-expression of certain genes (Marsit et al., 2006) and hypermethylation leading to gene silencing (Reichard et al., 2007).

In addition to altering the methylation status of DNA, arsenite has also been seen to affect the methylation patterns of histone N-terminal tails, specifically at histone H3 (Zhou et al., 2008). The ‘histone code’ hypothesis predicts that each histone tail has a specific post-translational modification; these modifications together or individually control the transcriptionally active or inactive state of gene expression (Jenuwein and Allis, 2001). Arsenite has been found to affect the extent of methylation at the tails of histone H3 in human lung carcinoma A549 cells, resulting in an increase in dimethylation at the tail H3K9 and a decrease in trimethylation at H2K27, both of which would result in gene silencing. Moreover, increased trimethylation at H3K4 was also observed, which would result in transcriptional activation (Zhou et al., 2008). These observations suggesting histone H3 as a specific target of arsenite, giving an insight into the role of epigenetics in the mechanism by which arsenite brings about the gene expression changes observed in the HUVECs.

7.5.2 Pathway analysis

IPA gives an accurate overview of the up-to-date cellular pathways and gene-signalling networks affected by disease and exposure to toxins in vivo and in vitro. This proved interesting for arsenite, with the data also revealing the possible mechanisms involved
Chapter 7: Transcriptomics

in bringing about the cytotoxic effects of arsenite in endothelial cells. The fifteen most significantly affected gene networks by arsenite treatment were deduced, which gave information on the cellular functions that would be affected as a result of the transcriptional changes and the potential impact they would have on disease development, should the work on a single cell type \textit{in vitro} translate to \textit{in vivo}.

Despite the limitations of extrapolating data generated from the artificial environment of \textit{in vitro} to \textit{in vivo} situations, \textit{in vitro} studies can still prove very informative, with a high level of accuracy for this translation. This is shown in the pathway analysis of the transcriptomics data. Of the 15 most significantly affected networks identified after arsenite exposure, cancer networks were the most affected. Furthermore, an overall up-regulation of the PI3K/AKT signalling pathway was observed. The PI3K/AKT signalling pathway has the important role of modulating the cell cycle, cellular survival and cellular growth pathways (Fresno Vara \textit{et al.}, 2004), therefore, alterations in this signalling pathway have been associated with human cancers. Increases in the PI3K gene has been found in cervical and ovarian cancer (Shayesteh \textit{et al.}, 1999; Ma \textit{et al.}, 2000) and increases in the expression of the AKT gene has been associated with cancers such as ovarian and breast cancer (Bellacosa \textit{et al.}, 1995). Since arsenite has been identified as a group 1 carcinogen (IARC, 2012), with cancer being the most prevalent disease group linked to arsenic exposure in humans, these finding are very consistent with \textit{in vivo} investigations, potentially shedding light onto the pathways involved in cancer development and progression by arsenite in humans.

Interestingly, the effects of arsenite exposure on gene networks leading to CVD were almost as high scoring as those for cancer induction, highlighting the importance of
carrying out investigations into the mechanisms behind arsenite-induced CVD development.

7.5.2.1 DNA damage and Cell cycle
Arsenite affected vital cellular functions including DNA replication, DNA repair and the cell cycle. Disruptions to these functions further support the observation on induction of SIPS in endothelial cells by arsenite. As discussed above this is a possible mechanism involved in the pathophysiology of cardiovascular diseases, particularly atherosclerosis (see chapter 4). Pathways which are specifically involved in controlling and monitoring the cell cycle were transcriptionally altered by arsenite exposure. The checkpoint kinase (CHK) mediated cell cycle control plays a crucial role in the cell cycle response to DNA damage (Zhou and Elledge, 2000). CHK proteins are phosphorylated and activated by ataxia telangiectasia mutated (ATM) kinases on DNA damage detection to go on to bring about DNA damage repair, chromatin remodelling, cell cycle arrest and apoptosis (Bartek and Lukas, 2003). Alterations in the ATM signalling and the CHK mediated cell cycle checkpoint control pathway render cells prone to apoptosis and premature senescence; these events are proposed to lead to the onset of cardiovascular diseases such as atherosclerosis (Golubnitschaja, 2006).

The considerable up-regulation seen in the mTOR signalling pathway is additional support for the onset of premature senescence. Dysfunction of the cell cycle can result in the cell having different fates; mTOR is required to send the cell into the senescence state (Schug, 2010), thus the up-regulation of mTOR strongly supports the finding of SIPS induction (see section 4.4.2).
Furthermore, insulin-like growth factor-1 (IGF-1) which functions as a stimulator of cellular proliferation, important for the cell cycle progression from the G1/S phase (Mairet-Coello et al., 2009), was shown to be down-regulated by arsenite. The down-regulation of IGF-1 signalling has been associated with CVD, specifically with the destabilisation of atherosclerotic plaques (von der Thusen et al., 2011).

The pathways involved in DNA damage repair were also broadly affected. The mismatch, DSB and NER repair pathways were down-regulated in response to arsenite. This supports and possibly explains the persistence of increased DNA damage observed in chapter 4 after 24 hours of treatment with 1,000 µg/L arsenite.

7.5.2.2 Impact of arsenite on the mitochondrial dysfunction pathway

Further support for rejecting the original hypothesis, which implicated an essential role of mitochondria in eliciting arsenite-induced toxicity in endothelial cells, comes from the lack of effect arsenite had on the expression of genes relevant to the mitochondria and mitochondrial function. The ‘mitochondrial dysfunction pathway’ showed no significant change in response to arsenite exposure, and was not implicated in any of the most affected networks observed. It can therefore be confirmed that mitochondria are not direct targets of arsenite, effects seen on the mitochondrial function, i.e. a decrease in the mitochondrial reserve capacity (Chapter 6), may be an adverse effect of arsenite-induced cellular stress.
7.5.3 Limitations of data

There are obvious limitations to this work that need to be taken into consideration when interpreting the data. HUVECs were used to carry out this investigation as they are a widely used model for human endothelial cells. Additionally, being primary cells they represent a good model for \textit{in vitro} investigations of ageing/senescence. However, the use of HUVECs will have discrepancies to the responses seen in endothelial cells from other blood vessels, therefore the data cannot be broadly extrapolated to the general response of all human endothelial cells to arsenite. It would thus be worth replicating this investigation in coronary endothelial cells. Furthermore, cell culture is an artificial model setting which will not account for some effects seen \textit{in vivo}.

The relatively acute dosage of arsenite used in this investigation is not comparable to the chronic exposure of arsenite to individuals through contaminated drinking water; therefore certain effects i.e. the accumulative effects of arsenite on the transcription profile may not be seen in the endothelial cell model. The use of IPA to analyse the data also has its limitations of being reliant on published literature for genes and pathways and their current associations to functional processes and diseases to form response pathways and networks. Lastly, the application of filters to the gene lists analysed through IPA would have resulted in some data being disregarded, i.e. subtle gene expression changes, which would therefore be excluded from the analysis.

Transcriptomics analysis was undertaken late in this project due to the lack of mitochondrial effects observed. Therefore, validation of gene expression changes observed with arsenite were not performed, e.g. by qPCR. This presents a limitation for firm conclusion to be drawn and is an area for future work.
7.5.4 Summary

Observing the transcriptional changes in HUVECs in response to the sub-cytotoxic arsenite treatment (1,000 µg/L for 24 hours) has potentially given an insight into the initial arsenite-mediated cellular responses and possible mechanisms involved in bringing about arsenite-induced cardiovascular toxicity. Significant alterations in gene expression and signalling pathways indicated an initial increase in cellular ROS, which may be short-lived due to the immediate increase in antioxidants and oxidative stress response pathways. Increases in DNA damage and cell cycle dysfunction were also implicated. These cellular responses result in further inhibition of cellular function and could be underlying initiators of endothelial dysfunction in vascular disease. Aberrations specifically linked to the pathogenesis of CVD i.e. atherosclerosis in particular, included the up-regulation of inflammatory responses, modified GPCR signalling and the transcriptional changes associated with SIPS.
CHAPTER EIGHT

General Discussion and Future Work
Chapter 8: General discussion and future work

To gain an insight into the possible mechanisms by which arsenite exposure of humans results in the development and/or progression of CVD, particularly atherosclerosis, the \textit{in vitro} effects of arsenite exposure on human vascular endothelial cells were investigated. The primary aim of this thesis was to determine whether arsenite resulted in the onset of endothelial senescence. Having established the onset of stress-induced premature senescence (SIPS) in HUVECs through arsenite exposure, the underlying mechanisms for this were investigated.

8.1 Effects of arsenite on mitochondria

Previous studies have suggested arsenic to induce its toxic effects on mitochondria. Arsenic exposure has been suggested to induce mtDNA damage and a decline in mtDNA copy number in \(A_L\) cells (Partridge \textit{et al.}, 2007), as well as a decrease in mitochondrial membrane potential and release of cyt c in myoblasts (Yen \textit{et al.}, 2012) and rat liver mitochondria (Naranmandura \textit{et al.}, 2012), with implications for apoptosis.

In the initial hypothesis for this thesis, mitochondria were thought to be the initial targets of arsenite, resulting in an increased generation of mitochondrial ROS through which arsenite mediated its effects on ageing and cell death in endothelial cells. However, the investigations carried out to study this reveal contradictory results.

Since mitochondria are the major sources of ROS generation in cells (Lesnfsky \textit{et al.}, 2001; Wallace, 2000), disruption to the mitochondria could result in a marked increase in mitochondrial ROS generation, however no changes in the levels of mitochondrial superoxide were observed using MitoSox™ with flow cytometry. Despite the limitations of using MitoSox™ to measure superoxide (Zielonka \textit{et al.}, 2010), studies
assessing mtDNA content and damage support the lack of mitochondrial ROS
generated. Since mtDNA is vulnerable to oxidative damage (Yakes and Van Houten,
1997), the lack of any significant mtDNA damage or alterations in mitochondrial DNA
content suggest no increases in the levels of mitochondrial ROS. This is in accordance
with the literature which suggests arsenic may increase intracellular ROS generation
through NADPH oxidase (Barchowsky et al., 1999; Smith et al., 2000; Smith et al.,
2001).

Further support for mitochondria not being primary targets of arsenite comes from the
effects on oxidative phosphorylation, examined in HepG2 cells. HepG2 cells, a human
hepatocyte cell line, have been defined as the current gold standard for in vitro
toxicology investigations of mitochondrial toxicity (Swiss and Will, 2011) as they are
easily adaptable in vitro (Mersch-Sundermann et al., 2004).

Arsenite treated HepG2 cells adapted to galactose-containing culture media, forcing
cells to rely on mitochondrial oxidative phosphorylation for ATP synthesis, showed no
differences in ATP generation and cell viability when compared to arsenite treated
HepG2 cells grown in glucose-containing culture media, which mainly rely on
glycolysis. Adapting cells to using galactose over glucose is a way of determining
whether a xenobiotic causes mitochondrial toxicity on a cell by overcoming the
Warburg effect (Warburg, 1956; Marroquin et al., 2007). Thus, the lack of difference,
shown for the first time in this thesis, between the effect of arsenite on ATP generation
in glucose-grown and galactose-grown HepG2 cells after 24 hour arsenite treatment
strongly suggests that arsenite does not act as a direct mitochondrial toxicant.
However, mitochondria were still affected by arsenite, not as primary targets but as a downstream effect of cellular stress. This is indicated through the analysis of the mitochondrial reserve capacity. Mitochondrial reserve capacity is a phenomenon suggested to play an important role in the ability of mitochondria to combat stressful cellular situations (Dranka et al., 2010), allowing cells to respond and repair damage. Arsenite brought about a significant decrease in the reserve capacity of HUVECs after the acute exposure of 1 hour to the sub-cytotoxic concentration of 1000 µg/L. With the reserve capacity being suggested as a response to cellular stress (Dranka et al., 2010) rather than a direct consequence of mitochondrial damage, the decline observed may be a result of stress induced mitochondrial dysfunction i.e. through signalling via non-mitochondrial ROS to dampen the reserve capacity.

The concept of mitochondrial dysfunction occurring as a later event in arsenite-mediated cellular stress is also supported through the trend towards increased mtDNA copy number observed in HUVECs. Sub-cytotoxic treatments of HUVECs for both 24 hours and 5 days revealed increases in mtDNA copy number in a concentration-dependent manner, although not reaching statistical significance. Increases in mtDNA copy number have been viewed as a stress-induced compensatory mechanism to increase mitochondrial biogenesis in response to mitochondrial damage and dysfunction (Ahuja et al., 2013). This indicates the possibility of the toxicity of arsenite in endothelial cells leading to mitochondrial dysfunction, although further study is required, which has been shown to be involved in the pathogenesis and progression of atherosclerosis (reviewed in Madamanchi and Runge, 2007).
Further support for mitochondria not being direct targets of arsenite comes from the transcriptomics analysis of HUVECs exposed to sub-cytotoxic arsenite conditions; 1000 μg/L treatment for 24 hours. Arsenite had no effect on the expression of genes relevant to mitochondria and mitochondrial function, as well as there being no change to the ‘mitochondrial dysfunction pathway’ in response to arsenite. Thus, from the investigations conducted in this thesis, arsenite does not appear to directly target mitochondria, although it may bring about mitochondrial dysfunction as a downstream consequence of other cellular effects.

8.2 EA.hy 926 cells as a model for HUVECs

The use of primary cells for in vitro investigations has the obvious advantage over cell lines for being more physiologically relevant and therefore generating data that would provide a better representation of the effects observed in vivo (Chen, 2010). However, there are many disadvantages associated with primary cells which result in many investigators conducting research on cell lines. These limitations include the limited lifespan of primary cells which makes carrying out long term experiments difficult, the loss of the specialised tissue function with successive passages (CAAT, 1990) and the potential difficulties of growing primary cells in artificial culture conditions. For these reasons, in this thesis the EA.hy 926 cell line, formed by fusing HUVECs with the permanent human cell line A549 derived from a human lung carcinoma (Edgell et al., 1983), was used along with primary HUVECs.

EA.hy 926 cells are widely used in vitro when conducting investigations into human endothelial cells. When comparing the results obtained in this thesis on EA.hy 926 cells
and HUVECs, similarities as well as differences were observed. Detecting ROS
generation in EA.hy 926 cells and HUVECs in response to arsenite exposure using the
fluorescent probes CM-H2DCFDA, DHE and MitoSOX™ with flow cytometry gave
similar results. In both cell types, a concentration-dependent increase in DCF
fluorescence was observed after 4 hours arsenite treatment, with no effect seen with
DHE or MitoSOX™.

However, when conducting investigations into the impact of arsenite on mitochondrial
function, using the XF analyzer, there were many inconsistencies observed. The
exposure of HUVECs to 1000 µg/L arsenite for 1 hour displayed a decrease in the
mitochondrial reserve capacity, however no change was observed in EA.hy 926 cells
under the same treatment conditions. Furthermore, 4 hour exposure of 10 µg/L arsenite
to HUVECs resulted in a statistically significant increase in the mitochondrial reserve
capacity and maximum oxygen consumption, whereas EA.hy 926 cells displayed no
changes compared to the control. Therefore, from the observations in this thesis, it
appears that EA.hy 926 cells may not be a good model to use for determining some of
the physiological effects, e.g. mitochondrial function, of human endothelial cells in
vitro.

8.3 Oxidative stress and arsenite

A concentration-dependent increase in supposed intracellular ROS levels was observed
only when using the fluorescent probe CM-H2DCFDA with flow cytometry in HUVECs
and EA.hy 926 cells after 4 hours sub-cytotoxic arsenite treatment. However, the use of
this probe in ROS investigations has been criticised for lacking specificity for ROS and
for being more of an indicator of the levels of cytochrome c in the cytoplasm (Kalyanaraman et al., 2012). Therefore CM-H$_2$DCFDA can be seen to measure the intrinsic pathway of apoptosis through the mitochondrial release of cyt c. Since arsenite induced significant levels of cell death at concentrations \geq5000 μg/L after 24 hours exposure, the significant increase in DCF fluorescence in HUVECs and EA.hy 926 cells with 10,000 μg/L arsenite is likely to be an indication of arsenite-induced apoptosis through the intrinsic pathway.

Measuring cellular and mitochondrial superoxide levels using DHE or MitoSox respectively, showed no induction of oxidative stress in either HUVECS or EA.hy 926 cells in response to sub-cytotoxic treatments with arsenite. This would indicate that arsenite does not induce cellular oxidative stress, however, other investigations carried out in this thesis provide strong evidence for the occurrence of oxidative stress as an early cellular response to arsenite. Furthermore, previous studies have suggested arsenite induces oxidative stress in endothelial cells (Barchowsky et al., 1999; Smith et al., 2001; Sun et al., 2009; Shi et al., 2010). Therefore, it may be possible that these probes used lack the required sensitivity to measure the low levels of ROS which may have been generated.

Transcriptomics analysis to assess the gene expression changes in HUVECs after sub-cytotoxic arsenite exposure for 24 hours, indicated the onset of oxidative stress. The most up-regulated genes in response to arsenite exposure were from the metallothionein (MT) family. MTs have been suggested to assist in metal detoxification, by chelating metal ions and aiding their removal from the body (Sears, 2013), as seen in the rapid transport of cadmium ions from the blood to the kidney for excretion when bound to
MTs (Sigel et al., 2009). Therefore, the significant up-regulation of MTs suggests a role for them in arsenite detoxification by chelating arsenite ions and assisting in their excretion. Other than metal detoxification, MTs have been associated with combating oxidative stress. MTs are thiol rich and due to their cysteine residues, MTs have been found to scavenge free radicals such as superoxide and hydroxyl radicals, and to remove hydrogen peroxide (Thornalley and Vasak, 1985; Sato and Bremner, 1993; Chubatsu and Meneghini, 1993) and protect against oxidative damage in vivo (Yang et al., 1994; Iszard et al., 1995; Sato et al., 1995). Therefore, the increased expression of MTs in response to arsenite may be as cellular protective response to oxidative stress.

Arsenite was found to significantly up-regulate the expression of the cytoplasmic antioxidants NQO1 and SOD1, suggesting an increase in ROS from a cytoplasmic source rather than mitochondrial, supporting previous literature which indicates arsenic-induced superoxide generation from NADPH oxidase (Barchowsky et al., 1999; Smith et al., 2000; Smith et al., 2001). The NRF2-mediated oxidative stress response pathway was also up-regulated in response to arsenite. Since the activation of the transcription factor NRF2 occurs in response to oxidative stress (Osburn and Kensler, 2008), to regulate cellular antioxidant levels and maintain the cellular redox balance (Hybertson et al., 2011), this provides further support for oxidative stress conditions evoked in HUVECs by arsenite exposure. Moreover, NRF2 is able to modulate the expression of both NQO1 and SOD1 (Venugopal and Jaiswal, 1996), therefore this may be the mechanism through which these antioxidants were up-regulated.
Other support for arsenite-induced oxidative stress comes from the study of mitochondrial function in HUVEC mitochondria. The increase in the reserve capacity in response to the acute exposure to 10 µg/L arsenite suggests a protective response to oxidative stress, as the reserve capacity has been suggested to provide protection against oxidative damage (Dranka et al., 2010). Moreover, the observed trend for increase in the rate of non-mitochondrial oxygen consumption with arsenite treatment could be as a result of the increased use of oxygen in the cytoplasm to generate ROS. Lastly, the trend for an increase in mtDNA copy number seen in response to sub-cytotoxic arsenite treatment, suggests an increase in mitochondrial biogenesis; this has also been observed in many other cell types in response to cellular oxidative stress (Gadaleta et al., 1992; Barrientos et al., 1997; Lee et al., 1998; Lee et al., 2002).

Taken together, these results imply the induction of oxidative stress as an acute and possibly initial effect of arsenite in HUVECs, followed by a rapid increase in the cellular antioxidant mechanisms, i.e. up-regulation of metallothioneins, NFR2-mediated oxidative stress pathway and cytoplasmic antioxidants, restoring the cellular redox balance. Along with the criticisms of the ROS detection probes used to measure oxidative stress, the rapid antioxidant response, seen after 24 hours arsenite exposure, may be a potential reason for the lack of detection of ROS. However, the acute increase in ROS may still have detrimental effects on the cell, such as being a possible cause for the nDNA damage observed and potentially contributing to the onset of stress-induced premature senescence (SIPS).
8.4 Comparison of *in vitro* and *in vivo* microarray-based transcriptomics analysis

The transcriptomics data generated in this thesis was based on the *in vitro* analysis of arsenite sub-cytotoxicity in HUVECs. In comparison to *in vivo* investigations, the use of *in vitro* assays has clear limitations. The gene-expression analysis of toxicity using an *in vivo* model gives a complete representation of the effects the toxin has on the whole organism, taking into account the multiple complex interactions that occur between cells and tissues (Hartung and Daston, 2009). Since, this is not possible when conducting *in vitro* investigations, the gene-expression profile generated does not necessarily comply with the *in vivo* profile.

However, the use of *in vitro*-based transcriptomics has many advantages which has made it a widely used platform in toxicity investigations. *In vitro* platforms enable high throughput toxicity screening, with investigations being more cost effective and less time consuming (van Hummelen and Sasaki, 2010). Moreover, *in vitro* and *in vivo* investigations have often been found to generate similar gene-expression profiles (Boess *et al.*, 2007; Zimmer *et al.*, 2008). Therefore, using *in vitro* transcriptomics is seen as a valid platform to give an indication of the gene-expression profile of a toxin and to indicate potential *in vivo* toxicity targets (Zimmer *et al.*, 2008).

8.5 Mechanisms of arsenite-induced senescence

Cellular senescence, discovered in fibroblasts by Hayflick and colleagues (Hayflick, 1965), describes a cellular state in which cells are viable but have undergone permanent cell cycle arrest. The first hypothesis for why cells undergo senescence was as an anti-cancer mechanism, accounting for why cellular senescence is beneficial (Campisi and d’Adda di Fagagna, 2007), however the second hypothesis shed light on the detrimental
effects of senescence, i.e. *in vitro* senescence being a representation of the deterioration of *in vivo* cellular repair and tissue regeneration capacity with age (Campisi and d’Adda di Fagagna, 2007). Senescence cells are also suggested to secrete factors that can affect neighbouring cells, senescence-associated secretory phenotype (SASP), such factors include pro-inflammatory cytokines which may contribute to the onset of inflammatory diseases (Orjalo *et al*., 2009; Wang and Bennett, 2012). Thus, senescence is associated with promoting ageing (Hornsby, 2002), and has been implicated in many age-related and inflammatory human diseases i.e. atherosclerosis (Ross *et al*., 1984; Burrig, 1991; Bennett *et al*., 1995; Gorenne *et al*., 2006).

This thesis has been the first to show the induction of SIPS in HUVECs in response to arsenite exposure. Further support for the onset of senescence was provided by transcriptomics analysis of arsenite treated HUVECs, revealing the up-regulation of the CDK1A (P21) gene, the up-regulation of which has been associated with SIPS (Frippiat *et al*., 2000; Matthaei *et al*., 2012). Nevertheless, further investigations into the induction of senescence by arsenite are warranted in order to validate the results in this thesis (see section 8.6.5).

Investigating the mechanisms by which endothelial cells undergo premature senescence in response to arsenite revealed the possible involvement of mitochondrial damage. The sub-cytotoxic treatment of HUVECs with arsenite revealed a concentration-dependent increase in mtDNA copy number, although this data did not reach statistical significance, it suggests an increase in mitochondrial biogenesis as a possible compensatory response to arsenite-induced mitochondrial damage. Increased mitochondrial biogenesis has been observed in aged rats as well as aged humans.
(Barrientos et al., 1997; Lee et al., 1998; Gadaleta et al., 1992), identifying a link between mitochondrial damage and the process of ageing. Furthermore, increased mtDNA copy number has been found in senescent human fibroblasts (Moiseeva et al., 2009; Lee et al., 2002), with the increase in mtDNA copy number being associated with mitochondrial dysfunction (Passos et al. 2007). Therefore, the non-significant trend for increased mtDNA copy number observed in HUVECs suggests that arsenite induces mitochondrial dysfunction which may be involved in the onset of SIPS.

The apparent onset of mitochondrial dysfunction with increasing arsenite concentrations would explain the concentration-dependent decrease in the mitochondrial reserve capacity also observed in response to arsenite in HUVECs. This suggests a mechanism for the premature senescence induced by arsenite (Figure 8.1). Since the reserve capacity is suggested to enable the mitochondria to provide protection against cellular oxidative damage (Dranka et al., 2010), the decline in this reserve capacity and thus the protective role of mitochondria would result in non-reversible intracellular damage leading to SIPS. Such non-reversible damage could be a result of the increased oxidative stress suggested with arsenite exposure, leading to damage such as the concentration-dependent increase in nDNA damage observed in HUVECs.
Figure 8.1 The proposed mechanism for SIPS in HUVECs as a result of arsenite exposure. Arsenite has been suggested to induce oxidative stress through the generation of ROS via NADPH oxidase. Increased oxidative stress would lead to intracellular oxidative damage such as irreversible damage to nDNA. Mitochondrial dysfunction has been implicated in response to arsenite through decreased mitochondrial reserve capacity and potential increase in mtDNA copy number suggesting a mitochondrial damage-induced compensatory increase in mitochondrial biogenesis. Mitochondrial dysfunction results in an inability of the mitochondria to protect the cell from oxidative damage, leading to SIPS (Barchowsky et al., 1999; Smith et al., 2000; Smith et al., 2001; Passos et al., 2007).
8.6 Future work

The hypothesis presented in pictorial form in figure 8.1 requires further investigation. Some of the possible avenues for future work are described below.

8.6.1 Determining arsenite-induced ROS generation

So far, from data presented in this thesis, there is only indirect evidence for ROS generation by arsenite in human endothelial cells. It is important to fully explore ROS production in further studies. The fluorescent probes used in this thesis to detect ROS have been criticised for their lack of specificity to ROS (Kalyanaraman et al., 2012), therefore giving a false account of the extent of oxidative stress induced by arsenite. Since the literature indicates arsenic to target endothelial cells and induce ROS through NADPH oxidase (Barchowsky et al., 1999; Smith et al., 2000; Smith et al., 2001), the best way to approach the investigation of whether arsenite is inducing oxidative stress in endothelial cells would be to measure intracellular superoxide levels. The use of high performance liquid chromatography (HPLC) with DHE has been suggested to be a more accurate measure for superoxide (Zhao et al., 2005). Laurindo et al. (2008) have developed a method of specifically detecting the generation of superoxide from NADPH oxidase with DHE-HPLC, this approach would clarify the production of superoxide by arsenite.

The use of the single cell gel electrophoresis/comet assay revealed a concentration-dependent increase in nDNA damage in response to arsenite. Co-treating HUVECs with arsenite and an antioxidant, e.g. N-acetyl cysteine (NAC), would confirm whether the nDNA damage measured was as a result of oxidative stress. This would further support whether arsenite induced ROS and shed more light on whether the ROS was of a non-
mitochondrial source. In addition, incorporation of a DNA repair enzyme step into the comet assay, e.g. hOGG1 (Smith et al., 2006), would highlight the induction of oxidative lesions within the DNA and further define a role for oxidative stress in arsenite toxicity.

8.6.2 Determining the effects of arsenite on endothelial mitochondria
The qPCR based investigations carried out on mtDNA indicated a trend of increasing mtDNA copy number, suggesting an increase in mitochondrial biogenesis in response to mitochondrial dysfunction. However, since the increases observed in mtDNA copy number were not statistically significant, further repeats of this experiment would be required to confirm whether this trend was a significant effect of arsenite on HUVEC mitochondria.

Along with the qPCR data, measuring the membrane potential of HUVEC mitochondria would provide additional support to whether arsenite induces mitochondrial dysfunction (Brand and Nicholls, 2011). This can be done by using a fluorescent probe such as tetramethylrhodamine methyl ester (TMRM). Due to the lipophilic and cationic properties of TMRM, this probe is able to pass through the mitochondrial membranes and accumulate within the mitochondria of the cells. Changes in fluorescence intensity for the probes reflect changes in the mitochondrial membrane potential. The loss of the mitochondrial membrane potential results in TMRM leaking out of the mitochondria, therefore a diminished fluorescent intensity is observed in mitochondrial dysfunction where the membrane potential is disrupted (Joshi and Bakowska, 2011).

To further investigate the impact of arsenite on endothelial mitochondria, the effects of arsenite on rho (ρ) endothelial cells, e.g. HUVECs lacking mtDNA, could be compared
to cells with intact mitochondria. This would give an indication of how the importance of the mitochondria in arsenite-mediated toxicity.

8.6.3 Determining whether arsenite induces apoptosis

The induction of apoptosis was implied through the use of the CM-H$_2$DCFDA probe, which has been suggested to directly or indirectly undergo oxidation with cyt c (Kalyanaraman 2012), indicating the early stage of apoptosis. Cell death was observed at 24 hours following exposure to ≥5000 µg/L. To confirm whether the increase in DCF fluorescence was an indication of apoptosis, the release of cyt c from HUVEC mitochondria could be measured in cells. This could be done using a technique such as that described by Campos et al (2006) which involves measuring cyt c using digitonin with flow cytometry. Temporal changes in cyt c release with DCF fluorescence would be informative.

8.6.4 Validation of gene expression changes

In this thesis, through the use of microarray-based transcription profiling, many gene expression changes were observed that have proved highly insightful in suggesting mechanisms for the effects of arsenite, e.g. the up-regulation of the MTs, antioxidants SOD1 and NQO1, and the NRF2 oxidative stress response pathway, and the down regulation of the regulator of G-protein signalling 4 gene (RGS4) and the genes involved in DNA damage repair (DDR). Therefore to validate the changes in expression of these genes, it would be important to use qPCR to confirm differential expression in HUVECs in response to arsenite treatment.
8.6.5 Further investigating the onset of senescence

To further validate the onset of premature senescence of endothelial cells in response to arsenite, the accumulation of DNA damage can be measured, using the extent of histone H2A.X phosphorylation (\(\gamma\)-H2A.X) as a biomarker of senescence induction. Phosphorylation of H2A.X has been suggested to assist with DNA damage foci formation (von Zglinicki et al., 2005). With the accumulation of DNA damage being found to contribute to senescence (Chen et al., 2007), immunohistochemistry has been used to detect the extent of \(\gamma\)-H2A.X \textit{in vivo} (von Zglinicki et al., 2005). Thus, this technique can be employed to assess the \textit{in vivo} effects of arsenite on senescence, by examining tissue samples from the blood vessels of an animal model, e.g. mice, exposed to arsenite contaminated drinking water. The use of \(\gamma\)-H2A.X with immunohistochemistry has also been used for the \textit{in vitro} determination of senescence (Wang et al., 2009), therefore, this technique may also be used with arsenite exposed HUVECs to validate the onset of SIPS observed in this thesis with SA-\(\beta\)-gal staining.
APPENDICES

Appendix 1

The CD attached contains the raw microarray data file named ‘Appendix 1’.

Appendix 2

The CD attached contains the normalized and significant (FDR of 0.05 and FC >1.5) microarray data used for the analysis carried out in this thesis. File named ‘Appendix 2’.
References

References

BOESS, F., DURR, E., SCHAUB, N., HAIKER, M., ALBERTINI, S. and SUTER, L., 2007. An in vitro study on 5-HT6 receptor antagonist induced hepatotoxicity based on biochemical assays and
References

References

References

218
References

References

References

References

References

References

References

SCHUG, T.T., 2010. mTOR favors senescence over quiescence in p53-arrested cells. *Aging, 2*(6), pp. 327-328.

References

