Positive metallicity correlation for coreless giant planets

Sergei Nayakshin*

Department of Physics & Astronomy, University of Leicester, Leicester LE1 7RH, UK

Accepted 2014 November 29. Received 2014 November 17; in original form 2014 August 5

ABSTRACT

Frequency of detected giant planets is observed to increase rapidly with metallicity of the host star. This is usually interpreted as evidence in support of the core accretion (CA) theory, which assembles giant planets as a result of formation of a massive solid core. A strong positive planet-metallicity correlation for giant planets formed in the framework of gravitational disc instability (GI) model is found here. The key novelty of this work is ‘pebble accretion’ on to GI fragments, which has been recently demonstrated to accelerate contraction of GI fragments. Driven closer to the star by the inward migration, only the fragments that accrete metals rapidly enough collapse and survive the otherwise imminent tidal disruption. The survival fraction of simulated planets correlates strongly with the metallicity of the host star, as observed.

Key words: planets and satellites: formation – protoplanetary discs.

1 INTRODUCTION

In its original form, gravitational disc instability (GI) hypothesis posited that gas giants are made in situ by gravitational fragmentation of a massive protoplanetary disc (Kuiper 1951; Boss 1997). This has been correctly criticized (Rafikov 2005) since the discs can actually fragment only beyond ∼ tens of au (Rice, Lodato & Armitage 2005). However, since simulations show that GI fragments migrate in rapidly (Vorobyov & Basu 2006; Baruteau, Meru & Paardekooper 2011), it appears perfectly feasible for them to form at ∼ 100 au but then end up arbitrarily close to the parent star due to disc migration. Furthermore, some of the fragments could give birth to Earth-mass or more massive cores due to grain sedimentation (e.g. Boss 1997; Helled & Schubert 2008; Nayakshin 2011). If these gas fragments are tidally disrupted, only the cores survive (Boley et al. 2010), which potentially provides a new pathway to forming all kinds of planets at all separations in a single framework that was called ‘tidal downsizing’ (TD; Nayakshin 2010).

However, there appears to be a major inconsistency of TD/GI with observations. Giant planets are much more frequent around metal-rich hosts (Gonzalez 1999; Fischer & Valenti 2005). Radiative contraction of GI planets is slower at high metallicities (Helled & Bodenheimer 2011), hence predicting fewer planets surviving tidal disruption. Core accretion (CA; e.g. Pollack et al. 1996) paradigm is, in contrast, consistent with the metallicity trend and explains it as a consequence of a more robust massive core assembly at high metallicities.

Nayakshin (2015) showed that accretion of medium-sized grains (‘pebbles’; Johansen & Lacerda 2010) on to pre-collapse gas fragments actually speeds up their contraction and collapse. In this picture giant planets collapse not due to emission of radiation (like stars do) but due to accretion of metals in small grains, which acts as an effective cooling mechanism (cf. equation 2 below and Fig. 1).

This Letter presents first detailed coupled planet-disc evolutionary calculations of TD hypothesis that incorporate this new physics, treating non-linear disc–planet interaction, the rate of grain deposition into the planet and its response to that in detail. A grid of models covering a reasonable range in poorly constrained parameters of the model (such as grain opacity, disc viscosity, etc.) is calculated to delineate statistical trends of the model. A strong positive correlation of planet survival probability with metallicity of the host is found.

We also note in passing that Bowler et al. (2015) find that giant gas planets are extremely rare at large ∼ 100 au separation from their parent stars, which the authors interpret as evidence that gravitational instability does not produce giant planets often. This interpretation of the data is based on outdated ideas in which GI planets do not migrate. Modern simulations (e.g. Boley et al. 2010; Baruteau et al. 2011; Cha & Nayakshin 2011; Zhu et al. 2012) all show that GI clumps migrate in rapidly. Another interpretation of the Bowler et al. (2015) results, consistent with the papers cited above and the calculations below, is that most of GI fragments migrated closer in to the star and were either tidally destroyed and became terrestrial like planets or survived the disruption and became hot Jupiters instead.

2 NUMERICAL METHODS

In the protoplanetary disc environment, both gas and grains are gravitationally attracted to massive bodies embedded in it, but gas has pressure gradient forces able to resist the pull, whereas grains do not. Grains that are moderately weakly coupled to gas via aerodynamic friction – grains of a few cm in size, a_{peg}, in the inner disc, but 1 mm or less in the outer disc – are captured by the body most efficiently (Johansen & Lacerda 2010; Ormel & Klahr 2010). Pebble
accretion rate appropriate for the massive planets that we study here is \(\dot{M}_p = 2 \dot{R}_i^2 v_K z_0^2 / a \) (e.g. Lambrechts & Johansen 2012), where \(v_K \) is Keplerian velocity at the planet’s location, \(a \); \(\Sigma_p = \dot{f}_p z_d \Sigma_d \) and \(\Sigma_d \) are the surface densities of pebbles and gas, respectively, and \(0 \leq \dot{f}_p < 1 \) is the fraction of pebbles in the total grain surface density \((z_d \Sigma_d) \). We assume that \(\dot{f}_p \) increases linearly with \(z_d \) due to a more rapid grain growth at higher \(z \), so \(\dot{f}_p = \dot{f}_0 (z_d / z_\odot) \), where \(\dot{f}_0 = \text{const} \ll 1 \) is a free parameter, and \(z_d \) and \(z_\odot \approx 0.015 \) is the disc and solar metallicities, respectively.

The disc surface density at the planet’s location, \(\Sigma_d \), is not independent of the planet, as the planet interacts with the disc strongly. Following Nayakshin & Lodato (2012), the protoplanetary disc is described by a viscous azimuthally symmetric time-dependent model that includes the tidal torque of the planet on the disc:

\[
\frac{\partial \Sigma}{\partial t} = \frac{3}{R} \frac{\partial}{\partial R} \left[R^{1/2} \frac{\partial}{\partial R} \left(R^{1/2} \nu \Sigma \right) \right] - \frac{1}{R} \frac{\partial}{\partial R} \left(2 \Omega R^2 \lambda \Sigma \right),
\]

(1)

where \(\Sigma \) is the disc surface density at radius \(R \), \(\lambda \) is the tidal torque from the planet. The torque can be either in type I (no gap) or type II (a gap in the disc is opened). 2D hydrodynamics (Crida, Morbidelli & Masset 2006) show that a deep gap in the disc is opened when parameter \(\mathcal{P} = 3 \pi H^2 / 4 R^2 \) is \(\lesssim 1 \), where \(H \) is the disc vertical scaleheight at \(a \), and \(\alpha_{\text{ss}} \ll 1 \) is the disc viscosity parameter. Based on this result, we smoothly join the type I and type II regimes using the self-consistently found value of \(\mathcal{P} \) at the location around the planet. This approach is necessary since migration rates of planets depend sensitively on whether a gap in the disc is opened or not (Galvagni & Mayer 2014).

Nayakshin (2014, 2015) uses a 1D spherically symmetric radiative hydrodynamics (RHD) code with grains treated as a second fluid to simulate contraction of an otherwise isolated planet that accretes grains. Such an approach is unfortunately too computationally expensive in the framework of a full disc–planet interaction problem, and forced previous workers to use analytical models for the planets (e.g. Nayakshin 2010; Forgan & Rice 2013).

Here, a simpler ‘follow the adiabat’ approach (Marleau & Cumming 2014; Fortney & Hubbard 2004) in which the planet is assumed isotropic, is used. This is a reasonable approximation since the energy transfer inside the planet is strongly dominated by convection even at solar opacities/metallicities (Helled & Bodenheimer 2011). For a given initial conditions, e.g. the planet mass, \(M_p \), the central fragment’s temperature, \(T_c \), and grain properties for each radial zone in the planet, a solution of the equilibrium equations is found by iterations on the central gas density. This determines planer radius, \(R_p \), and the total energy of the planet, \(E_{\text{tot}} \), which is then evolved in time according to

\[
\frac{d E_{\text{tot}}}{d \tau} = -L_{\text{rad}} - \frac{G M_p \dot{M}_p}{R_p},
\]

(2)

where \(L_{\text{rad}} \) is the radiative luminosity of the planet, and the last term on the right is the change in the gravitational potential energy of the planet due to grain accretion on it at the rate \(\dot{M}_p \). After evolving \(E_{\text{tot}} \) by a small amount, a grain growth step of same duration then follows. The new total energy and grain properties in every zone in the planet then allow us to determine the new planet’s structure, which is found by iterating on both \(T_c \) and the central gas density. The procedure is then repeated. We tested the isotropic approach against the RHD code for a number of fragment contraction cases, including metal loading tests on the planet, and found an acceptable (typically \(\sim 10\% \)–20 per cent) agreement.

It is important to point out the following. Pebbles sedimenting down on to the planet do so at differential velocities (usually linearly proportional to their size, \(a_{\text{p}} \)). From experiments it is well known that grains colliding at velocities exceeding a few m s\(^{-1}\) impact the planet, \(v_{\text{imp}} \), cannot be much larger than a few m s\(^{-1}\), which is very small compared to the escape velocity from the planet, \(\sqrt{2 G M_p / R_p} \approx 1500 \text{ m s}^{-1} \) where \(M_p = 1 M_\odot \) and \(R_p = 1 \text{ au} \) is used. For this reason, the kinetic energy input term in equation (2), \(M_1 v_{\text{imp}}^2 / 2 \), is neglected. This is in stark contrast to CA theory (CA; e.g. Pollack et al. 1996) where the solids from the disc enter the planet as planetesimals – huge rocks very poorly coupled to gas – and impact the growing planets at \(v_{\text{imp}} \gtrsim 2 GM_p / R_p \) and therefore heat the gaseous envelope strongly. Solids may nevertheless heat the gas envelope in both scenarios if they eventually reach a massive solid core in the planet. This effect is not considered here but is included in a follow-up paper.

Following Helled & Bodenheimer (2011), dust opacity in the fragment is directly proportional to the metallicity of the gas, \(\kappa (\rho, T) = \kappa_\odot (\rho, T) (z / z_\odot) \) where \(\kappa_\odot (\rho, T) \) are the interstellar gas plus dust opacities from Zhu, Hartmann & Gammie (2009) which assume solar metallicity, \(z_\odot \), and \(f_0 = \text{const} \ll 1 \) is a positive constant which may be smaller than unity due to grain growth.

3 PLANET SURVIVAL EXPERIMENTS

Before presenting the more complex planet–disc calculations, Fig. 1 shows evolution of central temperature for four isolated GI fragments of mass \(M_p = 1 M_\odot \). Black curves are for two different constant fragment metallicities, \(Z = 1 \) and \(5 \), where \(Z = z / z_\odot \).
The red curves are for fragments with metal abundance increasing at rate:
\[
M_z = \frac{\dot{M}}{t_c},
\]
with \(t_c \) labelled on the figure. The inset shows metallicity \(z \) for the four cases. The red and the \(Z = 1 \) black curves end when \(T_c \) reaches \(\sim 2000 \) K, at which point H\(_2\) molecules dissociate, and the fragment collapses dynamically to much higher densities. This marks formation of a dense young Jupiter that could survive tides in the inner disc. The \(Z = 5 \) fragment contracts the slowest due to a high dust opacity. In contrast, \(M_z > 0 \) fragments (red curves) contract faster than the \(Z = 1 \) one. The metallicity of the fragment corresponding to the dot–dashed curve is \(Z = 20 \) yet it collapses \(\sim 5 \) times faster than the \(Z = 1 \) case. Such a collapse could be termed ‘dark’ as relatively little radiation is emitted during contraction of the planet.

As explained in Nayakshin (2015) in detail, and can also be qualitatively seen from equation (2), accretion of pebbles by the fragments is a form of non-luminous cooling which is directly proportional to \(M_z \). This must help fragments to survive. For example, if the fragments from Fig. 1 were migrating inwards on a time-scale of \(10^5 \) yr, the \(Z = 5 \) one would have been tidally destroyed in about \(20 \) 000 yr, whereas the \(t_c = 250 \) yr fragment would have collapsed and could therefore continue to migrate almost arbitrarily close to the star.

To quantify these ideas, Fig. 2 tests survival of fragments born at \(a_0 = 120 \) au for the pebble accretion model at three disc metallicities, \(Z_d \equiv (z_d/z_\odot) = 0.5, 1 \) and \(2 \) for the dashed, dotted and solid curves, respectively. Colours are used to delineate different quantities for the same fragment. The top panel shows time evolution of the planet’s separation, \(a \), planet’s radius, \(R_p \), and Hill radius, \(R_H \), \(R_H = a(M_p/3M_\star)^{1/3} \). Panel (b) shows metallicity of the planets, (c) shows central temperature, \(T_c \), and (d) compares the migration time-scale, \(t_{\text{migr}} = -a/(da/dt) \), where \(a \) is planet’s semimajor axis, with the metal loading time-scale, \(t_z \), calculated self-consistently. Namely, first \(M_z \) in Hill’s regime (see Lambrechts & Johansen 2012) is found from the simulation, and then equation (3) is inverted to find \(t_z \).

Initially, \(R_p \ll R_H \), so that tidal forces from the star are weak compared to the planet’s self-gravity. As the planet migrates closer in, \(R_p \) and \(R_H \) decrease at different rates, and the planet is tidally disrupted if \(R_p \geq R_H \).

In all three cases, radiative cooling of the planet is negligible, that is, \(L_{\text{rad}} \) is much smaller (or even negative due to planet irradiation from the disc; see Vazan & Helled 2012) than the last term in equation (2). The planets therefore contract mainly due to accretion of pebbles. The higher the disc metallicity, the quicker the planet’s metallicity increases with time, and the faster it contracts (note that \(R_p \) decreases and \(T_c \) increases). The lowest metallicity planet is disrupted the soonest, at \(a = 3.3 \) au. \(Z_d = 1 \) planet is about twice as compact, so it makes it to \(a = 1.7 \) au before being disrupted. This planet almost manages to collapse (reaches \(T_c \approx 1500 \) K), but \(M_z \) plummets when a deep gap around the planet is opened after \(\approx 55 \) 000 yr (note that \(t_c \to \infty \) at later times). Starved of metals, the planet stops contracting and gets disrupted soon thereafter. In contrast, the \(Z_d = 2 \) planet contracts much more rapidly, and collapses at \(t \approx 33 \) 000 yr, before it is tidally compromised. This planet could be driven into the ‘hot Jupiter’ region by a continuing disc migration, not simulated here.

4 A GRID OF MODELS

These results suggest that GI planets may be more likely to survive at higher \(Z_d \). To ascertain metallicity trends of the model, given large uncertainties in the input physics, a grid of fragment survival experiments just like those described in Fig. 2, but now repeated for parameters varied over a reasonably broad range, is run. Parameter values in the grid are: disc viscosity \(\alpha_{\text{SS}} = 0.01, 0.02, 0.04 \); planet’s birth location, \(a_0 = 70, 120 \); pebble mass fraction \(f_{\text{g0}} = 0.05, 0.1 \) and 0.2. We also tested type I migration torque at 0.5, 1 and 2 times

![Figure 2. Evolution of a gas fragment accreting grains from the disc at three different disc metallicities (\(Z_d = 2, 1 \) and 0.5, for solid, dotted and dashed curves, respectively). Panels show: (a) planet–star separation, \(a \), Hill’s and planet’s radii; (b) planet’s metallicity, \(z \); (c) central temperature of the planet; (d) migration and grain loading time-scales. For all three cases, the fragment mass is \(1 M_J \), birth location \(a = 120 \) au, disc mass \(100 M_J \) within 150 au, viscosity parameter \(\alpha_{\text{SS}} = 0.02 \), pebble fraction \(f_{\text{g0}} = 0.1 \), and planet opacity parameter \(f_{\text{g}} = 0.3 \). \(Z_d = 2 \) fragment contracts rapidly, reaching 2000 K and collapsing at \(t \approx 32 \) 000 yr. The metallicity of the planet is about 0.1 \(z_\odot \) at the point of collapse. The \(Z_d = 1 \) and 0.5 fragments contract less rapidly due to lower metal supply (resulting in longer \(t_z \), see panel (d)), and are tidally disrupted at \(a = 1.7 \) and 3.3 au, respectively. The \(Z_d = 2 \) planet would have actually collapsed if not for a deep gap in the disc, opened at \(t \approx 55 \) 000 yr, which cuts off grain accretion to almost zero.

\[
M_z \approx \frac{\dot{M}}{t_c},
\]
that from Bate, Bonnell & Bromm (2003). The grid of models is calculated for nine different disc metallicity values between $Z_d = 1/3$ and $Z_d = 3$, and the fraction of planets surviving (that is collapsing before being tidally disrupted) is then found for each metallicity bin. This comprises 486 planet survival experiments in total.

Fig. 3 shows the results for $M_p = 1 M_J$. Fragments are indeed much more likely to survive at high z_d than they are at low z_d. Black solid line shows the full grid of models, while the blue dotted and the red dashed lines show $f_{p0} = 0.05$ and $= 0.2$ (low and high pebble content, respectively). There is a strong positive planet survival correlation with the metallicity of the host disc.

Figure 4. Planet survival probability versus Z for three different planet’s masses, as labelled on the figure.

Figure 3. Planet survival probability versus Z, the metallicity in solar units, for a planet of $M_p = 1 M_J$ mass and disc parameters covering a range of properties. The black diamonds show the full grid of models, while the blue and the red symbols show results for $f_{p0} = 0.05$ and $= 0.2$ (low and high pebble content, respectively). There is a strong positive planet survival correlation with the metallicity of the host disc.

5 DISCUSSION AND CONCLUSIONS

Planet survival experiments in the context of TD model for planet formation (Nayakshin 2010) were performed. The new ingredient in the model is ‘pebble accretion’ of grains from the disc on to the fragments, plus simultaneous treatment of the coupled planet and disc evolutionary equations. Since pebble accretion accelerates collapse of gas fragments, a strong positive correlation of the fraction of survived giant planets versus metallicity of the host is found. TD/GI origin for giant gas planets is not, therefore, in conflict with the observed planet-metallicity correlation. Formation of solid cores within the planets is turned off in this Letter for simplicity but is to be considered and reported on in a forthcoming paper.

Galvagni & Mayer (2014) find results that are somewhat in disagreement with ours. They find a much more copious production of giant planets without pebble accretion which we found to be instrumental in driving the planets to collapse here. This difference in the results may be in part due to a different radiative cooling formalism used by Galvagni & Mayer (2014). Namely, these authors use earlier results of Galvagni et al. (2012) who studied disc fragmentation and gas fragment collapse in 3D simulations, which is clearly preferable to our 1D study in that aspect. On the other hand, in Galvagni et al. (2012) the radiative cooling of the fragments is modelled with a semi-analytical prescription (as commonly done in 3D simulations of discs by a number of authors; see e.g. Boley et al. 2010; Cha & Nayakshin 2011) rather than with a radiative transfer scheme. Our results, on the other hand, are motivated (Nayakshin 2015) by RHD simulations of contracting planets in which transfer of radiation is calculated with the classical radiation diffusion approximation, albeit in 1D. Ideally, one would like to combine 3D hydrodynamics with 3D radiative transfer to study formation of giant planets. We must leave this challenging goal to future papers, unfortunately.

ACKNOWLEDGEMENTS

Theoretical astrophysics research in Leicester is supported by an STFC grant. The author acknowledges useful comments on the manuscript by Richard Alexander.

REFERENCES

Boss A. P., 1997, Science, 276, 1836

and $= 2 M_J$ planets (which are abundant in the Fischer & Valenti 2005, sample).

The final mass of the planet may be different from the pre-collapse value for two reasons. First, due to a substantial angular momentum of pre-collapse clumps (e.g. Boley et al. 2010; Galvagni et al. 2012), not all of the planet’s mass may end up in the planet, some may end up in the circumplanetary disc and then be lost. On the other hand, more gas could in principle be accreted from the disc on to the planet. These effects may extend the positive metallicity correlation found here for the 0.5–$2 M_J$ planets to both lower and higher masses.
Coreless giant planets

Helled R., Bodenheimer P., 2011, Icarus, 211, 939

This paper has been typeset from a TeX/LaTeX file prepared by the author.