Characterizing fractional vegetation cover and land surface temperature based on sub-pixel fractional impervious surfaces from Landsat TM/ETM+

Youshui Zhanga,b,*, Angela Harrisa, Heiko Balzterc,d

aSchool of Environment and Development, University of Manchester, Manchester, M13 9PL, UK

bCollege of Geography, Fujian Normal University, Fuzhou 350007, P.R. China

cUniversity of Leicester, Centre for Landscape and Climate Research, University Road, Leicester, LE1 7RH, UK

dNational Centre for Earth Observation, University of Leicester, University Road, Leicester, LE1 7RH, UK

*Corresponding author. Tel.: +86 591 8346 5214; fax: +86 591 8346 5397.
E-mail address: zhangyoushui@sina.com (Y. S. Zhang), angela.harris@manchester.ac.uk (A. Harris).

Abstract

Estimating the distribution of impervious surfaces and vegetation is important for analyzing urban landscapes and their thermal environment. The application of a crisp classification of land cover types to analyze urban landscape patterns and land surface temperature (LST) in detail presents a challenge, mainly due to the complex characteristics of urban landscapes. In this paper, sub-pixel percentage impervious surface area (ISA) and fractional vegetation cover (FVC) were extracted from bi-temporal TM/ETM+ data by linear spectral mixture
analysis (LSMA). Their accuracy was assessed with proportional area estimates of impervious surface and vegetation extracted from high resolution data. A range approach was used to classify percentage ISA into different categories by setting thresholds of fractional values and these were compared for their LST patterns. For each ISA category, FVC, LST and percentage ISA were used to quantify the urban thermal characteristics of different developed areas in the city of Fuzhou, China. Urban LST scenarios in different seasons and ISA categories were simulated to analyze the seasonal variations and the impact of urban landscape pattern changes on the thermal environment. The results show that FVC and LST based on percentage ISA can be used to quantitatively analyse the process of urban expansion and its impacts on the spatial-temporal distribution patterns of the urban thermal environment. This analysis can support urban planning by providing knowledge on the climate adaptation potential of specific urban spatial patterns.

Keywords: Linear spectral unmixing; Percentage impervious surface area; Fractional vegetation cover; Discretization; Land surface temperature; Remote sensing

1. Introduction

The urban heat island (UHI) effect is caused by increased use of impervious surface materials with low specific capacity, and an associated decrease in vegetation cover and water pervious surfaces leading to rising land surface temperature (LST); as well as the emission of heat from human activities (Kato and Yamaguchi, 2005). Increases in impervious surface area (ISA) have significant environment implications, including a reduction in evapotranspiration, more rapid surface runoff, increased storage and transfer of sensible heat, and a deterioration of air and water quality (Goward, 1981; Owen et al., 1998; Wilson et al.,
2003; Chen et al., 2006). These changes have a significant influence on human health, landscape aesthetics and the local urban environment (Mcpherson et al., 1997; Xian and Crane, 2006). Clarification as to how changes in the coverage of impervious surfaces and vegetation cover contribute to observed variations in local urban LST is required in order to aid mitigation of the UHI effect and enable urban areas to effectively adapt to climate change.

LST is a physical parameter that is influenced by land surface–atmosphere interactions and energy fluxes between the land surface and the atmosphere (Wan and Dozier, 1996). Accurate information on landscape patterns and LST is critical to environmental monitoring, urban planning and management. Advances in remote sensing have enabled the extensive use of satellite remote sensing to estimate LST at global and local scales (e.g. Justice et al., 1998; Weng, 2001; Chen et al., 2006). Data from the Landsat suite of satellites (e.g. Thematic Mapper (TM) and Enhanced Thematic Mapper (ETM+)) are often used to detect spatial and temporal variations in urban ISA, vegetation and surface temperature, mainly due to a combination of their relatively high spatial resolution (30m for visible and near infrared bands, and 120m or 60m for the thermal infrared for TM and ETM+ respectively) and their ease of access (Woodcock and Strahler, 1987; Zhang et al., 2009).

The abundance of vegetation and ISAs are often used as indicators of urban climate (Lo et al., 1997; Gallo and Owen, 1999; Yuan and Bauer, 2007; Xian and Crane, 2006; Xu et al., 2013). The fractional vegetation cover (FVC) in urban areas can be related to the Normalised Difference Vegetation Index (NDVI) through a simple, yet not necessarily linear, transformation (e.g. Nemani and Running, 1989; Lo et al., 1997; Gallo and Owen, 1999; Weng et al., 2004; Yuan and Bauer, 2007; Zhang et al., 2009; Karnieli et al., 2010; Sandholt et al., 2002). Consequently the FVC is also closely linked to LST and is therefore one of the most important variables in land surface modelling (Zhang et al., 2013). However, in
comparison to the use of NDVI for the estimation of FVC, the measurement of impervious surfaces is more desirable since they are more stable and not affected by seasonal change (Arnold and Gibbons, 1996; Civco et al., 2002). Consequently, ISA is a useful additional metric for an analytical understanding of LST anomalies.

The heterogeneity of urban landscapes is such that traditional per-pixel classifiers, such as the maximum likelihood classifier, cannot effectively handle the mixed-pixel problem of remotely sensed imagery. This hampers an accurate analysis of the spatial structure of urban environments. Sub-pixel or soft classification approaches provide a good way to characterize and quantify the heterogeneity present in urban land cover patterns (Lu and Weng, 2006; Frazier and Wang, 2011; Weng, 2012). Linear spectral mixture (LSM) models, such as the vegetation–impervious–soil (VIS) model, assume that the spectral signature of land cover in urban environments is a linear combination of vegetation, impervious surface and soil, if water surfaces are ignored (Ridd, 1995). Such models are often used to map the fractional cover of urban landscapes on a continuous scale (e.g. Smith et al., 1990; Rashed, 2008; Michishita et al., 2012). Information on the percentage ISA and vegetation cover can provide a complementary metric to the traditionally applied NDVI or crisp land cover classes for LST and UHI analysis (Weng et al. 2004). The different urban land cover/land use patterns can be defined by different percentage ISA categories to reveal various densities and patterns of urban development. A number of studies have used vegetation fractional cover and ISA as a means to analyze the spatio-temporal patterns of LST (Gillies et al., 1995; Weng et al., 2004; Xian and Crane, 2006; Yuan and Bauer, 2007; Zhang et al., 2009, 2013). In these studies, percentage ISA and FVC were extracted from remotely sensed data and individually analyzed with LST. To our knowledge, no current published research has calculated FVC values based on discrete categories of percentage ISA and analysed its effect on urban LST.
investigating the relationships between the mean LST and FVC based on different percentage ISA categories, our aim was to characterise these relationships of urban landscape patterns and thermal characteristics more accurately.

The surface UHI is obviously influenced by seasonal variation (Roth et al., 1989; Voogt and Oke, 2003). Though the temporal change trends between the LST and percentage ISA show some seasonal differences, in general there is a linear relationship between LST and percentage ISA in different seasons when urban expansion is considered (Yuan and Bauer, 2006; Zhang et al., 2009). However, with increased concerns about local impacts of global climate change and urban expansion, it is necessary to differentiate the seasonal variation from impacts of urban expansion on the urban thermal environment. Such an analysis has the power to indicate spatio-temporal patterns of both the urban thermal environment and urban expansion, and to develop future urban climate scenarios under urban expansion. This will be helpful for strategic planning and urban design that explicitly considers adaptation to unavoidable climate change.

The main aim of this study is to quantify the spatial-temporal patterns of different impervious surface areas and their influence on urban LST in Fuzhou, China. Sub-pixel fractional cover will be derived through linear spectral unmixing and the fractional values of ISA will subsequently be divided to create a series of ISA coverage categories in relation to the density of urban development using the range approach. Based on the different ISA categories, urban thermal patterns will be analyzed by remotely sensing mean FVC and mean LST, and quantifying the impacts of seasonal variations and urban landscape pattern changes on LST.

2. Study area and remote sensed data
Fuzhou City is the capital city of Fujian province and located on the southeast coast of China (Fig. 1). The population of Fuzhou has been rapidly increasing since the 1980s, with a permanent population of approximately 5.2 million in 1989 and 6.5 million in 2001. The city is on a subtropical plain sandwiched between the Gu and Qi mountains. The vegetation cover in the region is predominantly evergreen and the FVC in different seasons is almost invariable. The increase in population, coupled with the high summer temperatures (average of 37.5 days per year with a temperature > 35°C) and mild winters, make the city an ideal study area.

Fig. 1. Location of the study area, the right shows a false colour composite Landsat ETM+ image, acquired on March 4, 2001 (Red = band 4, Green = band 3, Blue = band 2)

The climatic variations of Fuzhou during the spring, autumn and winter are small compared to the summer climate. Therefore, bi-temporal (early spring and summer) Landsat images, together with a high resolution IKONOS image and aerial photograph, were used in this research (Table 1). All data were georeferenced to a common UTM coordinate system based on the geocoded high resolution IKONOS image and aerial photograph. The RMSE of the georectification of the Landsat data was <0.3 pixels (<9m).

Table 1 Landsat and high resolution images of Fuzhou used in the study

6
The visible and near infrared bands of the Landsat images were converted to surface reflectance using the Second Simulation of the Satellite Signal in the Solar Spectrum (6S) radiative transfer code (Schroeder et al., 2006). The NDVI was calculated based on surface reflectance of bands 3 and 4. The IKONOS image and aerial photograph were used to extract land cover types to analyse the accuracy of fractional covers extracted from the Landsat data.

3. Methods

3.1 Land surface temperature retrieval

The thermal band of the Landsat imagery was first converted to top-of-atmosphere (TOA) radiance \((L_\lambda, \text{ mW cm}^{-2}\text{sr}^{-1})\) using sensor specific gains and offsets (Chander and Markham, 2003; Schroeder et al., 2006). The TOA radiance of the thermal infrared band was then converted to surface-leaving radiance using the radiative transfer code MODTRAN 4.1 to estimate atmospheric transmission, upwelling and downwelling radiance. Surface-leaving radiance \(L_T\) was subsequently calculated using Eq. 1 (Barsi et al., 2005):

\[
L_T = \frac{(L_\lambda - L_\mu - \tau (1-\epsilon)L_d)}{\tau \epsilon} \quad (1)
\]

Where \(L_T\), \(L_\mu\), \(L_d\) are surface-leaving radiance of kinetic temperature, upwelling (atmospheric path radiance) and downwelling (sky radiance), respectively; and where \(\tau\) is the atmospheric transmission and \(\epsilon\) is the emissivity of the surface. Here, the \(\epsilon\) was derived from land cover types and NDVI (e.g. Sobrino et al., 200; Yuan et al., 2007; Van and Owe, 1993; Zhang et al., 2006). In Eq. (1), \(L_\lambda\) is TOA radiance image with 120m resolution for TM band 6 and 60m resolution for ETM+ band 6. The \(\epsilon\) parameter was calculated from 30m resolution land cover data and an associated NDVI image. \(L_\mu\), \(L_d\) and \(\tau\) are scalars. Therefore, Eq. (1) is a process.
of merging 120/60m resolution L_λ and 30m resolution ε images, the resolution of L_T is thus

In the final step, radiance (L_T) was converted to surface temperature using the Landsat specific estimate of the Planck curve (Eq. 2) (Chander and Markham, 2003):

$$T = \frac{K_2}{\ln (K_1/L_T + 1)} \quad (2)$$

Where T is the temperature in Kelvin (K), K_1 is the pre-launch calibration constant in $W/(m^2 \text{sr } \mu m)$ and K_2 is another pre-launch calibration constant in Kelvin. For Landsat 5 TM, $K_1=607.76 \text{ W/(m}^2 \text{sr } \mu m)$ and $K_2=1260.56 \text{ K}$; for Landsat 7 ETM+, $K_1=666.09 \text{ W/(m}^2 \text{sr } \mu m)$ and $K_2=1282.71 \text{ K}$.

3.2. Derivation of urban coverage of impervious surface area (ISA) and fractional vegetation cover (FVC)

Linear spectral mixture analysis (LSMA) was used to extract fractional land cover from the Landsat imagery. LSMA is a sub-pixel mapping approach which assumes that the spectrum measured by a sensor is a linear combination of the spectra of all endmembers within the pixel, and that the spectral proportions of the endmembers represent proportions of the area covered by distinct features on the ground (Adams et al., 1995; Mustard and Sunshine, 1999; Mitraka et al., 2012). A constrained least-squares solution, where fractions of a pixel must sum to 1 and all fractions must be greater than or equal to zero, was applied to spectrally unmix the six Landsat bands.

Endmember selection is a critical step in the use of LSMA (Boardman and Kruse, 2001). In this study, image endmembers identifying spectrally pure pixels were derived by the Pixel
Purity Index (PPI) and the extremes of the image feature space. A Minimum Noise Fraction (MNF) transformation was initially applied to the imagery to reduce inherent noise. In applying the PPI analysis to the MNF output to rank the pixels based on relative purity and spectral extremity, the PPI was computed by repeatedly projecting n-dimensions scatter plots on a random unit vector and the algorithm records the extreme pixels in each projection and the total number of times that each pixel was marked as extreme. By setting a PPI threshold, the region of interest (ROI) of pure pixels was determined. Within this ROI, endmember classes were selected by choosing pixels at the edges of the point cloud in three-dimensional scatterplots as pure pixels. All LSMA procedures were undertaken in ENVI 4.5.

The urban environment can be assumed to consist of four fundamental components: water, vegetation, impervious surfaces and soil (Ridd, 1995). Because of the varied spectral response of many urban environments, two endmembers were used to represent the difference in albedo of impervious surfaces, i.e. high and low (Lu and Weng, 2006). Because the water endmember class is not directly relevant to urban land cover composition, and the spectral features of water are similar to those of low-albedo impervious areas, water was masked from the images and not included as an endmember. Consequently four endmembers were defined in the study area: vegetation, high-albedo impervious surfaces, low-albedo impervious surfaces and soil. The high-albedo impervious surfaces are mainly the bright impervious surfaces with high spectral reflectance (such as concrete); and the low-albedo impervious surfaces are mainly the dark impervious surfaces with low spectral reflectance (such as asphalt).

Initial results indicated some confusion between bright high-albedo ISAs and bare soil areas distributed alongside the river. Field investigation showed that the bare soil (fine sand) is mainly distributed along the river. Land cover thematic data, extracted from an IKONOS
image and aerial photographs, were used to identify these regions and their values were set to zero in the high-albedo fraction images. The high-albedo and low-albedo impervious surfaces were subsequently summed to create an overall percent cover of ISA.

3.3. Accuracy assessment of percentage ISA and vegetation cover derivation

Accuracy assessment of fractional images is inherently difficult. Due to a lack of *in situ* fractional data, the accuracy of the fractional land cover maps was assessed using high-resolution IKONOS imagery and aerial photographs as validation data. The characteristic scale of urban reflectance has been shown to be between 10 to 20 m (Small, 2003, 2005), thus we assumed that the majority of pixels within the high resolution images were spectrally homogeneous.

The TM/ETM+ images were geo-referenced to a common UTM coordinate system based on the rectified high-resolution IKONOS image and aerial photograph. The RMSE of rectification is less than 0.3 pixels (9 m). The iterative self-organizing data analysis technique algorithm (ISODATA) was used to map ISAs and vegetation cover from the reference imagery (IKONOS imagery and aerial photographs). The percentage cover of ISA and vegetation was determined for each 30 x 30 m Landsat pixel and compared with the LSMA fractional images. This approach was deemed feasible because the two dates for which the aerial photographs and IKONOS images were acquired, were close to those of the Landsat imagery. Because the high resolution imagery did not cover the entire study area, the test area of Fig. 2 was selected as an example (180 TM/ETM+ pixels) to derive the scatter plots to analyse the accuracy of the sub-pixel fractional covers.
Fig. 2. A comparison of urban land cover pattern in same position between auxiliary IKONOS imagery (a) and percentage ISA extracted from ETM+ imagery by LSMA (b); illustrating the light colour ISA and deep colour vegetation in high-resolution imagery and corresponding percentage ISA from 0-100% extracted from the mixed pixels from relatively coarse spatial resolution data.

Percent cover of ISA and vegetation derived from the reference data were determined for each 30 x 30 m Landsat pixel and then compared with the LSMA fractional images. Scatter plots of fractional ISA and vegetation coverage were used to determine the accuracy of the LSMA at the level of the individual pixel. The accuracy was also assessed for test areas within the imagery by comparing the areas of the cumulative fractional coverage of impervious surface and vegetation with those estimated from the high resolution reference imagery. Using the high-resolution data as surrogate ‘ground truth’, the accuracy was assessed by comparing the areas of accumulated impervious surface and vegetation generated from TM/ETM+ imagery by LSMA with the areas extracted from high resolution data. Test areas were chosen to avoid temporal land cover change influencing the accuracy assessment, in which the land cover type was unlikely to have changed because the aerial photographs and IKONOS image acquired were respectively nearly the same date as the TM/ETM+ imagery.

3.4. Creation of fractional ISA categories by the range approach

In order to quantify urban land cover patterns and their relationship with the thermal environment, percentage ISA cover was classified into categories representing different levels of urban development. A range approach was used to group pixels based on proportional ranges of fractional values. For each endmember fractional image, each pixel was assigned to one of 10 equal categories (0%-10%, 10%-20%, 20%-30%.....90%-100%)
depending on its fractional value. Grouping fractional covers in this manner facilitates analysis of observed urban LSTs within each zone in detail, and the spatial distribution patterns of the urban thermal environment can be analysed and compared in areas of different urban density.

4. Results and discussion

4.1. Accuracy of fractional cover maps

4.1.1 Per-pixel accuracy

One sample plot (Fig. 2), which overlapped with the reference data availability, was selected to derive scatter plots to assess the per-pixel accuracy of the fractional cover maps. Fig. 3 shows a significant relationship (p<0.01) between the fractional coverage estimates obtained from LSMA of the Landsat data and that derived from the high resolution reference data. As shown in Fig. 3, the unmixing percentage ISA and FVC by LSMA tend to have a higher error when the reference fractions are either very low or very high; slightly overestimating impervious surface fraction in less developed areas (<30% ISA) (Fig. 3a and c), while overestimating and underestimating impervious surface fractions in developed areas (>60% ISA) (to some extent, inverse to FVC). Because the ISA and vegetation extracted from IKONOS and aerial photographs are the results of a crisp classification, the aggregated 30m scale fractional cover from high resolution data can account for the variation in spectral signatures more effectively than those extracted from Landsat imagery by LSMA. However, in general the unmixing results from the Landsat imagery were correlated to those from high resolution data.
Fig. 3. The scatterplots of ISA and vegetation endmember fractions unmixed from TM/ETM+ imagery and fractional cover from high resolution data (p=0.01)

4.1.2 Area-based accuracy

Accuracy of the total areas of the test sites were also assessed for four locations within the imagery (Fig. 4a) by comparing the cumulative area of fractional cover for each land cover with those estimated from the high resolution reference imagery. Table 2 shows the results from a comparison of the ‘reference’ areal coverage obtained from IKONOS and aerial photographs, with the corresponding area calculated from an accumulation of the fractions that were obtained from the TM/ETM+ imagery by LSMA.

Table 2 Results of accuracy assessment of LSMA fractions. Areas measured in km².

Table 2 indicates good agreement for ISA and vegetation between the measures calculated from the Landsat and the high resolution imagery. The area of ISA and vegetation in the four test sites in 1989 and 2001 showed only small differences when compared with the reference data. One reason for the differences is due to differences in spatial scale that land cover mapping can require different approaches and classification schemes at different spatial resolutions (Woodcock and Strahler, 1987). For example, at a 2.5m resolution a land cover class of ‘tarmac’ may have to be defined to map road surfaces, while at 30m resolution road surfaces would be located in mixed pixels with other urban land cover classes and may be subsumed into a class “urban areas”. The accuracy of impervious surface and vegetation fractions is slightly lower in 1989, this can also be seen in Fig. 3. One reason for this is that
the interpretation of aerial photographs and the TM image respectively is less precise than that of IKONOS and ETM+ because the qualities of IKONOS and ETM+ images are higher than the aerial photographs and the TM image in the study area. In addition, urban expansion and vegetation changes between 1989 and 2001 can also be seen from the test areas in Table 2. Because urban green spaces attracted more and more attention in urban planning, the vegetation areas of the urban test site 2 increased from 0.191 km² in 1989 to 0.220 km² in 2001. However, in general, because of urban expansion, the vegetation area decreased between this period.

4.2. Bi-temporal patterns of fractional cover

Fractional covers with continuous values can be used to reveal not only the spatial structure of urban land cover patterns, but also the change patterns in different urban categories or within-class change (Zhang et al., 2009). In some areas, minor land cover change may be taking place at the sub-pixel scale but would not yet be detectable at the pixel scale using hard classification approaches. Fig. 4 shows the results from the LSMA of the Landsat data for the years 1989 and 2001. The fractional images provide a measure of the physical properties of the urban land cover patterns within the scene at two different dates, thus helping reveal the changing patterns of urban land cover composition. ISA and vegetation cover vary remarkably between the core of the city and its periphery. Impervious surface area increases at the periphery of the city due to urban expansion (Fig. 4a and b). The total area of urban ISA in 1989 was less than in 2001 because of urban expansion. However, the percentage coverage of ISA within some pixels was higher. One reason for this is a greater attention to the ecological planning of the urban landscape post 1989 in the study area,
which may have resulted in more vegetation cover interspersed within the developed areas, as observed in Fig 4c and 4d.

Fig. 4. Fractional ISA and FVC images for six TM/ETM+ reflective bands using LSMA: (a) 1989 percentage ISA, (b) 2001 percentage ISA, (c) 1989 FVC, and (d) 2001 FVC. The four sample plots delineated with polygons in (a) represent test sites used for accuracy assessment. Brighter areas indicate a higher fractional abundance of the endmember.

In addition to the range approach, the threshold continuum approach was also used to partition the percentage ISA using a gradient. This method only uses a lower boundary to define each zonal threshold for the categories, which was set in increments of 10% (>10%, >20%, >30% >90%). For each zonal threshold, all pixels exceeding that threshold were assigned to that zone representing the degree of urban expansion. Using this approach, fractional coverage data were each grouped into 9 discrete classes, one for each of the 9 cover zones. Fig. 5 shows the changes of impervious surfaces and vegetation areas at different percentage ISA categories classified by the range and threshold continuum approaches. Areal coverage of impervious surface/vegetation for each ISA zone was calculated by summing the total area of each pixel within that category. The area of impervious surface/vegetation in each pixel was calculated by multiplying the fractional value with the pixel area of 900m², and then the total area was accumulated by the area of each pixel in the percentage ISA category. Between 1989 and 2001, impervious surface area (i.e. >10% cover) in the region increased from 141 km² to 180 km² (Fig. 5b), indicating
significant urban expansion over this time period. Increases in the extent of impervious surfaces were greatest in the highest cover categories (i.e. 60–70% ISA, 70-80% ISA, 80–90% ISA and 90-100% ISA) but decreased in the regions where urban development was generally low (i.e. 20-30%, 30-40% and 40-50% ISA; Fig. 5a). This shows the urbanization mainly took place in the >60% ISA category. The greatest increase in the area of impervious surface occurred in the 90-100% ISA zone (6.4 km² and 25.7 km² in 1989 and 2001 respectively), indicating that high density urban development was the dominant mode of urbanization during this time period. The area variations in the categories of 0-10%, 10-20% and 20-30% ISA (<30% ISA) were small (Fig. 4a), this can also been seen in Fig. 4b. The areas of impervious surface within the threshold continuum zones decreased as the threshold increased.

Fig. 5 The total areas of ISA and vegetation (km²) of each category of fractional cover between 1989 and 2000. (a) areas of ISA for range approach, (b) areas of ISA for threshold continuum approach, (c) areas of vegetation for range approach, (d) areas of vegetation for threshold continuum approach.

Results also indicate a concurrent increase in urban fractional vegetation cover between 1989 and 2001. In order to further verify the impervious surface change and analyze the change of urban land cover patterns, vegetation cover is also used to quantitatively characterize the urbanization patterns. Fig. 5c and 5d show the area of vegetation based on different categories of percentage ISA between 1989 and 2001. Comparing the areas of impervious surface in Fig. 5a and 5b, the area of urban vegetation (Fig. 5c and 5d) increased in a similar manner to that of impervious surface area in the categories of 60-70% ISA, 70-
80% ISA, 80-90% ISA and 90-100% ISA (>60% ISA), suggesting that the increased urbanisation during this time period was accompanied with urban greening. Vegetation covered landscapes in urban areas were more interspersed with the various developed urban structures in 2001 in comparison to 1989 as a result of paying more attention to urban greening as urban expansion continued. Vegetation was planted in areas such as parks, residential areas and roadsides. Between 1989 and 2001, vegetation area decreased in coverage zones containing pixels with less than 60% ISA categories. Especially, the area of vegetation in the category of 0-10% ISA decreased from 254 km² in 1989 to 182 km² in 2001 because of urban expansion in the periphery of urban vegetation (Fig. 4). The areas of impervious surface (Fig. 5a) and vegetation (Fig. 5c) all decreased in the categories of 20-30% ISA, 30-40% ISA and 40-50% ISA between two dates. However, in the category of 50-60% ISA, the area of impervious surface slightly increased from 1989 to 2001, the area of the vegetation slightly decreased.

A comparison of the range and threshold continuum approaches for characterising fractional coverage showed differences in both the number and the distribution of the pixels at each threshold value. For the range approach, the number of pixels in each of the ranges is relatively small and the pixels are comparatively uniform. For the threshold continuum approach, all pixels above a threshold value are cumulative, and a larger number of pixels are included as the threshold decreases. Consequently we can infer that the range approach is suitable for analysis on specific ranges of land cover such as different urban development densities areas in this study with comparative uniform pixels. The specific land cover patterns and the changes can be quantified through range threshold. The threshold continuum method results in heterogeneous pixels (especially for a low threshold) and is more suitable for characterizing the landscape with a continuum of values such as the degree of urban
expansion. In some situations, it may be necessary to combine these two approaches to analyse the spatial patterns of specific ranges and their impacts on the entire area or the thermal environment of the whole area. This information is important for urban planning.

4.3. Seasonal impact on LST in different percentage ISA categories

Impervious surfaces and vegetation cover are two of the primary urban land covers. Quantification of the relationship between these land covers and LST will help to facilitate the characterisation of spatial patterns of urban LST and provide useful information for urban ecological planning. Fig. 6 shows the spatial patterns of LST across Fuzhou City from imagery obtained in 1989 and 2001. LST appears to be stratified by degree of imperviousness and vegetation cover, with higher LST occurring over more developed land.

(a)
(b)

Fig. 6 Spatial distribution patterns of land surface temperature (LST) from the TM image acquired on June 15, 1989 (a) and ETM+ image acquired on March 4, 2001 (b).

The LST varies with urban landscape patterns, changing urban expansion and seasonal variations. In order to quantify the urban thermal environment for urban climate adaptation, it is necessary to differentiate the impact of urban expansion on LST within each percentage ISA category from the impact of seasonal variations. Because of the limitation of the TM/ETM+ data acquisitions, we could not acquire all the seasonal data in 1998 and 2001. However, the climatic variations of Fuzhou during the spring, autumn and winter are small compared to the summer climate. Therefore, bi-temporal (early spring and summer) Landsat images are applicable to analyse the impact of urban expansion and seasonal variations on
LST in this research. What is more, due to the seasonality and the variability of atmospheric conditions, it is inappropriate to directly compare LST values between two dates. However, by simulating LST scenarios, we can determine how seasonal variations and urban landscape patterns changes impact urban LST in a quantitative manner.

As discussed by Zhang et al. (2009), although the relationships between percentage ISA and mean LST may be different in each season, a relatively strong linear relationships between the mean LST and percentage ISA was observed in the study area for both 1989 and 2001. The regression equation of mean LST and mean percentage ISA in summer (June 15) in 1989 is:

\[y = 0.017x + 299.61 \quad (R^2 = 0.6945) \quad (3) \]

For early spring (March 4) in 2001, the regression equation is:

\[y = 0.0191x + 288.66 \quad (R^2 = 0.6731) \quad (4) \]

Here, y and x are the mean LST and mean percentage ISA respectively. Based on this analysis, LST scenarios can be created in different seasons to analyse the seasonal impact on LST.

Fig. 7 shows the mean LST and percentage ISA in summer and early spring of 1989 and 2001. In which, mean LST scenarios of 1989 in early spring was calculated based on mean percentage ISA and equation (4) (here, x in equation (4) is percentage ISA values of 1989). Similarly, mean LST scenarios of 2001 in summer were calculated based on mean percentage ISA and equation (3) (x in equation (3) is percentage ISA values of 2001). Through comparing LST indifferent years and with LST scenarios, we can differentiate LST change from urban expansion and seasonal variations.
Fig. 7 The relationship between mean LST and mean ISA for different ISA categories in summer and early spring for both dates of study.

The results show that although urban expansion impacted on the variations of LST within each ISA category, the primary reason for LST variations between 1989 and 2001 is seasonal variation. By comparing mean LST in two seasons, the seasonal LST difference for each percentage ISA category can be quantified. In Fig. 7, the LST is on average 9-12K higher for each percentage ISA category in the summer of 1989 than the simulated LST for early spring of 1989. Similarly, simulated LST for the summer of 2001 is approximately 11-12K higher than the LST in the early spring of 2001. In general, the seasonal variation between early spring and summer changed the LST by about 10-12K in the urban landscape patterns with >10% ISA.

Comparing the expected LST for the same season and same climatic conditions in different years, the urban landscape patterns changed in each percentage ISA category from 1989 to 2001. The distributions and the shapes of ISA changed, and the areas of ISA subtly changed because of urban expansion, which also resulted in subtle variations of the mean percentage ISA values and mean LST in each ISA category between the two years. In the study area, the LST differences by ISA category are within ~2 K in summer between 1989 and 2001 and ~1 K in early spring between 1989 and 2001. Though the accuracies of simulating LST are lower than those obtained from direct calculation from TM/ETM+ data, and the simulated LST has a smaller range than the LST from TM/ETM+, the results show the simulated LST scenarios can be used to quantify the seasonal variations and impacts of urban landscape patterns change on the spatio-temporal patterns of LST in different percentage ISA categories.
For urban planning and adaptation to climate change, an analysis and prediction of LST scenarios for different seasons and different percentage ISA categories are needed to explore the climate adaptation potential in different percentage ISA categories of cities. This can be achieved through a characterization of the study site using the analytical method shown here, and quantifying the city’s thermal environmental functions under urban expansion and different climate scenarios.

4.4. FVC and LST analysis in different percentage ISA categories

At the pixel scale, LST increases as coverage of impervious urban area expands and decreases as the vegetation coverage increases. Measuring LST using the fractional variation in impervious surface and vegetation in the pixels of a particular percentage ISA category, can not only provide precise characterizations of urban land cover and LST patterns, but may also be useful for urban ecological planning.

In contrast to previous published studies, our approach goes beyond a simple analysis of FVC and its impact on LST. Here, FVC is analysed in a stratified design by percentage ISA category. Figure 8 illustrates the differences in the mean LST and FVC for each percentage ISA category. Natural landscapes are depicted by low ISA but high FVC. The dense natural vegetation reduces the surface radiant temperature leading to relatively low LST values because vegetation reduces the surface radiant temperature through evapotranspiration (Zhang et al., 2013). The results show that average FVC gradually decreases with a concomitant increase in LST, and high average FVC lowers the mean LST for both years.

(a)
(b)

Fig. 8 Mean LST and mean FVC for different ISA categories. (a) 15 June 1989 and (b) 4 March 2001.
As shown in Fig. 8, the mean LST was 301.7 K at 60-70% ISA and 300.6 K at 50-60% ISA in 1989, 289.2 K at 60-70% ISA and 288.8 K at 50-60% ISA in 2001. Mean FVC was 31.4% at 60-70% ISA and 40.8% at 50-60% ISA in 1989, 34.6% at 60-70% ISA and 40.2% at 50-60% ISA in 2001, respectively. Therefore, when mean FVC increased from 31.4% to 40.8% in 1989, it lowered the mean LST by 1.1K (LST difference between 60-70% ISA and 50-60% ISA). However, when mean FVC increased from 34.6% to 40.2% in 2001, it only lowered the mean LST by 0.4K, due to the seasonal differences. FVC thus has a seasonally specific cooling effect on the urban environment that depends on the evapotranspiration rate and ambient LST. Other categories can also be analysed in the same way described here. A quantification of the variation of FVC and LST in different ISA categories can provide information on urban landscapes and their thermal environmental structure in urban areas of different degrees of development. The basis of these relationships is that higher levels of latent heat fluxes are more representative of vegetation cover in comparison to impervious surface areas where low surface moisture availability but significant sensible heat exchange occur. With the percentage ISA maps from the TM/ETM+ and high resolution imagery, it is possible to further analyse the spatial-temporal distribution of LST in different land cover patterns such as transport infrastructure areas, industrial land and residential areas of different local micro-climatic zones.

5. Conclusions

Urban expansion in Fuzhou resulted in an increase of impervious surface area and decrease of vegetation area, which impacted on the variation in the urban thermal environment and caused changes in regional climate. Hard (per-pixel) classification of urban land cover types cannot effectively handle the mixed pixel problem in medium spatial
resolution images, commonly resulting in an underestimation or overestimation of land cover
types, especially in a complex urban land cover pattern where impervious surface or
vegetation account for a small proportion of the study area (Lu et al., 2011). The use of sub-
pixel fractional cover can effectively interpret spatial-temporal urban land cover and LST
patterns.

In this study, LSMA was used to extract the sub-pixel percentage coverage of ISA and
FVC, the accuracy of fractional cover was assessed using test areas and correlation analysis
with information obtained from very high resolution remotely sensed imagery as reference
data. The scatterplot analysis showed that the unmixing results from the Landsat imagery
were generally correlated to those from high resolution data. There was also good agreement
for the area of ISA and vegetation between the measures calculated from the Landsat and the
high resolution imagery. The sub-pixel fractional ISA values were subsequently classified
into different categories of urban developed areas using the range approach and further
analysed in conjunction with LST patterns. Besides the urban landscape changes that resulted
from urban expansion, seasonal variations impacted on the observed LST patterns at the two
acquisition dates. LST scenarios in the ISA categories and different seasons were simulated
to analyze the impacts of seasonal variation and urban landscape changes on the urban
thermal environment. The results show that the presented methodology is suitable to integrate
fractional cover components and LST for an investigation of the urban thermal
environment. This has the advantage of characterizing urban landscape patterns and LST in
different urban developed areas. Such analysis can provide knowledge for urban planning,
ecological construction and climate adaptation policies in cities.

The above results suggest three major conclusions:
(1) Classifying continuous percentage ISA into different categories, calculating FVC and LST based on the categories of percentage ISA, is a suitable approach for quantifying the process of urban expansion and its impacts on the spatial-temporal distribution patterns of the urban thermal environment.

(2) The range approach is suitable for the specific ranges of land cover with uniform pixels related to the different urban development areas. The threshold continuum approach results in heterogeneous pixels, and is suitable for characterizing the landscape related to the degree of urban expansion. The combinations of range and threshold continuum approaches are suitable for analysing complex urban land cover patterns and the impact of each ISA category on the thermal environment.

(3) LST scenarios at each percentage ISA category can be simulated in different seasons and can be used to differentiate urban landscape changes from seasonal variations on LST patterns. This methodology can also be used to predict the likely impact of urban expansion on urban climates and further provide information for urban adaptation to climate change.

The proposed methodology can add a new perspective to the understanding of urban land cover pattern and thermal environment. In this study, mean LST and FVC were calculated based on the 10% increments of percentage ISA. Future research can investigate the impact of utilising different thresholds to classify percentage ISA coverage to determine whether optimal thresholds for landscape characterization can be identified in urban areas. If coarse threshold increments are applied, some inherent sub-pixel detail will be lost. Though fine threshold can reveal the detailed urban land cover pattern, it cannot effectively analyze different categories of urban developed areas and the thermal environment.

The size, shape and spatial arrangement of the land cover patches influence the thermal environment (Liu and Weng, 2008). However, landscape metrics have not been calculated
from urban fractional cover such as percentage ISA, which is closely related to urban
landscape patterns. This is because these metrics cannot be calculated directly from the soft
classification of ISA of remotely sensed images. Future research can discretise percentage
ISA of different zones and further calculate landscape metrics to quantify the process of
urban expansion and characterizing their urban thermal patterns.

Acknowledgments
This research was supported by a grant from the China Scholarship Council (CSC) (No.
201208350005). Heiko Balzter was supported by the Royal Society Wolfson Research Merit
Award, 2011/R3.

References
Classification of multispectral images based on fractions of endmembers: Application
to land cover change in the Brazilian Amazon.” Remote Sensing of Environment 52:
137–154.
Arnold, C. L. Jr., and C. J. Gibbons. 1996. “Impervious surface coverage the emergence of a
key environmental indicator.” Journal of the American Planning Association 62:
243–258.
Bain, D. J., and G. S. Brush. 2004. “Placing the pieces: Reconstructing the original property

List of Figure Captions

Fig. 1. Location of the study area, the right shows a false colour composite Landsat ETM+ image, acquired on March 4, 2001 (Red = band 4, Green = band 3, Blue = band 2).

Fig. 2. A comparison of urban land cover pattern in same position between auxiliary IKONOS imagery (a) and percentage ISA extracted from ETM+ imagery by LSMA (b); illustrating the light colour ISA and deep colour vegetation in high-resolution imagery and corresponding percentage ISA from 0-100% extracted from the mixed pixels from relatively coarse spatial resolution data.

Fig. 3. The scatterplots of ISA and vegetation endmember fractions unmixed from TM/ETM+ imagery and fractional cover from high resolution data (p=0.01).

Fig. 4. Fractional ISA and FVC images for six TM/ETM+ reflective bands using LSMA: (a) 1989 Percentage ISA, (b) 2001 Percentage ISA, (c) 1989 FVC, and (d) 2001 FVC. The four sample plots delineated with polygons in (a) represent test sites used for accuracy assessment. Brighter areas indicate a higher fractional abundance of the endmember.

Fig. 5. The total areas of ISA and vegetation (km²) of each category of fractional cover between 1989 and 2000. (a) areas of ISA for range approach, (b) areas of ISA for threshold continuum approach, (c) areas of vegetation for range approach, (d) areas of vegetation for threshold continuum approach.
Fig. 6. Spatial distribution patterns of land surface temperature (LST) from the TM image acquired on June 15, 1989 (a) and ETM+ image acquired on March 4, 2001 (b).

Fig. 7. The relationship between mean LST and mean ISA for different ISA categories in summer and early spring for both dates of study.

Fig. 8. Mean LST and mean FVC for different ISA categories. (a) 15 June 1989 and (b) 4 March 2001.

List of Table Captions

Table 1 Landsat and high resolution images of Fuzhou used in the study.

Table 2 Results of accuracy assessment of LSMA fractions. Areas measured in km².