PHARMACOLOGY

Drugs acting on the heart: antihypertensive drugs

Matthew Charlton
Jonathan Thompson

Matthew Charlton MBChB FRCA is a Specialist Registrar and Honorary Lecturer in Anaesthesia and Critical Care, University Hospitals of Leicester NHS Trust, UK. Conflicts of interest: none declared.

Jonathan Thompson BSc (Hons) MD FRCA FFICM is a Senior Lecturer and Honorary Consultant in Anaesthesia and Critical Care at the University of Leicester and UHL NHS Trust, Leicester Royal Infirmary, UK. Conflicts of interest: none declared.

Learning objectives

After reading this article, you should be able to:
• categorize antihypertensive treatments according to their mechanisms of action
• name the important potential adverse effects associated with specific antihypertensive drugs
• decide when hypertension should be treated, according to recent guidelines

Abstract

Antihypertensive drugs are used commonly in anaesthesia and intensive care medicine. Patients might require antihypertensive drugs before surgery for the treatment of essential hypertension, pre-eclampsia or, occasionally for conditions such as phaeochromocytoma; during surgery as part of a deliberate hypotensive anaesthetic technique; or to reduce postoperative cardiovascular complications. Here, we discuss the physiology of blood pressure control, the pharmacology of antihypertensive drugs, current guidelines, and practical applications of antihypertensive therapy.

Keywords antihypertensive agents; autonomic nervous system; blood pressure; hypertension; renin–angiotensin system; vasomotor system

Introduction

Arterial pressure is modulated by the interaction among vessel tone, blood volume, and cardiac function, which are regulated by local and nervous mechanisms. Local mechanisms include metabolites that influence vascular tone and blood flow within tissues. Nervous mechanisms control the distribution of blood throughout the body, as well as coordination of cardiac output, heart rate, and contractility. The autonomic nervous system (ANS) is controlled by centres in the spinal cord, brainstem and hypothalamus, which are influenced by higher centres. The renin–angiotensin system (RAS) affects vascular tone and excretion of sodium and water in response to changes in circulating volume and arterial pressure. Blood pressure can be manipulated by drugs acting at several of these sites (Figure 1).

Autonomic nervous system

Centrally acting agents
Clonidine: a central α₂-agonist that decreases sympathetic tone and is occasionally used for the treatment of hypertension. Premedication (3–5 μg/kg orally or 1-2 μg/kg intravenously) attenuates perioperative sympathetic responses. Clonidine reduces the minimum alveolar concentration (MAC)
of anaesthetic agents and has analgesic effects when administered epidurally, being synergistic with opioids. Adverse effects include sedation, bradycardia and rebound hypertension after acute withdrawal of chronic therapy.

Methyldopa: a DOPA analogue that is metabolised to α-methylnorepinephrine, which acts as a potent central α₂-agonist. Methyldopa is mostly used in the treatment of pregnancy-associated hypertension; the initial dose is 250 mg two or three times daily. Adverse effects include oedema, hepatotoxicity, positive direct Coombs’ test (10–20%), and bone marrow suppression.

Moxonidine: an imidazoline I₁-receptor agonist and a structural analogue of clonidine that acts as a central sympatholytic agent. Moxonidine is used when systemic vascular resistance is high but heart rate and stroke volume are normal. It also can be used in the management of hypertension associated with end-stage renal failure. The main adverse effect is bradycardia.

General anaesthetic agents: also cause hypotension, mainly by decreasing central sympathetic tone and lowering the peripheral vascular resistance by causing dose-related vasodilatation.

Sympathetic outflow

Epidural and spinal: local anaesthetics and opioids inhibit the sympathetic outflow leaving the spinal cord from T1–L2, causing vasodilation and hypotension.

α-Blockers

α-Blockers inhibit the action of catecholamines at peripheral α-adrenergic receptors.

Phentolamine: a competitive non-selective, short-acting α-blocker used in the treatment of hypertensive crises seen with phaeochromocytoma or cocaine intoxication. An intravenous dose of 1–5 mg causes a rapid reduction in blood pressure for 5–20 minutes.

Phenoxybenzamine: a long-acting, non-selective α-blocker that is mainly used in the preoperative management of phaeochromocytoma. Starting dose is 10 mg orally.

Prazosin and doxazosin: selective α₁-blockers that cause vasodilation. They are also used for benign prostatic hyperplasia (relaxation of urinary tract smooth muscle), congestive heart failure and Raynaud’s disease. All α-blockers should be titrated carefully as first-dose hypotension can be severe. They have additional favourable metabolic effects on lipid and glucose metabolism.

β-Blockers

β-blockers cause hypotension via several mechanisms: they reduce cardiac output (decreased heart rate and contractility), central sympathetic nervous activity, plasma renin concentrations and peripheral resistance. Hence, they are useful antihypertensive agents in patients with ischaemic heart disease, obstructive cardiomyopathy, congestive heart failure (with caution), arrhythmias, anxiety and thyrotoxicosis. Adverse reactions include worsening of unstable heart failure, bronchospasm, cold extremities and impaired glucose control. β-blockers can be classified according to:

• Cardioselectivity: β₁-selective drugs (e.g. atenolol, metoprolol, bisoprolol) cause fewer adverse β₂-mediated effects, such as bronchospasm and hyperglycaemia.
• Intrinsic sympathomimetic activity (ISA): drugs with ISA (e.g. pindolol) are partial agonists that are less likely to cause bradycardia, arteriovenous conduction disturbances or cold extremities.
• Combined α- and β-blockers: (e.g. labetalol, carvedilol) are non-selective β- and α₂-antagonists that cause vasodilation and have fewer adverse effects.
Atenolol is a cardioselective β-blocker with no ISA. Dose is 25–100 mg per day orally or 2.5–10 mg by slow intravenous bolus, which can be followed by an infusion.

Labetalol is a combined α₁- and β-blocker (ratio 1:7 intravenous; 1:3 oral). The oral dose is 200–800 mg daily in divided doses. An intravenous bolus of 50–200 mg can be given slowly, or an infusion of 5–150 mg/h can be titrated to effect. It reduces the systemic vascular resistance, while maintaining cerebral, renal, and coronary blood flow.

Dopaminergic agonists
Fenoldopam is an antagonist at peripheral DA₁ receptors that causes vasodilation, primarily of the coronary, renal and mesenteric vasculature. Used in hypertensive emergencies and occasionally used in low doses for renal protection from acute tubular necrosis or acute renal failure, although recent studies suggest this may not be beneficial.

Renin–angiotensin system

The renin–angiotensin system (RAS) is involved in cardiovascular and fluid homeostasis. It can be manipulated at several points to cause hypotension:

- inhibition of renin release (β-blockers or central α-agonists)
- direct inhibition of renin (e.g. aliskiren)
- inhibition of angiotensin-converting enzyme (ACE) (e.g. enalapril, lisinopril) to prevent production of the potent vasoconstrictor angiotensin II
- direct blockade of angiotensin II receptors (AT1) (e.g. losartan, candesartan)
- competitive inhibition of aldosterone (e.g. spironolactone)

Angiotensin-converting enzyme inhibitors
Angiotensin-converting enzyme inhibitors (ACEIs) are used in the treatment of hypertension (less effective in the elderly and black populations), heart failure, left ventricular dysfunction and diabetic nephropathy. Adverse effects include profound hypotension (first dose and perioperative), renal insufficiency (contraindicated in renal artery stenosis), hyperkalaemia, cough (increased bradykinin) and angioedema. Several are pro-drugs (e.g. ramipril, enalapril, lisinopril) and should be used with caution in patients with impaired liver function. All should be used with caution in renal impairment and should be avoided in pregnancy due to potential teratogenicity. Ramipril is commenced at 1.25 mg PO and titrated up to 10 mg per day.

Angiotensin II receptor blockers
Angiotensin II receptor blockers (ARBs) specifically block the AT1 receptor subtype, leading to a lower incidence of cough and angioedema; hence, compliance is improved compared to ACEIs. The daily dose of losartan is 25–100 mg.

Aliskiren: the first non-peptide, oral, direct renin inhibitor that also reduces plasma renin activity. It can be given alone or in combination with other antihypertensive medications, although combination with ACEIs and ARBs is not recommended. It may cause hyperkalaemia, hypotension and renal dysfunction. Long-term safety data are lacking to date and it is not widely used.

Vasodilators

Calcium channel blockers
Calcium channel blockers (CCBs) block the entry of calcium through L-type (long-lasting) channels. The effects are negative myocardial inotropy, reduced excitability in nodal cells and peripheral vasodilation. The degree of each effect depends on the class of calcium channel blocker:
• phenylalkylamines (e.g., verapamil) act primarily on cardiac conducting tissue, so they are used mostly as antiarrhythmic agents.
• dihydropyridines (e.g., nifedipine, nimodipine, nicardipine, amlodipine) mostly cause vasodilation and are used for treatment of hypertension. Nicardipine can be given as an intravenous infusion in the acute management of hypertensive crises.
• benzothiazepines (e.g., diltiazem) act preferentially on coronary vessels, so they are used as antiarrhythmic and anti-angina drugs.

Adverse effects of CCBs include reflex tachycardia, bradycardia (verapamil should not be given with β-antagonists), headache, flushing and potentiation of neuromuscular blockers.

Nitric oxide donors
GFcylcine trinitrate (GTN): used for the treatment of hypertension (venodilation) and angina (reduced myocardial oxygen demand). It can be administered sublingually, as an oral modified release tablet, transdermally or intravenously (10–200 μg/min). Adverse effects include tachycardia, tolerance (within 48 hours), postural hypotension, platelet dysfunction and headache.

Sodium nitroprusside (SNP): causes dilation of arteries and veins. SNP can be used in a hypertensive crisis and for deliberate hypertensive anaesthesia. It has fast onset and offset times, but it is photosensitive, so the infusion should be protected from light. Typical dose range is 0.5–8 μg/kg/min. Adverse effects are similar to GTN, but with the additional risk of cyanide poisoning, myocardial ischaemia and rebound hypertension. Tachyphylaxis may occur.

Potassium channel activators
Hydralazine, minoxidil and diazoxide: cause arterial vasodilatation. Hydralazine is used in hypertensive crises in doses of 5–10 mg by slow intravenous bolus or as an infusion of 50–150 μg/min. Adverse effects include reflex tachycardia and fluid retention.

Diuretics
Diuretics can be used to reduce blood pressure by reducing plasma volume and producing vasodilation. Bendroflumethiazide is a thiazide used in low doses (2.5 mg) to treat hypertension, either alone or with other drugs (for more severe hypertension and heart failure). Adverse effects include hyperglycaemia (especially with β-blockers), electrolyte disturbances, and gout. If increased diuresis is required, a loop diuretic (furosemide) can be added; if potassium loss is a problem, a potassium-sparing diuretic (amiloride) can be given.

Guidelines for treatment of hypertension
According to the National Institute for Health and Clinical Excellence (NICE), there is a 7% increased risk of mortality from ischemic heart disease and a 10% increased risk from stroke with each 2-mmHg rise in blood pressure. Patients should be assessed for the possible causes of hypertension, for organ damage caused by hypertension and for other cardiovascular risk factors (Table 1). NICE has outlined a guide for the drug treatment of hypertension, which is summarised in Figure 2. The presence of other diseases can be a compelling indication for additional or alternative therapy (e.g., angina, CCB or β-blocker; heart failure/diabetic nephropathy, ACEI or ARB). Antihypertensive drugs are often combined in lower doses to cause additive or synergistic effects with fewer adverse effects than with monotherapy (e.g., ACEI or β-blockers with CCB or diuretic; AB/CD algorithm). Secondary prevention (aspirin and statins) should be considered for all patients with hypertension complicated by cardiovascular disease.
Antihypertensive drugs and anaesthesia

Fluctuations in heart rate and arterial pressure during anaesthesia and surgery are exaggerated in patients with hypertension. Uncontrolled preoperative hypertension is associated with worse perioperative cardiac outcomes (odds ratio 1.35)\(^5,6\), but this association might not be clinically significant. The absolute risk depends on the degree of hypertension and the presence of end-organ damage. Arterial pressures of <180 mmHg systolic or <110 mmHg diastolic do not increase perioperative risk substantially and surgery should be cancelled only in order to treat hypertension in patients with stage 3 hypertension with organ damage or those with other significant risk factors. Antihypertensive medications should usually be continued throughout the perioperative period to help attenuate cardiovascular responses, with the possible exception of ACEIs and ARBs, which can be associated with refractory perioperative hypotension.

(Figure 1 & Figure 2 to remain the same as previous versions).

(Table 1: in attached word file).

References

Further reading

BNF 68. Section 2.5 Hypertension and Heart Failure.

