House, Land and Place: A Re-evaluation of Central Adriatic Communities (Sixth to First Centuries BC)

Thesis Submitted for the degree of Doctor of Philosophy at the University of Leicester

By

Martin John Sterry MA (Leicester)
School of Archaeology and Ancient History
University of Leicester
May 2010
Abstract

House, Land and Place: A Re-evaluation of Central Adriatic Communities (Sixth to First Centuries BC)
Martin Sterry, University of Leicester

This thesis seeks to investigate the diversity and breadth of landscapes as experienced in everyday life in Adriatic central Italy during the sixth to first centuries BC. This was a crucial period of change in central east Italy (modern Abruzzo and Le Marche) with the emergence of states and the expansion of Roman imperial power which led to the annexation and the absorption of Iron Age groups. Through examination of both fieldwalking survey and excavation data this study examines the different aspects of life – the construction of identities, households and communities the relationship between people and the land and the biographies of different places.

Four trajectories are pursued: A re-evaluation of household living through synthesis of all available evidence for housing and settlements. A study of changing land-use practices using the data from intensive field-walking projects. Investigation into how cemeteries and sanctuaries were created, used and re-used. A GIS-based study of local patterns of production, distribution and consumption through detailed analysis of ceramic fabrics and forms collected from survey.

New tools for the implementation of Correspondence Analysis in GIS are developed and existing methods for thresholding are adapted to allow for the analysis of the inherent variability in the data in terms of the pottery forms, fabrics, relationships and associations found in and between survey scatters.

The results provide new insights into the declining role of local community structures as a result of the growth of individual households, the development of new attitudes to property, land ownership and ways of farming, and the emergence of more concrete and hierarchical identities.
Acknowledgements

I am extremely grateful to all those that have helped me over the years. Sadly, I am only able to mention a few here.

Firstly, I would like to thank my supervisors, Neil Christie and Colin Haselgrove. They have been an essential source of enthusiasm, advice, support and have heroically read and commented on numerous drafts of my work, not all of which were punctuated.

Frank Vermeulen (Potenza Valley Survey), Guy Bradley and Olivia Mennozi (Iuvanum Survey Project) and Gary Lock and Neil Christie (Sangro Valley Survey) very kindly gave me access to their collected results before publication. Raw survey data have been vital to my research and gave me the freedom to experiment and explore different ideas. I am thankful for the trust and interest they have had in my studies. The ceramicists of these projects – Alison Macdonald, Keith Swift and Patrick Monsieur must also be praised. This project would have been impossible without their hard work and expertise; any errors or omissions in this work are the fault of myself alone.

I was fortunate to be awarded the Wingate Scholarship for 2008/09 and held an Erasmus Scholarship at the Università di Bologna from October 2008 to March 2009. These funds allowed me to spend invaluable time in Italy accessing original source material and although it was not always easy, it turned out to be a thoroughly enjoyable and enriching experience.

I am also thankful for my first-hand experience of Le Marche and Abruzzo. Guy Bradley sent me to Italy as a first year undergraduate and it was to my delight that project directors Ed Bispham and Susan Kane invited me to participate in the Sangro Valley Project in 2005 and 2007. Frank Vermeulen invited me to the Potenza Valley Project and extended me the warmest hospitality. I have many fond memories of these times and met many friends and future colleagues. These are too many to mention, but I would like to especially thank Ed, Tom, Chris, Rob, Mel, China, Marta and all at the Bar dello Sport of Tornareccio.

This thesis would have been impossible without the dedication and perseverance of a fine group of individuals who have read and discussed parts of it with me. Particularly, I must thank my Mum (Ann Sterry), who undertook the Herculean task of proof-reading this thesis. Its quality improved immeasurably as a result of her efforts. Again, all errors and omissions are my own. Also, Brookynne ‘Tyr’ Fothergill, Nana Friedman, Chris Green, Kate Parks, Andy Tullett and Rob Wanner contributed their thoughts on various sections of this work.

Many others have helped, supported and, on occasion, moved and housed me through my study at Leicester. I am indebted to the time, patience, help, advice and friendship of: Huw Barton, Ed Bispham, Francesco Bona, Maurizio Catani, Elly and Bob Cowan, Jonas Danckers, John Dore, Mel Edgar, Matt Edgeworth, Dave Edwards, Julia Farley,
Nana Friedman, Brooklynn 'Tyr' Fothergill, Lin Foxhall, Mark Gillings, Mireya Gonzalez Rodriguez, Katie Huntley, Thomas Leppard, Alex Livarda, Rachel Marriott, David Mattingly, Lesley McFadyen, Stephanie Merlo, Andy Merrills, Sharon North, Deirdre O'Sullivan, Kate and Steve Parks, Mark Pluciennik, Nick Ray, Katharina Rebay-Salisbury, Ian Reeds, Claire Strachan, Sarah Tarlow, Jeremy Taylor, Richard Thomas, Andy Tullett, Marijke van der Veen, Dimitri Van Limbergen, and Rob Wanner.

The journey of my PhD has not been undertaken alone, but rather with a (sometimes merry, sometimes surly) band of postgraduates. This community has enriched my life with friendship, support, consolation, delight, help moving house, parties, conferences, drinking, dancing, whimsy, absurdity and love.

Finally, I would like to thank my family that have grown – Mum, Dad, Rob, Melissa, Madeline, Tim, Rocket, Fennel, Humphrey and Ma'at (and all those that came before) and my love, Tyr. You have all supported me, kept me fed, sheltered me and solved countless problems throughout my PhD and before. This work is testament to your belief, strength of character and perseverance and I dedicate it to all of you.

Martin Sterry

Sunday 23rd May 2010
Table of Contents

Abstract ................................................................................................................................... i
Acknowledgements ............................................................................................................... ii
List of Figures ....................................................................................................................... x
List of Tables ...................................................................................................................... xx

Chapter One: Introduction ............................................................................................. i
  1.1 The Research Theme ............................................................................................... i
  1.2 Three Books on Late First Millennium BC Italy ................................................... i
      1.2.1 Background to the Studies .............................................................................. 2
      1.2.2 Structure of the Arguments ............................................................................ 3
      1.2.3 Key Concepts .................................................................................................... 4
  1.3 Research Aims .........................................................................................................
      1.3.1 Research Area .................................................................................................... 6
      1.3.2 Research Data .................................................................................................... 6
      1.3.3 Aim 1: The Changing Experiences of the Everyday .......................................... 7
      1.3.4 Aim 2: Central Adriatic Italy in its Wider Context ........................................... 8
      1.3.5 Aim 3: New Methodologies for Old/Existing Data .......................................... 8
  1.4 Structure of the Thesis ............................................................................................ 9

Chapter Two: Theory and Methodology ...................................................................... 11
  2.1 Introduction ........................................................................................................... 11
  2.2 Identity .................................................................................................................... 11
  2.3 Landscape ............................................................................................................... 14
  2.4 Temporality and Taskscapes ................................................................................. 15
  2.5 Community ............................................................................................................. 18
  2.6 Household ............................................................................................................. 20
  2.7 Scale ......................................................................................................................... 22
Chapter Three: Archaeological Background to Abruzzo and Le Marche

3.1 The Environment of Abruzzo and Le Marche
3.2 A Brief History of Excavation Work in the Study Zone
3.3 Survey Archaeology
3.4 The Sangro Valley Survey (SVS)
  3.4.1 The Project
  3.4.2 Geomorphology
  3.4.3 The Upper Valley
  3.4.4 The Middle Valley
  3.4.5 The Lower Valley
  3.4.6 Iuvanum Survey Project (ISP)
  3.4.7 Discussion of the SVS and ISP
3.5 Potenza Valley Survey (PVS)
  3.5.1 The Project
  3.5.2 Geomorphology
  3.5.3 The Upper Valley
  3.5.4 The Middle Valley
  3.5.5 The Lower Valley
  3.5.6 Discussion
3.6 Other Surveys
3.7 Comparing the surveys
  3.7.1 Site Density
  3.7.2 Site Hierarchies
  3.7.3 Continuity and Change
3.8 An Evaluation

Chapter Four: Household Constructions – Settlements and Farmsteads

4.1 Introduction
4.2 Current Models
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.3 Types of Structures</td>
<td>56</td>
</tr>
<tr>
<td>4.3.1 Caves and Shelters</td>
<td>58</td>
</tr>
<tr>
<td>4.3.2 Post-built houses</td>
<td>59</td>
</tr>
<tr>
<td>4.3.3 Stone Foundations</td>
<td>80</td>
</tr>
<tr>
<td>4.3.4 Multiple roomed structures</td>
<td>82</td>
</tr>
<tr>
<td>4.4 Hillforts</td>
<td>92</td>
</tr>
<tr>
<td>4.5 Scatters and Deposits</td>
<td>98</td>
</tr>
<tr>
<td>4.6 Implications of the data</td>
<td>98</td>
</tr>
<tr>
<td>4.6.1 Site Interpretation</td>
<td>100</td>
</tr>
<tr>
<td>4.6.2 Construction, Maintenance and Reconstruction</td>
<td>101</td>
</tr>
<tr>
<td>4.6.3 Organisation</td>
<td>102</td>
</tr>
<tr>
<td>4.6.4 Non-structural features</td>
<td>103</td>
</tr>
<tr>
<td>4.7 Trends in house development</td>
<td>104</td>
</tr>
<tr>
<td>4.7.1 House Biographies</td>
<td>106</td>
</tr>
<tr>
<td>4.7.2 Construction</td>
<td>107</td>
</tr>
<tr>
<td>4.7.3 Habitation</td>
<td>109</td>
</tr>
<tr>
<td>4.7.4 Abandonment and Post-Abandonment</td>
<td>109</td>
</tr>
<tr>
<td>4.8 Discussion</td>
<td>110</td>
</tr>
</tbody>
</table>

Chapter Five: Occupation and the use of the Land

5.1 Introduction                                                      | 111  |
| 5.2.1 Demography                                                     | 112  |
| 5.2.2 Ancient Agriculture and Economy                               | 115  |
| 5.2.3 Intensification Theory and Land-Use Strategies                 | 119  |
| 5.3 Methods                                                         | 122  |
| 5.3.1 The Ceramic Data                                               | 123  |
| 5.3.2 Preparation of the Data                                       | 124  |
| 5.3.3 Comparative Layers                                            | 125  |
| 5.3.4 Assumptions                                                    | 127  |
| 5.4 Results                                                         | 130  |
| 5.4.1 Change by Survey Block                                        | 134  |
| 5.4.3 The Lower Potenza                                              | 135  |
| 5.4.4 The Middle Potenza                                            | 143  |
5.4.5 The Upper Potenza .......................................................... 151
5.4.6 The Iuvanum Plateau ......................................................... 159
5.4.7 The Middle Sangro ............................................................ 167

5.5 Interpretation ........................................................................... 173
5.5.1 Expansion ........................................................................... 173
5.5.2 Intensification ................................................................. 175
5.5.3 Extensification ................................................................. 176
5.5.4 Specialisation ................................................................. 177
5.5.5 Continuity ........................................................................... 178

5.6 Conclusions ............................................................................. 178

Chapter Six: Cemeteries and the Funerary Record .................. 180
6.1 Introduction ............................................................................. 180
6.2 Cemeteries .............................................................................. 180
6.3 Current Interpretations of Burial Evidence ......................... 183
6.4 Types of Tombs ....................................................................... 185
6.4.1 Cut Burials .......................................................................... 187
6.4.2 Chamber Tombs ............................................................... 188
6.4.3 Tumuli ................................................................................ 189
6.4.4 Markers ............................................................................... 191
6.5 The Size and Age of Cemeteries ........................................... 192
6.6 Placement of Cemeteries ...................................................... 194
6.7 Internal Structure of Cemeteries ......................................... 197
6.7.1 Le Marche ........................................................................... 197
6.7.2 Coastal Abruzzo ............................................................... 200
6.7.3 Mountainous Abruzzo ..................................................... 201
6.8 Activity within cemeteries ................................................... 204
6.8.1 Case Study 1: Matelica, Macerata ..................................... 204
6.8.2 Case Study 2: Ancona ..................................................... 208
6.8.3 Case Study 3: Fossa, L'Aquila .......................................... 210
6.9 Trends in Burial Patterns ..................................................... 213
List of Figures

Figure 2.1. Map of Sannium (after Salmon 1967) ................................................................. 23
Figure 3.1. Flocks of sheep in the Monti Sibillini, Le Marche (Photo courtesy of Eline Van Heymbeeck) .................................................................................................................. 26
Figure 3.2. Locations of survey case studies ........................................................................... 30
Figure 3.3. The approach to Opi in the upper Sangro Valley (Photo courtesy of Neil Christie) . 33
Figure 3.4. IA fieldwalking scatters in the Middle Sangro .................................................... 34
Figure 3.5. Roman fieldwalking scatters in the Middle Sangro ............................................. 35
Figure 3.6. Excavations of a rural complex at Acquachiara (www.sangro.org) ....................... 35
Figure 3.7. Features on the summit of Monte Pallano (From Faustoferri 2008: 81) ................ 36
Figure 3.8. IA fieldwalking scatters on the Iuvanum Plateau ............................................... 38
Figure 3.9. Roman fieldwalking scatters on the Iuvanum Plateau ......................................... 38
Figure 3.10. IA fieldwalking scatters in the Upper Potenza (Vermeulen et al. 2006: Fig. 24) .... 41
Figure 3.11. Roman fieldwalking scatters in the Upper Potenza (Vermeulen et al. 2006: Fig. 29) . 42
Figure 3.12. IA fieldwalking scatters in the Middle Potenza (Vermeulen et al. 2006: Fig. 25) .... 43
Figure 3.13. Roman fieldwalking scatters in the Middle Potenza (Vermeulen et al. 2006: Fig. 30) 43
Figure 3.14. IA fieldwalking scatters in the Lower Potenza (Vermeulen et al. 2006: Fig. 26) .... 44
Figure 3.15. Roman fieldwalking scatters in the Lower Potenza (Vermeulen et al. 2006: Fig. 31) .... 45
Figure 4.1. Map of sites discussed in this chapter .................................................................... 57
Figure 4.2. Location map of Iron Age sites around Matelica (Biocco and Silvestrini 2008: 27) . 60
Figure 4.3. Excavated area of Crocifisso. A-I longhouses, (Sabbatini 2008a: Fig. 36) ......... 61
Figure 4.4. Plan of features from Via Spontini. 1. Post-hole; 2. modern feature; 3. tomb (Gobbi and Biocco 2003: Fig. 7) ................................................................. 62
Figure 4.5. Plan of features from Via Tiratori. 1. Limit of excavation; 2. Edge of artificial scarp; 3. modern features; 4. Iron Age features (Gobbi and Biocco 2003: Fig. 6) ......... 62
Figure 4.6. Pottery kiln with intact support form Via Pergolesi (Biocco and Silvestrini 2008: 35) .... 63
Figure 4.7. Double pottery kiln from località Trinità (Biocco and Silvestrini 2008: 30) .......... 63
Figure 4.8. Excavated features at the Palazzo Chierichetti (Biocco and Silvestrini 2008: 32) .... 64
Figure 4.9. The site of Cavalieri (Biocco et al. 2008: 41) ......................................................... 65
Figure 4.10. Excavated features in area A, Cavalieri (Biocco et al. 2008: 42) ......................... 66
Figure 4.11. Excavated features in area B, Cavalieri (Biocco et al. 2008: 43) .......................................67
Figure 4.12. Post-hole with closing deposit from area B (Biocco et al. 2008: 47) ..................................68
Figure 4.13. Excavated features in area C, Cavalieri (Biocco et al. 2008: 48) ..................................69
Figure 4.14. Four-post structure from area C (Biocco et al. 2008: 49) ........................................69
Figure 4.15. Plan of features from Moscosi di Cingoli (De Marinis and Silvestrini 2003. Fig. 3) ........71
Figure 4.16. Plan of features from Celano Paludi, quadrant B5 marked by square (Cosentino et al. 2002: Fig. 1) ........................................................................................................................................72
Figure 4.17. Plan of features from quadrant B5 of Celano Paludi (Cosentino et al. 2002: Fig. 2) ....72
Figure 4.18. Plan of features from Tortoreto-La Fortellezza (Vanzetti et al. 2003: Fig. 3) ............73
Figure 4.19. Plan of first and second phase features from Madonna degli Angeli (Mieli et al. 2003: Fig. 1) ...............................................................................................................................................74
Figure 4.20. Plan and section of third phase features from Madonna degli Angeli (Mieli et al. 2003: Fig. 2) ........................................................................................................................................75
Figure 4.21. Plan of Patate-Santa Maria, Vastogirardi (Mieli and Cosentino 2006: 111) ..............76
Figure 4.22. Plan of house from Arcora (Di Niro 1991: Fig. 1) .........................................................77
Figure 4.23. Excavated features from Acquachiara (Bispham et al. 2008: Fig. 1) .......................78
Figure 4.24. Excavated dump and landslide deposits from Teramo (Bietti Sestieri et al. 2003: Fig. 1) ...............................................................................................................................................80
Figure 4.25. Plan of structures from Colle Fiorano (Staffa 1998: Fig. 84) ........................................81
Figure 4.26. Reconstruction of Iron Age structure from Pesaro (Naso 2000: Fig. 20) .............82
Figure 4.27. Plan of Cercemaggiore (Di Niro and Petrone 1993: Fig. 5) ........................................84
Figure 4.28. Plan of Ponte di Romito (Rainini 1996: Tav. 21) .......................................................85
Figure 4.29. Plan of Vastogirardi (Capini 2000: Fig. 2) .................................................................86
Figure 4.30. Plan of Samnite and Roman features at San Vincenzo al Volturno (Gilles et al. 2006: Fig. 4) ...........................................................................................................................................87
Figure 4.31. Plan of Samnite and Roman features at Matrice (Lloyd 1991: Fig. 3) ......................88
Figure 4.32. Plan of San Martino in Pensilis (Ceglia 2008: Fig. 3) ................................................89
Figure 4.33. Plan of San Benedetto del Tronto-Colle Aquilino (Mercando, in Verdonck and Vermeulen 2004: Fig. 6) ........................................................................................................................................90
Figure 4.34. Plan of Osimo-Monte Torto (Pignocchi, in Verdonck and Vermeulen 2004: Fig. 7) ....91
Figure 4.35. Plan of features at Angeli di Mergo (De Marinis et al. 2007. No scale on original) ....92
Figure 4.36. Plan of structures on the plateau of Roccagloriosa, Campania (From Guaitieri 1987: 36)........................................................................................................................................20
Figure 4.37. The medieval village of Montenerodomo inside the Iron Age polygonal walls (www.beniarcheologiciabruzzo.it) ............................................................ 97
Figure 4.38. Graph showing different house sizes ordered by date of construction ...................... 105
Figure 4.39. Graph showing the estimated length of occupation for houses built in different periods ........................................................................................................................................... 106
Figure 4.40. The life-cycle of a house (from Gerritsen 2003: Fig. 3.1) .............................................. 107
Figure 4.41. Production process for ceramic tiles (McWhirr and Viner 1978: Fig. 1) .................... 108
Figure 5.1. Ceramic presence by hectares for individual survey blocks ........................................ 130
Figure 5.2. Percentage of TIA and TRoman for individual survey blocks .................................... 131
Figure 5.3. Hectares of qualitative change by survey block ............................................................. 132
Figure 5.4. Percentage of qualitative change by survey block .......................................................... 132
Figure 5.5. Change in use of TIA areas .............................................................................................. 133
Figure 5.6. Qualitative change in the Lower Potenza ...................................................................... 135
Figure 5.7. Absolute change in the Lower Potenza ......................................................................... 136
Figure 5.8. Relative change in the Lower Potenza .......................................................................... 137
Figure 5.9. Elevation by T-category in the Lower Potenza ............................................................... 138
Figure 5.10. Slope by T-category in the Lower Potenza ................................................................... 138
Figure 5.11. Aspect by T-category in the Lower Potenza ................................................................. 138
Figure 5.12. Distance from springs by T-category in the Lower Potenza ....................................... 138
Figure 5.13. Distance from Iron Age sites by T-category in the Lower Potenza ............................ 139
Figure 5.14. Distance from Roman sites by T-category in the Lower Potenza .............................. 139
Figure 5.15. Distance from the Potenza by T-category in the Lower Potenza ............................... 139
Figure 5.16. Distance from streams by T-category in the Lower Potenza ....................................... 139
Figure 5.17. Elevation by qualitative class in the Lower Potenza ..................................................... 140
Figure 5.18. Slope by qualitative class in the Lower Potenza .......................................................... 140
Figure 5.19. Aspect by qualitative class in the Lower Potenza ......................................................... 140
Figure 5.20. Distance from springs by qualitative class in the Lower Potenza .............................. 140
Figure 5.21. Distance from Iron Age sites by qualitative class in the Lower Potenza .................... 141
Figure 5.22. Distance from Roman sites by qualitative class in the Lower Potenza ....................... 141
Figure 5.23. Distance from the Potenza by qualitative class in the Lower Potenza ....................... 141
Figure 5.24. Distance from streams by qualitative class in the Lower Potenza .............................. 141
Figure 5.25. Elevation vs. Slope by the mean of each T-category .......................................................... 142
Figure 5.26. Qualitative change in the Middle Potenza ........................................................................... 143
Figure 5.27. Absolute change in the Middle Potenza ................................................................................. 144
Figure 5.28. Relative change in the Middle Potenza .................................................................................. 145
Figure 5.29. Elevation by T-category in the Middle Potenza ..................................................................... 146
Figure 5.30. Slope by T-category in the Middle Potenza ........................................................................... 146
Figure 5.31. Aspect by T-category in the Middle Potenza .......................................................................... 146
Figure 5.32. Distance from springs by T-category in the Middle Potenza ........................................... 146
Figure 5.33. Distance from Iron Age sites by T-category in the Middle Potenza ...................................... 147
Figure 5.34. Distance from Roman sites by T-category in the Middle Potenza ........................................ 147
Figure 5.35. Distance from the River Potenza by T-category in the Middle Potenza ............................ 147
Figure 5.36. Distance from streams by T-category in the Middle Potenza ............................................... 147
Figure 5.37. Elevation by qualitative class in the Middle Potenza ................................................................. 148
Figure 5.38. Slope by qualitative class in the Middle Potenza ..................................................................... 148
Figure 5.39. Aspect by qualitative class in the Middle Potenza ................................................................ 148
Figure 5.40. Distance from springs by qualitative class in the Middle Potenza ................................. 148
Figure 5.41. Distance from Iron Age sites by qualitative class in the Middle Potenza ............................ 149
Figure 5.42. Distance from Roman sites by qualitative class in the Middle Potenza .............................. 149
Figure 5.43. Distance from the River Potenza by qualitative class in the Middle Potenza .................... 149
Figure 5.44. Distance from streams by qualitative class in the Middle Potenza ........................................ 149
Figure 5.45. Qualitative change in the Upper Potenza ............................................................................ 151
Figure 5.46. Absolute change in the Upper Potenza ................................................................................ 152
Figure 5.47. Relative change in the Upper Potenza .................................................................................. 153
Figure 5.48. Elevation by T-category in the Upper Potenza .................................................................... 154
Figure 5.49. Slope by T-category in the Upper Potenza ............................................................................ 154
Figure 5.50. Aspect by T-category in the Upper Potenza ........................................................................ 154
Figure 5.51. Distance from springs by T-category in the Upper Potenza ............................................... 154
Figure 5.52. Distance from Iron Age sites by T-category in the Upper Potenza ...................................... 155
Figure 5.53. Distance from Roman sites by T-category in the Upper Potenza ....................................... 155
Figure 5.54. Distance from the River Potenza by T-category in the Upper Potenza ............................ 155
Figure 5.85. Slope by T-category in the Middle Sangro .................................................................170
Figure 5.86. Aspect by T-category in the Middle Sangro .................................................................170
Figure 5.87. Distance from springs by T-category in the Middle Sangro ............................................170
Figure 5.88. Distance from the River Sangro by T-category in the Middle Sangro ..............................171
Figure 5.89. Distance from streams by T-category in the Middle Sangro ...........................................171
Figure 5.90. Elevation by qualitative class in the Middle Sangro ......................................................171
Figure 5.91. Slope by qualitative class in the Middle Sangro ............................................................171
Figure 5.92. Aspect by qualitative class in the Middle Sangro .........................................................172
Figure 5.93. Distance from springs by qualitative class in the Middle Sangro .................................172
Figure 5.94. Distance from the River Sangro by qualitative class in the Middle Sangro ....................172
Figure 5.95. Distance from streams by qualitative class in the Middle Sangro .................................172
Figure 5.96. Possible expansion in the Lower Potenza, note the clustering on newly occupied areas (in red) overlaid by the presence of ITS (yellow dots) .............................................................175
Figure 6.1. Location map of sites discussed ........................................................................................181
Figure 6.2. Location of different burial types .......................................................................................186
Figure 6.3. Cut burial from Guardiagrele – Comino (Ruggieri 2003: Fig. 7) .....................................188
Figure 6.4. Cist Tomb from Guardiagrele – Comino (Ruggieri 2003: Fig. 8) .....................................188
Figure 6.5. Example of a chambered tomb from Bazzano (D’Ercole et al. 2003: Fig 1 – No scale or N point on original) ..................................................................................................................189
Figure 6.6. Tumuli from Fossa (Cosentino et al. 2001: Fig 3) .............................................................190
Figure 6.7. Grave circles at Val Fondillo (Faustoferri 2007: Figure 3) .............................................191
Figure 6.8. Number of burials in cemeteries founded in the 5th-1st centuries ...................................194
Figure 6.9. Burial ground of Corfinio aligned along a minor road (D’Ercole and Copersino 2004: Fig 13. No scale on original) .................................................................196
Figure 6.10. Plan of Monta Penna di Pitino (Naso 2000: Fig. 9) ......................................................198
Figure 6.11. Plan of Montefortino di Arcevia (Brizio 1899: Tavola 1) ................................................199
Figure 6.12. Cemetery from Ancona (Colivicchi 2002: Fig.) .............................................................199
Figure 6.13. Cemetery from Ancona (Colivicchi 2002: Fig.) .............................................................200
Figure 6.14. Plan of the ex Gesuiti di Pescara burial ground (D’Ercole and Copersino 2004: Fig.6) .................................................................................................................................201
Figure 6.15. Plan of Loreto Aprutino (D’Ercole and Copersino 2004: Fig.7. No scale or N point on original) .........................................................................................................................201
Figure 6.16. Plan of a part of necropolis of Bazzano (D’Ercole and Martellone 2007: Figure 7).... 202
Figure 6.17. Phased plan of Cinturelli a Caporciano (D’Ercole and Martellone 2007: Fig 11. No scale on original)...............................................................................................................................................203
Figure 6.18. Chambered tombs at Capestrano (D’Ercole and Martellone 2007: Fig 15. No scale or N point on original)...............................................................................................................................................204
Figure 6.19. Necropolis at Brecce, Matelica (Sabbatini 2008a: Fig. 28).............................................205
Figure 6.20. Plan of 2nd-1st century tombs (shaded grey) at Fossa, L’Aquila (D’Ercole and Cosentino 2003: Tav. 1 ) ................................................................................................................................212

Figure 7.1. Map showing the location of colonies (red dots) and the location of anatomical ex-votos (yellow dots).....................................................................................................................................................224
Figure 7.2. Map showing the context of votive deposits from Tables 1-3............................................229
Figure 7.3. Sanctuary sites with architecture in central Adriatic Italy ....................................................233
Figure 7.4. Plan of sanctuary area at Capo Pescara (Van Wontergem 1984: Fig. 272) .....................238
Figure 7.5. Plan of sanctuary area at Fonte San Ippolito (Van Wontergem 1984: Fig. 2).....................238
Figure 7.6. Plan of sanctuary area at Fonte Sant’Agata (Van Wontergem 1984: Fig. 36).....................238
Figure 7.7. Plan of sanctuary area at Iuvanum (Lapenna 1997a: 66)....................................................238
Figure 7.8. Plan of sanctuary area at Vittorito (Van Wontergem 1984: Fig. 251) ...............................238
Figure 7.9. Plan of sanctuary of Ercole Curino (Van Wontergem 1984) .............................................238
Figure 7.10. Aerial Photograph of sanctuary area at Schiavi d’Abruzzo (visual.paginagialle.it)....238
Figure 7.11. Aerial Photograph of sanctuary area at Cansano (visual.paginagialle.it).........................238
Figure 7.12. Plan of temple 1 at Cansano (Tuteri 2005: 402) ..............................................................241
Figure 7.13. Plan of temple 2 at Cansano (Tuteri 2005: 402) ..............................................................241
Figure 7.14. Plan of temple 1 at Iuvanum (Lapenna 1997a: 66)............................................................241
Figure 7.15. Plan of tempio maggiore at Schiavi d’Abruzzo (Lapenna 1997c: 81) .........................241
Figure 7.16. Plan of tempio minore at Schiavi d’Abruzzo (Lapenna 1997c: 81) ............................241
Figure 7.17. Plan of temple at Vacci (Lapenna 1997b: 55).................................................................241
Figure 7.18. Plan of temple at Vacci (Lapenna 1997b: 55).................................................................242
Figure 7.19. Plan of temple at Vacci (Lapenna 1997b: 55).................................................................242
Figure 7.20. Reconstructed plan of temple at Loreto Aprutino. (Staffa 2002: Fig. 48) ....................242
Figure 7.21. Plan of temple at Teramo (Torrieri 2006: Fig. 1)............................................................242
Figure 7.22. Plan of temple on via del Millario, Alba Fucens – in dark grey (Liberatore 2004: Fig. 172)..............................................................................................................................................242
Figure 7.23. Plan of temple 3 at Anxa (Cairoli 2001: Fig. 7) ................................................................. 242
Figure 7.24. Plan of temple at Corfinium (Van Wontergeehm 1984: Fig. 118) ........................................ 242
Figure 7.25. Plan of temple at Atessa (Fabbricotti 1997: 75) ................................................................ 242
Figure 8.1. Colouring of CA bi-plots ........................................................................................................... 263
Figure 8.2. CA Sample and species plots of fabric groups from across central Adriatic Italy (46% of the inertia accounted for by the first axis, 21% by the second) ..................................................... 265
Figure 8.3. CA map plot of fabric groups from across central Adriatic Italy ........................................... 266
Figure 8.4. CA Sample and species plots of fabric groups from across central Adriatic Italy, Lower Potenza excluded (50% of the inertia accounted for by the first axis, 14% by the second) ............ 267
Figure 8.5. CA map plot of fabric groups from across central Adriatic Italy, Lower Potenza excluded .......................................................................................................................................................................... 268
8.6. Distribution of Regional Coarseware 1 and Regional Fineware 1 in the Sangro Valley ..................... 270
Figure 8.7. CA bi-plot of the abundance of Iron Age fabric classes for the Sangro Valley (13% of the inertia accounted for by the first axis, 12% by the second) ............................................................ 271
Figure 8.8. CA map plot of the abundance of Iron Age fabric classes for the Sangro Valley ................. 272
Figure 8.9. CA bi-plot of the presence of Iron Age fabric classes for the Sangro Valley (10% of the inertia accounted for by the first axis, 7% by the second) ............................................................................. 273
Figure 8.10. CA map plot of the presence of Iron Age fabric classes for the Sangro Valley ................. 274
Figure 8.11. CA bi-plot of the abundance of Hellenistic/Republican fabric classes for the Sangro Valley (24% of the inertia accounted for by the first axis, 16% by the second) ......................................... 276
Figure 8.12. CA map plot of the abundance of Hellenistic/Republican fabric classes for the Sangro Valley ................................................................................................................................................................. 277
Figure 8.13. CA bi-plot of the presence of Hellenistic/Republican fabric classes for the Sangro Valley (12% of the inertia accounted for by the first axis, 8% by the second) ........................................... 278
Figure 8.14. CA map plot of the presence of Hellenistic/Republican fabric classes for the Sangro Valley ........................................................................................................................................................................ 279
Figure 8.15. CA bi-plot of the abundance of Late Republic/Early Imperial fabric classes for the Sangro Valley (25% of the inertia accounted for by the first axis, 16% by the second) ........................................... 281
Figure 8.16. CA map plot of the abundance of Late Republic/Early Imperial fabric classes for the Sangro Valley ........................................................................................................................................................................ 282
Figure 8.17. CA bi-plot of the presence of Late Republic/Early Imperial fabric classes for the Sangro Valley (12% of the inertia accounted for by the first axis, 7% by the second) ........................................... 283
Figure 8.18. CA map plot of the presence of Late Republic/Early Imperial fabric classes for the Sangro Valley ........................................................................................................................................................................ 284
Figure 8.19. CA bi-plot of the abundance of Impasto and dolia of handmade Iron Age production in the Sangro Valley (21% of the inertia accounted for by the first axis, 18% by the second) ............ 286
Figure 8.20. CA map plot of the abundance of Impasto and dolia of handmade Iron Age production in the Sangro Valley. 
Figure 8.21. CA bi-plot of the presence of Impasto and dolia of handmade Iron Age production in the Sangro Valley (14% of the inertia accounted for by the first axis, 12% by the second). 
Figure 8.22. CA map plot of the presence of Impasto and dolia of handmade Iron Age production in the Sangro Valley. 
Figure 8.23. CA bi-plot of the abundance of Coarse- and Buffwares of local Hellenistic and Roman production in the Sangro Valley (29% of the inertia accounted for by the first axis, 18% by the second). 
Figure 8.24. CA map plot of the abundance of Coarse- and Buffwares of local Hellenistic and Roman production in the Sangro Valley. 
Figure 8.25. CA bi-plot of the presence of Coarse- and Buffwares of local Hellenistic and Roman production in the Sangro Valley (20% of the inertia accounted for by the first axis, 13% by the second). 
Figure 8.26. CA map plot of the presence of Coarse- and Buffwares of local Hellenistic and Roman production in the Sangro Valley. 
Figure 8.27. CA bi-plot of the presence of Hellenistic and Roman material of regional and supra-regional production in the Sangro Valley (9% of the inertia accounted for by the first axis, 7% by the second). 
Figure 8.28. CA map plot of the presence of Hellenistic and Roman material of regional and supra-regional production in the Sangro Valley. 
Figure 8.29. CA bi-plot of the presence of Hellenistic Black Gloss fabrics of regional production in the Sangro Valley (16% of the inertia accounted for by the first axis, 13% by the second). 
Figure 8.30. CA map plot of the presence of Hellenistic Black Gloss fabrics of regional production in the Sangro Valley. 
Figure 8.31. CA bi-plot of the presence of Late Republic to Early Imperial fine-wares of supra-regional production in the Sangro Valley (17% of the inertia accounted for by the first axis, 15% by the second). 
Figure 8.32. CA map plot of the presence of Late Republic to Early Imperial fine-wares of supra-regional production in the Sangro Valley. 
Figure 8.33. CA species plot of assemblages by form for the Iuvanum Plateau (53% of the inertia accounted for by the first axis, 32% by the second). 
Figure 8.34. CA sample plot of assemblages by form for the Iuvanum Plateau (24% of the inertia accounted for by the first axis, 15% by the second). 
Figure 8.35. CA map plot of assemblages by form for the Iuvanum Plateau. 
Figure 8.36. CA bi-plot of assemblages by form for the Iuvanum Plateau, Impasto only (57% of the inertia accounted for by the first axis, 22% by the second). 
Figure 8.37. CA map plot of assemblages by form for the Iuvanum Plateau, Impasto only. 
Figure 8.38. CA bi-plot (1st and 2nd axes) of assemblages by form for the Iuvanum Plateau, Black Gloss and Impasto only (33% of the inertia accounted for by the first axis, 25% by the second).
Figure 8.39. CA map plot (1st and 3rd axes) of assemblages by form for the Iuvanum Plateau, Impasto and Black Gloss only. 303

Figure 8.40. CA bi-plot (1st and 3rd axes) of assemblages by form for the Iuvanum Plateau, Black Gloss and Impasto only (33% of the inertia accounted for by the first axis, 13% by the second). 304

Figure 8.41. CA map plot (1st and 3rd axes) of assemblages by form for the Iuvanum Plateau, Impasto and Black Gloss only. 304

Figure 8.42. CA bi-plot (2nd and 3rd axes) of assemblages by form for the Iuvanum Plateau, Black Gloss and Impasto only (25% of the inertia accounted for by the first axis, 13% by the second). 305

Figure 8.43. CA map plot (2nd and 3rd axes) of assemblages by form for the Iuvanum Plateau, Impasto and Black Gloss only. 305

Figure 8.44. CA bi-plot (1st and 2nd axes) of assemblages by form for the Iuvanum Plateau, Impasto and Imports excluded (31% of the inertia accounted for by the first axis, 12% by the second). 307

Figure 8.45. CA map plot (1st and 2nd axes) of assemblages by form for the Iuvanum Plateau, Impasto and Import excluded. 307

Figure 8.46. CA bi-plot (1st and 3rd axes) of assemblages by form for the Iuvanum Plateau, Impasto and Imports excluded (31% of the inertia accounted for by the first axis, 11% by the second). 308

Figure 8.47. CA map plot (1st and 3rd axes) of assemblages by form for the Iuvanum Plateau, Impasto and Import excluded. 308

Figure 8.48. CA bi-plot (2nd and 3rd axes) of assemblages by form for the Iuvanum Plateau, Impasto and Imports excluded (12% of the inertia accounted for by the first axis, 11% by the second). 309

Figure 8.49. CA map plot (2nd and 3rd axes) of assemblages by form for the Iuvanum Plateau, Impasto and Import excluded. 309

Figure 8.50. CA bi-plot of assemblages by form for the Iuvanum Plateau excluding Impasto and Dolia (34% of the inertia accounted for by the first axis, 11% by the second). 311

Figure 8.51. CA map plot of assemblages by form excluding Impasto and Dolia for the Iuvanum Plateau. 311
List of Tables

Table 3.1. Site densities ...................................................................................................................................47
Table 3.2. PVS Iron Age site hierarchy .........................................................................................................48
Table 3.3. PVS Roman site hierarchy ...........................................................................................................48
Table 3.4. Iron Age site numbers ..................................................................................................................48
Table 3.5. Roman site numbers .....................................................................................................................49
Table 3.6. Site turnover ...................................................................................................................................50
Table 4.1. Excavated Structures from hilltop sites .....................................................................................94
Table 4.2. Summary of structure types ........................................................................................................99
Table 5.1. Strategies for increasing agricultural production ......................................................................120
Table 5.2. Qualitative change contingency table ......................................................................................125
Table 5.3. Key for qualitative change choropleth maps .............................................................................134
Table 6.1. Approximate periodisation of tombs and individual inhumations in the tombe a camera at Fossa (data compiled from Copersino and D’Ercole 2003). ...............................................................210
Table 7.1. Votive Deposits from Le Marche ................................................................................................217
Table 7.2. Votive Deposits from Abruzzo ...................................................................................................218
Table 7.3. Votive deposits from caves ........................................................................................................220
Table 7.4. Construction at sanctuaries by period .......................................................................................240
Table 8.1. Attributes of main pottery groups studied ..............................................................................259
Table 8.2. Attributes of main pottery forms studied ...............................................................................260
Table 9.1. Relations between Rome and central Adriatic Italy .............................................................330
Chapter One: Introduction

‘...most archaeologists who work on [Italy] are well versed in the Classics. They are naturally happy to find a pattern that seems to fit the ancient history.’

(Herring 2007: 281)

1.1 The Research Theme

This study presents a detailed examination and re-analysis of archaeological sources to model a history of populations and settlements in a crucial period of change in central Adriatic Italy with the emergence of states and the expansion of Roman power. It explores regions and groups away from the much discussed Etruscans and highlights oversights and gaps in the traditional research themes of pre-Roman and Roman Italy. In particular, I seek to consider the interactions that people had with different places and groups, in terms of settlement, farming and land-use, religion (beliefs and burial) and exchange. Throughout this thesis I invoke a landscape perspective, explored at different levels, from individual to regional group, in order to construct a coherent picture of how the different elements of peoples’ lives expressed above fitted together and varied between different areas and different parts of society and how these changed over time. The overall aim is to debunk myths of a simple, timeless and unimportant peasantry (cf. Lloyd 1995a: 196, 201) and instead present a humanised view of the past that shows Iron Age society in an equal light to Roman society. This holistic and ambitious approach naturally has its constraints, as recognised below (sections 1.3, 1.4), but first I offer a discussion of past and current trends in the archaeology of this period and region.

1.2 Three Books on Late First Millennium BC Italy

The study of Iron Age to Roman Italy has been popularised in several British institutions over the last two decades, evident in the volumes of the Accordia Research Institute (Academic Co-ordination Centre [for the] Organisation [of] Research [into the] Development [of] Italy [from] Antiquity) and a number of regional histories, namely those on the central Apennines (Dench 1995), Umbria (Bradley, G. 2000) and Lucania (Isayev 2007a). Whilst in many ways these works have
revolutionised how these regions should be perceived, they are generally written within a narrow framework that has its roots in Ancient History and Classics. This framework is largely uninterested in either European contexts or their associated archaeological method and theory (although Barker and Rasmussen, in common with many studies of Etruscans, is an exception – see below). This insularity is part of a wider phenomenon often present in Classical Archaeology, both in English- and Italian-speaking academia, that frequently exaggerates the primacy of Greece and Rome and their respective eras in all things – hence the most common names for the period: the pre-Roman or Hellenistic period (see Terrenato 2005 for a fuller discussion, although some themes such as post-colonial approaches have been extensively studied). As the accepted method for writing about areas of pre-Roman Italy, the books mentioned now form a possible template for further work. The following brief critique will therefore analyse these cases in order to identify a set of research needs for the current study.

1.2.1 Background to the Studies

An overview of the biographies of the books can help to demonstrate their shared roots and academic background. These three books are all based on PhD theses carried out at Oxford (Dench) and UCL (Bradley, G. and Isayev) and a small group of names recur in their acknowledgements – Michael Crawford (twice as supervisor, once as a reader), Emma Dench (twice as examiner), Tim Cornell (as a reader of two and also mentioned by Dench), John North (as examiner, supervisor and reader) and, to a lesser extent also, Emmanuele Curti, Henrik Mouritsen and Nicholas Pecell. The institutions most prominently involved in these studies – the Department of History at UCL, the Department of Classics at King's College London, the Faculty of Classics at Oxford and the Department of Classics and Ancient History at Exeter – clearly demonstrate the chiefly ancient history perspective of this research area (Interestingly, UK-based scholars of Etruscan archaeology, who generally take a more theoretical approach, are more often based in Archaeology departments – e.g. in Cambridge, Southampton and UCL). Thus, it is perhaps no surprise that all three books put great weight on the historical and epigraphic sources and that the archaeological evidence is almost always used without reference to method or theory.
1.2.2 Structure of the Arguments

The chapter titles of these books demonstrate what are considered the most important areas of study. Dench divides her work equally between ‘Greek and Roman Contexts’ and ‘Local Society’, with the latter comprising identity, religion and social structure. Her main sources for this are settlement patterns and hierarchies, ancient sources, inscriptions and cemetery-derived hierarchies. Bradley’s study takes a diachronic approach from the Iron Age to the Roman period (and encompasses 500 more years than either Dench or Isayev); the structuring links of his chapters are related to the changing relationship of Umbria to the Roman world – pre-conquest, conquest and colonisation, pre-Social War, Romanisation and integration, and, finally, comparisons to other regions of Italy regarding the same processes. Political organisation is the main theme, as in his Chapter Two where state-formation is used as an alternative explanatory model to urbanisation, Chapter Three in which relationships to Roman are considered, and Chapter Four which revolves around urbanism. The secondary focus on Roman and Umbrian identities mirrors Dench’s portrayal of indigenous and Hellenistic identities particularly in Bradley’s fifth chapter, on Romanisation. Whilst this dichotomy is less evident in Isayev’s work, it does come through in her chapter ‘From autonomy to Roman hegemony’ (the adjacent chapters could arguably be renamed ‘Pre-conquest Lucania’ and ‘Post-conquest Lucania’).

The understanding of cultural change through developments in social, or rather, political structure, is thus a key objective of these studies. This is largely conducted through a combination of examining site roles – i.e. for the most part the large, more prominent units, namely the hillforts and sanctuaries – and careful analysis of the fragmentary inscriptions and numismatic evidence (e.g. Dench has an appendix of the three sites that produced evidence of the Oscan Safin-). Related to this are the ideas of state-formation, most clearly expressed by Bradley but also discussed in papers in the edited volume of Herring and Lomas (The Emergence of State Identities in Italy in the First Millennium BC, London 2000). In these articles, state-formation is seen as intimately connected to increasing social complexity which is both encouraged and cut short by the Roman conquest but stimulated by contact with the Hellenic world. It is most easily recognisable in Greek-style poleis or city-states (and hence linked to urbanisation) but attainable by other means (Bispham 2007: 200-201 suggests via the oppida and sanctuaries). The idea of state (as opposed to tribe) under discussion is not so much one derived from anthropology (itself now rather out of fashion) with
stratified societies, craft specialisation, rulers, bureaucracy and taxation, but one derived from Aristotle (Herring 2007: 276-281), with ideas of communal political life conducted through well-defined institutions, governing bodies and officials; hence the focus upon inscriptions that can preserve titles as well as reveal political dynasties (Peacock 1982: 81, also labels Polanyi's 1957 Aristotelian thinking as the root cause for the dichotomy that has emerged between prehistoric economies embedded in social relations - cf. Wells 2008 - and classical economies based on the exchange of goods of equal value). Herring recognises that this mindset may be problematic and is certainly influencing the way we interpret our data, although he does not offer an alternative. These themes parallel those that are most prominent in Bradley et al. (Ancient Italy: Regions without Boundaries, Exeter 2007): urbanisation, identity, state formation, economy and cultural contact.

1.2.3 Key Concepts

As in much recent work on the Roman world, the theme of 'identity' has a fundamental role in all three studies noted above, yet predominantly with reference to ethnicity and in particular to the origins of ethnic groups. Although all make some reference to social status (albeit largely within the structure of ethnic groupings and from the evidence of inscriptions), this is only in terms of the elites, and the role of the subaltern is particularly underdeveloped as it is implied that they did not leave material remains or that their material culture is but a pale imitation of the elites. The increasingly popular idea of 'community' is used as a concept, especially in Isayev's work, but it is not widely theorised, and is used with the same conceptual boundaries and limitations as ethnic groups (however, in her more recent work, Isayev 2007b, makes use of Anderson's 1991 concept of the 'imagined community'). The three scholars are not archaeologists and as such the potential of the archaeology is overall much underexploited. Thus, the concept of landscape is utilised by Bradley to explore economic and geographical considerations of settlement (2000: 48-53) and limited in Isayev to physical descriptions of the 'Italo-Lucanian landscape' to which settlement bands can be mapped (2007a: 3, 6, 60, 65), but there are no notions of temporal, moral and social axes. Concepts that have been of great importance for understanding later prehistory - agency, habitus, practice, place, households, consumption, materiality, technologies, death and remembrance (e.g. the kinds of approaches found in Jones 2008) - are completely absent from all three books. The lack of engagement with these issues demonstrates that the archaeological evidence is neither studied in
its own right or to its fullest potential (although the use of historical, visual and epigraphic sources is often exemplary and beyond many an archaeologist), so that instead of a multifaceted depiction of society we are left once more with an elite-dominated picture of economic and political control of tracts of more or less homogenous landscapes, with Rome a persistent and key background threat and player.

1.3 Research Aims

Important as the three books are, they are far from comprehensive in their discussions; instead they focus on questions of political development and ethnic identity derived ultimately from historical models of the Roman world. The restricted engagement with the physical and material legacies results in imbalances and weak inferences. In response, my study will take an approach that is firmly rooted in the evidence of archaeological contexts, and is designed to generate new insights into aspects of life that have either previously been taken for granted or swept under a historical carpet. I eschew the chronological schemes used by Dench, Isayev and Bradley in favour of a thematic approach. Barker and Rasmussen successfully employed a similar approach in their volume *The Etruscans* (1998), that covered an adjacent region in a slightly earlier period (roughly eighth to fourth centuries BC) – and in which they sought to cover the different aspects of life – society (Ch.4), material culture (Ch.4), settlement (Ch.5), economy (Ch.6), and cult and afterlife (Ch.7). The necessity for tackling the archaeology in this fashion is, in part, because the different forms of archaeological evidence (primarily excavation and field-walking surveys) can be dated with often widely different precisions. However, this is also out of a need to move away from all-encompassing cultural change explanations – state-formation, urbanisation, Romanisation, etc. – to more local or regional perspectives that can properly situate people and agency at the heart of the debate. A telling example of just such an approach can be found in John Robb’s study (2007) of the Italian Neolithic. This is an area and time period with ‘completely unremarkable’ archaeology, in which Robb is able to synthesise the dispersed and regionalised Italian Soprintendenze excavations with a range of university-led international surveys and excavations in order to ‘tell the story of the ordinary past’ (*ibid.* 2-3). His work highlights how recent developments in archaeological thought are useful in accessing the archaeologies of the disenfranchised and investigating the scalar properties of
societies – how the actions of people acting in the short term make history ‘on a scale beyond experience of a single lifetime’ (ibid. 3).

1.3.1 Research Area

As a time-restricted research project, naturally this thesis has geographical and chronological constraints. Despite being the hotbed of the Social War with six of the eight instigating peoples from the study region (the Marsi, Picentines, Paeligni, Marrucini, Vestini, and Frentani), central Adriatic Italy has often been relegated behind its more illustrious neighbours – Etruria and Campania – in the interests of the archaeological community in Italy. The lack of any synthesis of the material (although see Dench 1995) and the recent and impending contributions of several major archaeological projects make it ideal for the kind of study proposed. For the purposes of this thesis I define the study area as encompassing the modern Le Marche and Abruzzo, although I will make frequent reference to material from nearby Molise to the south and, on occasion, other Italian regions when appropriate. Chronologically, I seek to straddle the Prehistoric and Classical periods: the number of sites dating back to the sixth century BC makes this a logical starting point, whilst the grand building projects, veteran settlements, reorganisation and creation of ‘Roman Italy’ at the end of the first century BC provide an equally attractive end point. These six centuries witnessed the supposed development of states from chiefdoms, the prominence of hillforts and sanctuaries, the conquest of the region by Rome (through a myriad of wars, massacres, forced migrations, alliances, colonisations, land acquisitions and no doubt shady deals) and its fuller integration into the wider Mediterranean. It is thus a crucial span, and is one to which archaeology can and should contribute strongly.

1.3.2 Research Data

The archaeology I draw upon is not straightforward, clear, complete nor unbiased. However, there is a long pedigree of at least 120 years of archaeological excavation (almost exclusively focussed upon cemeteries) in the study region and survey projects have been especially prominent over the last 30 years. The archaeology of the study region can be split into two main forms of investigation: excavations and surveys. Excavations can be broadly divided between a few key sites and a majority of small-scale interventions. Cemeteries are particularly well represented and studied, as are
the Hellenistic sanctuaries, although the focus here has largely been on their temple architecture and artworks (Bispham 2007: esp. 181-182). Other sites, in particular habitations sites, have been excavated infrequently and only rarely published in any detail. In this thesis I have attempted to compile my excavation dataset from all published sites, regardless of type, for which details of the location, plan and finds of the excavation can be ascertained.

In common with many other parts of the Mediterranean, fieldwalking surveys have proved a popular form of investigation for university-based teams. Both intensive and extensive projects have been conducted, that together sample a significant percentage of central Adriatic Italy. The intensive survey projects, in particular, made and (and continue to use) some of the most detailed collection and analytical strategies employed in the Mediterranean and combine them with a full range of excavation and remote sensing investigations (e.g. Lock et al. 1999; Bell et al. 2002; Lock 2008; Goethals et al. 2006; Vermeulen et al. 2006a). The raw data from three surveys – Potenza Valley Survey (PVS), Sangro Valley Survey (SVS) and Iuvanum Survey Project (ISP) – were kindly made available by the project investigators in advance of publication, these form my survey dataset (see further Chapter Three).

Below I set out the principal research aims for this thesis:

1.3.3 Aim 1: The Changing Experiences of the Everyday

Current descriptions by historians of the Italian past rarely touch on how the vast majority of people lived their lives. Instead they focus either on the very upper echelons of society, or bland generalisations of timeless peasants (Horden and Purcell 2000: 258-270). Over the last two decades the wider archaeological community has critiqued such approaches for their creation of ‘mindless’ and ‘faceless blobs’ (Tringham 1991). Different cycles of life are now recognised as important – daily activities, seasonal tasks and household rhythms of birth and death (Ingold 1993; Hind 2004). The first aim of my thesis is thus to develop or at least to frame a 'history' of the diversity and breadth of the different experiences of life in the study area of Adriatic central Italy. I will seek to establish the relationships between different social groups and the environment at the level of the household and community and the changing structures of these social systems throughout the study period.
1.3.4 **Aim 2: Central Adriatic Italy in its Wider Context**

The second main research aim seeks to frame Apenninic groups in their wider geographical and historical roles. Historically this area played an important part in the formation and consolidation of the Roman state during the late Iron Age: the area was heavily involved in the Samnite Wars (intermittently from 327-290 BC), Second Punic War (218-202 BC), the Social War (91-88 BC) and the Civil Wars (83-82, 49-48, 43-42 BC). Members of these communities also fought as *socii* in overseas wars from the period of the Second Punic War onwards. Roman colonisation is thus another important topos in accounts of the region, since, for example, several phases of colonisation led to the establishment of colonies of Syracusans, Latins, Roman citizens and veterans, as well as roads and, it is claimed, new land divisions (Dell’Aglio and Marchetti 2004). And yet, little is understood as to how independent central Adriatic groups were from Rome. The archaeology explored here will show that there is scope to analyse the social networks and communities which came into being, were transformed and in time collapsed.

1.3.5 **Aim 3: New Methodologies for Old/Existing Data**

There is now a substantial body of archaeological data for Le Marche and Abruzzo, but, in common with other parts of the Mediterranean, there have been few comparative studies and few attempts to interpret these data in the light of developments in archaeological theory (Cherry 2003; Witcher 2006; 2008. However, the Sangro and Potenza Valleys have been used to test new technologies – Verhoeven 2008, and analytical techniques – Bell *et al.* 2002; Lock 2008). GIS is a key tool in bringing these myriad data together to form a coherent form and providing a system in which they can be compared and analysed as a whole. Thus my third aim is to identify and develop new or alternative methods to read very large bodies of existing and future data. Two main angles are pursued: (i) to find means by which the raw data of survey projects might be compared on an equal basis, and (ii) to answer the critiques of Witcher that in survey archaeology ‘there has been insufficient attention to the very object of study: the agents who created the archaeological record’ (2006: 47). This will be accomplished by analysing survey data in terms of landscape, identity and agency.
1.4 Structure of the Thesis

The theoretical framework for this thesis will be outlined in Chapter Two. Core to this are the archaeological themes of identity, landscape, temporality, household and community. It draws upon the theoretical works of classical archaeologists, but also those working in other areas of inquiry, especially the work of European prehistorians as Italy can and should be seen as part of Europe, as well as the Mediterranean.

Chapter Three will detail the specific data sources for this project. These are split into the two groups already discussed – excavations and surveys. Three major survey projects are at the core of my analyses and a full introduction to their scope, method and initial findings is presented.

In what follows, houses and settlements will play a central role in providing the starting point for enabling us to think how people lived. Chapter Four will thus consider the archaeological evidence for structural forms, and structures of settlement. Robb’s ‘field of action’ (2007), which treats construction as situated within the skills and experiences of actors and the appropriate chaîne opératoire, is of particular value as it forces us to consider the requirements, both social and material, and the intentions of the process. Gerritsen’s (2003; 2008) biographical approach that links the life of the house to the life of the household is also important for its movement away from absolute dating of sites to detailing how and why they were used, modified, maintained and, abandoned or destroyed.

These ideas of changing forms of activity and use are the springboard for Chapter Five which broadens the outlook beyond the settlements to the land itself. Agricultural intensification has often been regarded as a key element of the Roman period fuelling a demographic explosion (see, most recently, Scheidel 2007), and along with it land crises, the exploitation of slave labour and the giant armies of the late Republic. Using the data from fieldwalking surveys this chapter will investigate the evidence for changing agricultural systems and whether these changes (if they exist) can be considered intensification, extensification, expansion or specialisation (O’Connor and Van der Veen 1998; Netting 1993).

Chapters Six and Seven turn to the community-oriented units – and the foci of most previous study – with discussions of what can loosely be described as ‘monumental’ constructions – cemeteries (emerging from the eighth century BC, particularly prominent in the sixth, but decreasing in use in subsequent centuries) and sanctuaries
(in which increasingly lavish buildings were constructed from the second half of the third century onwards). Although the methodology of Chapter Three will be re-applied to these communally-built sites, much greater attention will be placed on the relationship between these sites and the ways in which they were remembered and forgotten, given that once constructed they formed highly visible permanent or semi-permanent points in the landscape. Ideas of knowledge and power will be explored to provide an alternative depiction of how society was structured (compared to those of Dench 1995, Bradley, G. 2000 and Isayev 2007a).

Chapter Eight will reveal some of the complexity and diversity within the changing Iron Age to Roman social systems of the Adriatic study zone by explicitly studying the changing patterns of identity. Here, spatial databases will be exploited in depth using a specially designed form of multivariate spatial analysis, the multifaceted aspects of identity will be studied through patterns of ceramic consumption and exchange, recovered through fieldwalking survey data. This will challenge the normative and bilinear site hierarchies of farm and village, villa and town, common in almost all survey interpretations. Particular emphasis is placed upon the Sangro Valley case study and the divergent histories of two centres – Monte Pallano and Iuvanum – and their respective hinterlands.

The different threads of these chapters – household and community, short-term and long-term change, broad patterns and local diversity – are drawn together in the concluding chapter that will present an alternative view of life in Iron Age to Roman Italy that not only sits alongside those drawn from a more historically-based perspective but is comparable with the wider European Iron Age and Roman periods.
Chapter Two: Theoretical Framework

2.1 Introduction

This chapter will outline and define the theoretical approaches that underlie and drive the research aims outlined in the previous section. Subsequent chapters deal with varying forms of archaeological data to address different aspects of the research aims. Thus, I have developed separate methods to analyse these, descriptions of which can be found in the opening sections of each analytical chapter (Chapters Four to Eight). However, all the analyses are tied together by a set of five interlinked theoretical concepts: identity, landscape, temporality, household and community. These provide a framework for analysing how contemporary and past landscapes were viewed by their participants across the Iron Age to Roman periods; it seeks to move away from the basic assumptions of Classical Archaeology that have traditionally underlain analysis (for a fuller discussion see Terrenato 2005) – those of the historicity of the tribal group, the inevitable embracing all things Greek and Roman, and the movement of people, power and wealth from the uplands to the lowlands. Scale is also included as a theoretical issue particularly pertinent to this research that shifts between several scales of analysis.

2.2 Identity

Identity in the classical world is a much discussed and emotive topic. In Italy there are many different tribal names that are strongly associated with different regions, the exact definition of which is still important for regional self-identity. Thus Le Marche roughly equates to the territory of the Piceni, a 'popolo d'Europa' that existed from 900 BC until conquest in 268 BC (although not claiming subsequent annihilation of people or name) (Lollini 1977; Naso 2000), but with an identity that drew on influences from Villanovan, Etruscan, Celtic and Samnite cultures. Yet the definition of the territory of the Piceni is based largely on the post-Augustan geographers' (Strabo – Geography 5.4.2, and Pliny the Elder – Natural History 3.17.109) region of of Picenum and the archaeology of this area shows widespread variation throughout the so-called Piceni period. Differences thus exist between the north and south and between the coast and the more mountainous interior depending on the type of site (settlement, cemetery or votive deposit) or material (e.g. ceramics, metalwork,
epigraphy) being studied. Even the tribal name is an aggregation of the similar
sounding Picenes and Picentes that have been considered two distinct contemporary
groups (Betts 2003b: 101). The Piceni then are a modern convenience that retrojects
Roman names and modern typologies into the past by almost a millennium. The
linking of ethnic names to political boundaries and cultures has been heavily criticised
in recent years (Jones 1996; 1997) and it is now generally accepted that there is rarely
a straightforward correlation between cultural similarities and differences and ethnic
boundaries (Jones 1996: 449).

However, in Italy it can be argued that a culture historical framework still underlies
much of the archaeological dialogue (Terrenato 2005). In the publications of field
surveys, there is little analysis of pottery other than to provide evidence of dating. It is
assumed the landscape can be rewound like CCTV with a fixed frame of view, to show
the settlement pattern at an earlier point of its evolution. Ethnic groups then are still
considered to be bounded entities, continuous through time, that have
archaeologically distinguishable links to territory and history (Jones 1996: 455-456).
This is the prime obstacle to understanding the identities of past peoples and their
social groupings and interactions, because, too often interpretations start from the
perspective that a group is known in terms of its location and members and can thus
be archaeologically studied in isolation. This is contrary to discussion of ethnicity and
more importantly identity in the Social Sciences (Jenkins 2008). In Italy, the spectre
of Roman written documentation continues to haunt most Iron Age cultural analyses,
to the degree that most discussion will begin by outlining the historical framework.

In other archaeological spheres and in the social sciences in general, identity is
discussed in a very different manner. Critically, ethnicity is not the same as identity:
Lucy (2005: 95) describes ethnicity as an aspect of a relationship. It is used to
emphasise perceived cultural differences to differentiate between 'us' and 'them';
therefore, like the relationship of which it is part, it is malleable and negotiable.
Depending on the nature and importance of the situation it can be utilised in ways
that are linked to other aspects of identity, such as social status, religion or gender, or
not at all. Each individual will have different notions of who is of the same or similar
ethnicity and who is not, depending on whom they are dealing with: a leader drawing
power from their followers; a farmer negotiating the use of land with his neighbours; a
merchant trading with disparate groups over long distances; or a spouse drawn from
an outside community. These examples might all be considered part of the same
ethnic group or part of separate ethnic groups, depending on the nature of the relationship at different times.

Identity is too complex to try to limit it to a discussion of ethnicity. Ethnicity waxes and wanes in importance in relation to a range of social factors, notably political, economic, ideological and demographic pressures (Díaz-Andreu and Lucy 2005: 9-12). The goal should not be to speculate what the ethnicities of different groups were, because these are not distinct entities, and their numbers, spatiality, and temporality will vary depending on the individual concerned. There is no irreducible ethnic ingredient that can be uncovered. But the question is how far can archaeology go towards teasing out such levels of identity?

Siân Jones has convincingly argued: ‘There is no unambiguous ethnic association [to material culture] because no such single social reality has ever existed’ (1997: 140). It is not possible simply to look at an artefact and say this was made, used or deposited by a member of a given ethnic group on the basis of its form, date or location. This should be expanded beyond material culture to the landscapes and relationships of the past: they are not shared, but individual, complex and ambiguous. Ethnicity should not be confused with territories or state boundaries, but, rather, it should be considered in a world of multiple, potentially conflicting, identities. This is further problematised by the possibility that an individual may manipulate their identity as he or she moves about and interacts with different people – e.g. a young Samnite warrior may portray himself in opposition to Rome as a native of his town or state when at home, but on campaign in Spain will have viewed himself as part of the Roman state in opposition to Celtiberian tribes. Indeed, in epigraphs, ‘Romans’ themselves identified most with their municipia or home regions than with the ‘state’. However, our ignorance does not make these distinctions negligible. At different scales, aspects of identity will be expressed (and understood) to greater or lesser degree (Wallace-Hadrill 2007) as can be demonstrated in material culture (e.g. a portrait from Palmyra may be in a style recognisable across the Roman world, but the inclusion of a camel depicts something of local identity – ibid. 375), inscriptions, and ancient sources.

It is this type of ambiguity of people having different views, interpretations and uses of their identity in their relationships that needs to be applied to the landscapes forged and worked in Iron Age to Roman central Italy. How does identity affect the way that people act and interact, through forming social relations and in constructing their own landscapes?
2.3 Landscape

British interest in landscape archaeology stems from the wealth of visible mappable archaeological data – settlements, cemeteries, roads, field systems – in the countryside (Barker 1995a: 6). In Italy, this form of enquiry has found a natural home in field survey projects in which methodologies of systematically recording archaeological materials and, more recently, palaeo-environmental research have been developed. Past landscapes in these projects are the aggregation of archaeological sites in their environmental context. Their interpretation is conducted in an empiricist manner by the reading of the archaeological remains (Johnson 2007: 81-84). This approach has been criticised by scholars such as Bender (1992) and Thomas (1993), who argue that the tendency to look predominantly at the most visible human changes wrought on the landscape creates a division between nature and culture; this fails to give voice to the ways in which “people understand and engage with their worlds” (Bender 1992: 735; cf. Barrett 1999: 23). If we are to understand the link between landscape and identity, we cannot view past landscapes simply as the distribution of sites in Cartesian space, surrounded by environmental phenomena. We must seek to consider the landscapes as they would have been understood, experienced and engaged with by individuals (Bender 2006: 303–304). Landscapes then become individual and subject to constant reinterpretation. Of course the ways in which people understand and engage with their worlds depends on the specific time and place and historical conditions and it depends on gender, age, class and religion (Bender 1992: 735); or, to put it another way, it depends on a person’s identity, as discussed, recognising also that an individual’s identity may change across a lifetime depending on his/her own circumstances and the social, political and economic conditions.

If identity influences what people do, where they go and with whom they interact, then it will, in turn, influence their landscape. However, the relationship is reflexive because the landscape – the world (urban, rural, natural) that people perceive – is shaped by human action through processes such as clearance, cultivation, erosion and deposition, but it will constrain and influence where people go, what they do and how they use the land. Thus, landscapes are both created and creating (Gosden and Head 1994: 114). As Barrett (1994: 170) puts it: ‘social life is therefore lived out against the material conditions which it inhabits as various traditions of knowledge are reworked according to the agent’s interpretive understanding of an empirical reality’. It is the
material conditions of archaeological data and the consequences of agencies, lived in a socially recognisable way, which can be investigated and interpreted in multiple ways, as they were in the past. Whilst a Roman colony may be created in a specific form partly because of the identities and personal ties of the colonists (e.g. Bispham 2000: 174-175 suggests the colonists of Ostia maintained especially close links to Rome, in contrast to say the Latin colonies), it will be continuously reinterpreted in multiple and potentially conflicting ways by all the different people that come into contact with it. The physicality of the colony would have a role to play in framing relationships and disputes between those who might have viewed it as a place to live, an overnight stop, a trading centre, a new religious focus, a place of control and taxation or a disruption of the old order. Over time though, the colony’s role in peoples’ landscapes will have changed and the material of the colony will also have changed with new ideas and new activities. But whilst everyone’s perceptions will have been unique, there should also be similarities in their interpretations. The ambiguity and plurality of these experiences can be managed in archaeological interpretations, but it is important not to dismiss them. It is linking this kind of approach to what the finds of potsherds can potentially tell us that is the key to exploiting the survey evidence, as will be examined in this thesis. A further issue comes with defining the landscape, since, as Hind (2004: 39) states, “you can know what a landscape is like, but not how much of it there is”. Temporality is the key to understanding different parts of a person’s landscape as we can weight them in regards to different issues.

2.4 Temporality and Taskscapes

Edmonds (1997: 99) has pointed out that archaeological analyses rarely move outside the boundaries of sites, whether towns, hillforts, sanctuaries, necropoleis and survey scatters, and that they can seem abstracted from their broader material context. Outside of the spatial and temporal confines of the site it is difficult to understand what people did although often too little is known of the ‘site’ itself as only certain aspects will have been actively analysed (e.g. burial goods, but not the use of cemeteries by the living). He argues (ibid.) that one way to address this problem is to explore the specific genealogies of these more basic material traditions, emphasising both continuity and change in patterns of routine activity across the landscape. Too often the constitution of groups that developed these sites is seen as constant at all times and places, and we picture an archetypal society with a class of oligarchic elites ruling over a much larger peasant class. In Italy, the concept of society apparently
develops over time, but it does so in a series of transitions from the Princely elites of the Iron Age to the landholding elites of the Samnite period and the colonial make-up of the Late Roman Republic (Suano 1991; Naso 2000). This is not to say that the opposite is true, but rather that a far greater variety to the archaeological record ought to be expected and revealed. We must recognise that the typological frameworks that have been used to chart change and developments in the past are arbitrary and not necessarily relevant to the people who created the material culture.

If we consider the activities and movements of past individuals, then we can see that communities divided and combined at different times of the year and there would have been junctures at which more than one broad kin group came into contact with each other (most importantly are the tasks of the agricultural year where high levels of labour and cooperation are required e.g. harvesting – Foxhall 2007: 126-128; cf. Bourdieu 1977). Connections between different groups, and between groups and places, were constantly reworked and took on new emphases, such that it would be too simplistic and anachronistic to state, for example, that necropoleis existed in the Iron Age and sanctuaries only in the Samnite period.

Ingold’s work (1993; 2000) on temporality offers an approach to how these landscape connections can be traced with his concept of the taskscape, he describes it as:

‘the entire ensemble of tasks, in their mutual interlocking... Just as the landscape is an array of related features, so – by analogy – the taskscape is an array of related activities.’ (Ingold 2000: 195).

Here, Ingold defines taskscape as constituted from the temporality, historicity and rhythmical nature of activities in landscapes. The landscape is created from the activities, experiences and perceptions of the environment (Bender 2006) and the landscape is the taskscape in embodied form (Ingold 2000: 198). Therefore, we may potentially be able to study the landscapes and identities of past groups and individuals by reconstructing their taskscape from the archaeological evidence of activities. Crucially, the taskscape is not just constructed by the individual but by groups and communities working at different temporal scales. Thus, in a network of paths and tracks is sedimented not the activity of an entire community, but, rather, the complex web of communities (human and animal) over many generations. Ingold (ibid. 198) argues this is the taskscape made visible but it is in a relative manner such
that in order to view it we need to understand the very object we are trying to use the taskscape to analyse.

However, taskscapes have predominantly been considered and employed in studies of the European Mesolithic and Neolithic. There have been two attempts in GIS-based studies for Calabria and the Iron Gates: Van Hove’s study of the Calabrian Neolithic (2003; 2004) used economic GIS models of land-use to examine the relationship between economic structures, agency and landscape; She chose to use taskscapes to explore the interactions between groups through how they used the different parts of their environment and the experience of their ‘dwelling’ over many generations. This required the construction of GIS simulation of human actors with different subsistence strategies – forager, farmer, pastoralist, forager farmer, etc. – and the designation of yield values for different activities on different categories of land – beach, river channel, lowland plateau, hill, etc. This analysis allowed for the assessment of the intensity of land-use and how these then link to other social aspects of human behaviour, such as interaction. The other outcome was that even though people may live permanently at a single site, their movement and activities lead to a constantly evolving perception of, and imprint on their landscape (ibid.).

Trifković (2005; 2006), who ‘situated individuals and their bodies within the wider flux of landscape and meaning’ (Lock and Molyneaux 2006: 9-10), used taskscapes to examine the relationship between the global and the local in the early Holocene of the Iron Gates zone (Serbia) of the river Danube. He argued that as well as mapping onto the landscape, the taskscape maps onto bodies in the form of marks, scars, shapes and pathologies. Following this idea he studied the biographies of individuals buried in cemeteries in the area of the Iron Gates in relation to the surrounding landscape. Trifković used viewsheds to examine the total visibility or, in reality, prominence of topographic features at different scales based on the ideas of the Higuchi viewshed (see Wheatley and Gillings 2000: 15-20, although Trifković did not calibrate his viewsheds in the manner suggested – ibid. 16). He then linked the prominent locations determined by this analysis, such as the hill of Treskavac, with the alignments of Neolithic graves whose interred bodies showed unusual pathologies or biographies. Apart from the methodological problems, this approach was weakened by the lack of supporting evidence from other archaeological sources – for example, the graves could equally be aligned with the actual gorge of the Danube. From this slight and weakly supported evidence, how can we tell what meaning these places had to
people in the past? In terms of my own project, this approach appears to be of limited use.

In this thesis, by contrast, the taskscape is used as a tool towards interpreting the archaeological data of the study area. The survey scatters, the offsite material, crop marks, droveways, roads, terraces and sites are our evidence for the location and temporality and, to paraphrase Ingold (2000: 198), the networks and paths that link them ‘is the taskscape made visible.’ The practice-based approaches of Edmonds (1997), Conneller (2000) and Hind (2004) are a means to how we can identify and link what activities occurred at which places during which periods, and at what frequency and involving which people. They emphasise concentration on the operations, paths and interactions involved with creating and using an artefact (Hind 2004: 41), but also consider the social side of learning and innovation (ibid. 42-43) that prevent a wholly functionalist outlook. It is not just the potsherd we should consider in this regard, but also architecture and buildings, that are not the result of a single activity, but are constantly subject to practices of construction, maintenance, disjunction and decay (McFadyen 2006: 310, 313). Whilst it is easy to claim that differences in assemblages reflect a wide array of tasks and range of durations, the restricted form of evidence – i.e. largely domestic items of pottery sherds, quern stones, roof tiles and loom weights or rural structures – the quality of preservation and the possibility of multiple use and meanings (Bradley, R. 2004: 81-120), mean that care and restraint must be used in establishing an activity. Thus it is important to link the pottery scatters of field surveys to the data obtainable through excavation, that can inform on environmental variables, agricultural techniques and the associations of different materials. Van Hove’s (2003; 2004) approach of multiple analyses is useful here because it uses GIS to explore these different variables and to draw out common threads and results rather than forcing the archaeologist to draw too many assumptions, to the extent that any interpretation cannot be substantiated.

2.5 Community

Rather than study settlement, which, as has been discussed, creates an arguably detached view of the past that struggles to truly connect sites, it is more appropriate to study the construction of past communities. Social networks can be teased out in order to study internal connectedness and relations with other communities. This link to relationships allows another mode of discussion of identity, the ways in which it is
formed and utilised at different points and different times. The use and definition of the term ‘community’ has recently been a source of much discussion in the humanities (see papers in Canuto and Yaegar 2000; Herbrechter and Higgins 2006). Community can be used to describe a range of human groups and groupings. Communities are multifarious and everyone participates in varying kinds of communities at different times and for changing purposes. Tyler (2006: 26-27) sees the construction of communities on one level as a device for exercising power and maintaining social networks or hierarchies. Interests, values and practices are made available through these networks using typical forms of behaviour and sanctions against those who act outside the community. An individual’s history, interests and practices mean that they will belong to a range of communities whose memberships (e.g. familial, religious, professional or political) may overlap, but are not identical and are therefore not concentric in their organisation (Lewis 2006: 70). It is when the boundaries between communities become real, blocking membership, that the repressive and xenophobic side of community can arise, fostering conflict (ibid. 71).

Communities might be based in social status, geographical location, or any other factor or group of factors. As people belong to multiple communities, so a rural group or a cemetery population cannot be discussed as an enclosed, discrete and static unit. The people using an Iron Age necropolis might be bound by kinship ties, but some members will potentially be members of more than one kinship group, some might have entered the community through other means (migration, itinerant movement, marriage or adoption) and similarly some might have left. Rather, it is more appropriate to look at the ways in which people group, and try to identify those factors that tie them together. To utilise archaeological field survey evidence, an emic definition of community is useful: namely, a group of people that has solidarity through shared space or shared experience. However, this should certainly not be taken as the only way communities were constructed. In this sense, members of a community occupy a range of structures and places – e.g. the house, communal facilities and working areas (Given et al. 2007) – which constitutes a ‘community area’, an arena (sometimes very wide) in which dwelling, sleeping, eating, making, cultivating and travelling take place (Neustupný 1998: 10-18). This is a flexible means of studying the range of communities that exist at different scales. Communities should not, though, be directly linked to identities: one community will not equal one identity. Rather, the community is a statement and a conglomeration over time of common goals, ideology or interactions with which people can subscribe to, and
mediate with, to a greater or lesser extent (Yaeger 2000: 125-26; Low 2000; cf. Isbell 2000; Knapp 2003: 566-71). Nonetheless, they are useful for providing a framework in which identity is used. For example, the Late Iron Age community utilising a sanctuary might contain landholding members and agricultural workers whose interactions with each other can be traced at the sanctuary, in the fields and with members of other communities. In a Roman urban context, local politicians, traders, pastoralists, arable farmers, craftsmen and labourers might come together representing a range of local, Italian and even Mediterranean ethnicities. Interactions would vary between the different arenas of forum, basilica, theatres, city gates, houses and the streets that connect them.

Arguing that mountainous environments create a specific set of social networks and interaction, often quite diverse from lowland and urban areas, Funnell and Parish (2001: 9-10) have suggested a framework for conceptualising mountain communities comprising four components: the household, the village, the valley and the wider world. However, they point out that this is not a sliding scale of inference; rather, communities at all scales are able to participate in wider-scale relationships with their world. The important aspect of the mountainous environment is the role it plays in facilitating and obstructing the interactions that structure community in constantly changing settings. This, to some extent, explains some of the difficulties and fears associated with mountainous areas where links to lowland polities are constantly changing. The types of community that we might expect to identify archaeologically will exist at the different scales described above; however, as communities are heterogeneous and not concentric (Lewis 2006), so they might not exist at some scales (e.g. connecting households, but not villages in the valley) and might exist across traditional boundaries (such as transhumance groups moving across rather than along valley systems) though these will act as bonds/links between different geographically-set communities.

2.6 Household

The concept of household is especially important in this thesis. Households constitute the bulk of the population in ancient societies (Smith 1992: 30) hence they are an appropriate unit of analysis to consider how communities were constructed, landscapes created and identities defined. Household archaeology has a substantial pedigree in New World archaeology (e.g. Flannery 1976 – see reviews in Nash 2009
and Robin 2003) and has more recently seen uptake in European Prehistory (Tringham 1991; Gerritsen 2003; 2008) and Classical Archaeology where it has focussed largely upon well-preserved urban environments, particularly Pompeii and Ostia (Wallace-Hadrill 1994; Allison 1999; 2004; Ault and Nevett 2005). In studies of Roman households the trend has been to interpret modes of living through the archaeology of the house – its layout, furnishings and objects (Bergmann 2007). This has proved a fruitful endeavour provided these data are preserved. Most commonly wealthy town houses and villas have been the subject of analysis (ibid. 225). However, the art historical roots of classical archaeology have surely also contributed to this uneven view of the ancient house, with, for example, far more studies of mosaics and wall paintings than beaten earth floors and middens. This is all the more exasperating with regard to the Iron Age and the rural situations it entails, where there are no texts that can be called upon and far less domestic activity appears to have taken place within the house.

In the archaeology of the Americas, Robin and Rothschild (2002) have recognised the problem of concentrating solely upon the house to learn about the household. They argue that outdoor spaces are just as important as indoor spaces, as both are 'lived in'. Robin (2002), in particular, through her own study of domestic situations of seven Maya farmsteads at Chan Nohool, Belize, demonstrates the potential of considering households within a rural, village environment, embracing the residences, agricultural areas, ancillary buildings and the wider environment (understood from field survey). Another useful approach comes from Gerritsen (2003) who analysed households in the Meuse-Demer-Scheldt region of the Netherlands to understand how communities were constructed. He took a biographical approach in his analysis, considering how different structures were built, used, abandoned and/or destroyed in relation to wider social and environmental constructs, such as funerary traditions, territories and the productivity of the land.

The temporality of the landscape has already been considered with emphasis placed on the intersection of different activities at varying intervals – daily, weekly, seasonally, etc. It can further be expanded to analyse the life-cycle of the household, with the cycles of time defined through changes in the household – births, deaths, marriage ties, generations, the extinction of family trees and the birth of new households. Several studies have addressed this by tracking the relationship between households and different types of place. In Adriatic Italy these might include: house,
field, cemetery, sanctuary and town or indeed natural places – peaks, springs and woods (wild or managed). Remembrance plays a key role (Williams 2003; Forbes 2007): for how long do people remember who initially constructed a place and who has used it? Once they lose their practical functions how long do these places remain in memory? Are they deliberately dismantled, remodelled or forgotten? Although it will never be possible to access the memories of long-past individuals, as archaeologists we can consider their relationship to living memory, the changing material presence of these sites and the evidence for continuing modification. Finally, in considering the temporalities of these places the changing nature of knowledge and understanding should be explored – for example, a grave may initially be linked to a particular individual, but after several generations it may become instead synonymous with those of a particular family or perhaps be an indistinguishable part of the cemetery in its entirety (whereby, effectively, the individual is subsumed within the wider community).

2.7 Scale

The differential relationship between identities and communities is of course related to scale. Thus, by changing the scale of analysis we can try to understand the identities of communities only visible at these scales. For example, at a regional scale we might want to consider the competing identities of towns and/or similar-sized communities in relation to each other. In contrast, at a micro-regional scale, we can consider the differences in identity evident in the use of space around and within a town in terms of households and social classes, and an inter-regional scale may be most suitable for analysis of larger networks that may highlight the identities we might equate with states. This approach has the advantage of not being limited by boundaries imposed before the data are even considered, and it allows for conflicting identities between different scales and discussions about the differing perceptions of identities. Moving between scales is a hazardous activity in any spatial analysis and there are many inherent methodological concerns. The results produced at one scale will not be exactly repeated at another as each scale has its own distinct and specific sets of results (although they probably will not be entirely unrelated either) (Harris 2006). Ecological fallacy is the most important of the problems of scale, meaning that it cannot be assumed that all members of a group exhibit the characteristics of a group at large. But, potentially, this is to our advantage in that it highlights the complexity of identities; thus differences between two communities may be explicit in one arena, but
lost in another. It is precisely for this reason that the maps of *ethnoi* constructed from historical sources can only at best have validity at the interregional scale (Fig. 2.1). Closer analysis of the resident communities will show a very different set of identities and relationships because they will *not* exhibit the same characteristics as those aggregated in larger regional groups. There is little point trying to compare one region to another if the scale from which the interpretation is derived is not appropriate to the analysis.

![Map of Samnium](image)

*Figure 2.1. Map of Samnium (after Salmon 1967)*

In almost every instance, the processes operating to create archaeological assemblages reflect a scale that is likely to be many times longer than that of daily living (Holdaway and Wandsnider 2006: 185; Binford 1981). The dating of artefacts is a primary cause, which, with pottery, can be anywhere from a ten-year range to a multiple-century range. This creates a disjuncture between the scale of observation and the scale of interpretation. Most deposits will represent a form of palimpsest. Holdaway and Wandsnider, whose work refers to North American First Nations and Australian Aboriginal archaeology, emphasise that different objects in the palimpsest will have been used for different periods of time before discard. ‘One cannot treat locations of use and locations of deposition as though they were one and the same’ (2006: 194) – although we might expect a closer link for artefacts with shorter lives, or indeed those that are too bulky to transport far. They argue for the interpretation of assemblages
from a temporal perspective whereby a site has not one function but can be understood from the sum of all activities. The pattern comes from the outflow from all discard events. It is the complexity, or otherwise, of an assemblage at a particular location that is of interest as an expression of the history of the use of place’ (ibid. 196-97). Hence, they argue the material should be analysed at a multiple temporal scales.

2.8 Linking concepts

In effect, our ideas of identity, community, landscape and taskscape must be developed together. Archaeology can provide us with evidence of activities, temporality, movement, and networks but this evidence is not without its own interpretative biases. How can we interpret what the range of different activities will have been without reference to the same data to which we try to assign them? To some extent, other forms of evidence can be used in parallel: historical sources on agriculture are very detailed, although these generally refer to other parts of Italy, are Roman and later in date, and present an idealistic picture. Ethnographic sources can assist, but again we must question to what extent we can generalise them. Horden and Purcell (2000: 258-270) have warned against the idea of the stereotype of the hard-working, practical and timeless peasant. The best that can be done is to try to combine as many forms of evidence, even if they contradict, to allow for multiple interpretations and to be open about what assumptions have been made in the resulting archaeological model. Despite this, as Johnson (1999: 170-172) points out, some interpretations of the past will be better than others!
Chapter Three: Archaeological Background to Abruzzo and Le Marche

This chapter will introduce the study area from both an environmental and archaeological perspective. Subsequently this will focus upon the three field surveys – Sangro Valley Survey, Potenza Valley Survey and Iuvanum Survey Project – that are at the core of the analyses for Chapters Five and Seven and present an overview of their findings.

3.1 The Environment of Abruzzo and Le Marche

Like all mountainous areas, central Adriatic Italy is made up of a diverse range of inter-linking environments. Several long valley systems characterise the region, running from the Apennines, that form a central Italian spine, east into the Adriatic Sea; in the upper valleys, rivers cut deep limestone gorges, the steep sides of which are predominantly forested and sparsely populated. As the rivers make their way to the sea the hills gradually become smaller and give way to clay badlands that are characterised by deep cutting streams and steep slopes. Punctuating the valley systems are several massifs and mountain ranges that dominate the central Apennines – the Gran Sasso group (max. height 2,912m), Monti Sibillini (2,476m), Monti della Laga (2,458m) and Maiella (2,793m); these contain some of the highest mountains of the Italian peninsula, standing out above the valley systems for some miles. The altopiani or plateaux are a feature of these mountains, sitting in sheltered depressions that are particularly fertile pastures in the summer (cf. Barker and Grant 1991), although cereal cultivation is also possible (Fig. 3.1). In contrast, the coastline is comparatively flat with a number of natural harbours, of particular importance is the promontory formed by Monte Conero and Monte Astagno, the site of the Syracusan colony and Roman city of Ancona.
The study regions have a predominantly Mediterranean climate with hot dry summers, but towards the mountains the seasons are cooler and wetter, and large snowfalls are common enough for ski resorts, although access and mobility in these areas is often restricted. Spring melts and high rainfalls traditionally cause a high degree of flooding and soil erosion in mountainous areas (Funnell and Parish 2001) and along the valley floors, often preventing permanent constructions such as bridges in all but a few places (Barker 1995b). The construction of dams, reservoirs and other forms of modern water management have, however, lessened this impact in recent decades. The combination of steep slopes and high seasonal variation can make parts of the area prone to landslips and the high levels of soil movement can create multiple river channels that have been subject to change in the past, or cut deep channels that are difficult to cross (Pasquinuci and Menchelli 2004: 30; Vermeulen et al. 2005).

There is abundant wildlife and flora (including a population of 43 bears!) and no less than four national parks and numerous regional parks and nature reserves (Parco Nazionale dei Monte Sibillini, Parco Nazionale del Gran Sasso e Monti della Laga, Parco Nazionale della Majella and the Parco Nazionale d’Abruzzo, Lazio e Molise; www.parks.it). The upland grasses of the various mountains provide excellent summer grazing and transhumance has been an important activity in this area for some centuries, producing the primary and secondary products of meat, wool and cheese. Olives and vines are particularly important crops in the middle and lower
valleys, especially in the fertile valleys of southern Le Marche where the slopes and climate provide ideal conditions. Cereals also grow well in the lower valleys and to a lesser extent in all but a few parts of the study region, with terracing particularly prevalent in areas of steep slopes. Other economic activities have traditionally taken advantage of the mountain resources, particularly charcoal burning, although many of these activities have now all but disappeared (Barker and Grant 1991: 24).

Most communication routes run along the lines of the valley systems where the land is less steep. These are linked by the coastal routes (both land and sea) and in the interior there are intermontane routes, particularly in le Marche running north and south. Transhumance routes or tratturi once played an important role, especially in Abruzzo where they (in part still) link the central mountain pastures with the lowlands of Puglia; important examples of these are the Pescasseroli-Candela and the Lucera-Castel di Sangro tratturi, both of which are overseen by prehistoric hillforts (La Regina 1975; cf. Sterry 2006). Several passes lead through the Apennines connecting the region to the western side of Italy. The Via Flaminia, constructed in 220 BC, probably along prehistoric routes (Dracens, pers. comm.), runs from Rome through Umbria towards Ancona and Rimini (ancient Ariminium) north of the study area. Similarly, the Via Salaria, which was considered to be of ancient origin even in antiquity, passed through the Rieti valley in Lazio towards the town of Ascoli Piceno (ancient Asculum) and the Adriatic coast. Whilst the study area can therefore be described as a mountainous area, it is one comprising diverse and dynamic environments interlinked by a range of different routes and affected by varied environmental processes.

3.2 A Brief History of Excavation Work in the Study Zone

In central Adriatic Italy, the first recorded archaeological excavations started to take place from the end of the nineteenth century, but up until the start of the Second World War much was not carried out in a systematic or stratigraphic manner. Most excavations focussed upon cemeteries and the material culture, especially the ornate metalwork and imported Attic pottery, within the graves. Some were excavated and published extensively (although rarely with complete plans) – Novilara (Brizio 1895); Montefortino di Arcevia (Brizio 1899); Alfedena (Mariani and De Amicis 1901) – but most are confined to notes in the volumes of Studi etruschi and Notizie degli scavi di antichità. Since the creation of the Soprintendenza per i Beni Archeologici for le
Marche (in Ancona) and Abruzzo (in Chieti) in the early twentieth century excavation has largely been concerned with small-scale interventions in advance of development (mostly urban or suburban with some road and more recently gasline projects) or sites found by accident (often from instances of agricultural development – deep ploughing, cutting of irrigation channels, etc). As with many other parts of Italy this has led to a concentration of knowledge on sites that lie underneath cities (e.g. Ancona, Teramo and Pescara) or in close proximity (e.g. Ascoli Piceno, Cupra Marittima), interspersed with detailed knowledge of sites that have easily recognisable remains (as the discoverers are not initially archaeologists) – Cemeteries with grave goods and areas of large structural remains, especially villas. To this list of sites can be added those whose remains are visible on the surface, particularly urban sites; almost all of the Roman towns from the Imperial period have been investigated archaeologically with focus usually upon the biggest and richest parts – the public buildings (e.g. Asculum – Laffi 1975; Pasquinucci 1975; Iuvanum – Fabbricotti 1990, 1996; Urbs Salvia – Perna 2006).

In recent years archaeological knowledge has broadened in two ways: firstly, the utilisation of the alluvial valley beds for commercial and industrial estates has often led to large multi-hectare excavations that have shown for the first time the extent and organisation of Iron Age cemetery sites and the presence of Iron Age period post-built structures that would otherwise have been too ephemeral to excavate. Nowhere is this more apparent than the sites around Matelica where several hundred hectares have now been excavated in the last 20 years across more than 15 areas. The results from Matelica (discussed in detail in Chapters Four and Six) may yet rewrite the archaeological history of the entire region. Secondly, the survey-based approach of both Italian and British universities has led to the excavation of sites that have much less impressive surface signatures and are in areas not threatened by development. The work of the Sangro Valley Project at Acquachiara (again detailed in Chapter Four) is a key example of this approach. In summary, most excavations continue to be small in scale, focused upon funerary remains for the Iron Age, and urban and large rural sites for the Roman period; furthermore they are generally slowly published (if at all!) often without detailed and quantifiable information on the layout, contexts, environmental remains and finds. However, publications in the last decade suggest that this somewhat depressing picture is on the verge of changing, as reflected in the exemplary publication of the necropolis at Possa (Cosentino et al. 2001; D’Ercole et al.)
2003; D’Ercole and Benelli 2004) and the area around Matelica (esp. Silvestrini and Sabbatini 2008).

3.3 Survey Archaeology

Surveys have been a major form of archaeological research in Italy for the last 30 years and they have now become the predominant means of studying the long-term history through small regional study zones, most typically valleys. The Biferno Valley Survey in Molise (Barker 1995a) has been hugely influential and both the Sangro and Potenza Valley surveys used its model of combining field walking, small-scale excavation, remote-sensing, archaeobotany, archaeofaunal study and geoarchaeology. Many refinements to methodology and analysis have been made, such as more systematic approaches to field walking, detailed analysis of coarsewares (MacDonald 1995), ethnographic studies (Barker and Grant 1991), GIS-based landscape studies (Bell et al. 2002; Lock and Daly 1999; Lock 2008) and the integration of remote sensing (Vermeulen et al. 2006b; Verhoeven 2008). It is now argued that survey archaeology has ‘come of age’ as a new set of intensive, systematic surveys reach publication (Galaty 2005; Given et al. 2007). In all, six systematic field walking survey projects have been completed within the study area. Of these, three were selected, being of sufficient size and with suitable collection and recording strategies, to be developed as case studies (Fig. 3.2). Their scope and structure are detailed below:
Figure 3.2. Locations of survey case studies
3.4 The Sangro Valley Survey (SVS)

3.4.1 The Project

The Sangro Valley Survey (SVS) was a multi-phase project set up to address the lack of knowledge of the morphology, culture and economy of rural settlement from the Iron Age onwards in south Abruzzo (Lloyd et al. 1997: 2). Following the example of the earlier Biferno Valley Survey (Barker 1995a) the Sangro river system was chosen in order to examine the three contrasting, yet interconnected environmental, valley zones. The project (1994-1998) consisted primarily of intensive field-walking in three areas – (i) in the territory of Opi in the upper valley (fig. 1), (ii) around Monte Pallano in the middle valley, and (iii) at Fara nearer to the mouth of the Sangro – in conjunction with ethnoarchaeology, extensive field survey of possible sites, particularly hilltop sites, and geophysical survey of selected scatters. Subsequently, a second phase of the project started in 1999 and is still ongoing to excavate sites on and around Monte Pallano. Publication of the first phase is largely limited to an interim report of the first two years (Lloyd et al. 1997) and papers utilising the data to explore ideas of movement (Bell et al. 2002) and change through time (Lock and Daly 1999; Lock 2008), but full publication is pending. Reports for the second phase are available online (www.sangro.org) and via two published papers – Bispham et al. 2008; Kane 2008.

3.4.2 Geomorphology

The Sangro river system runs from the slopes of the Monte Turchio in the Abruzzo central Apennines, 100km east of Rome, roughly south-west to north-east into the Adriatic Sea, some 120km from the source. Similar to the other river valleys in central Adriatic Italy, the Sangro valley can be characterised as three micro-regions – upper, middle and lower (Lloyd et al. 1997: 2). In the upper valley the river, at 1000m above sea level (asl), cuts through a series of limestone gorges, with the mountains rising to more than 2000m on either side. The area is well known for its links to pastoralism and particularly transhumance (testified by the presence of the important Castel di Sangro-Lucera tratturo or drove road). In the middle valley, with the river now only 200m asl, the terrain broadens to be composed of level terraces carved up by seasonal stream, flanked by limestone massifs rising to around 1000m. In this area the valley bottom was an alluvial plain dotted by areas of marshland and is subject to seasonal
flooding, although the artificial Lago di Bomba has significantly affected the hydrological dynamics of the region. As the river reaches the lower valley the mountains flatten out to rolling hills and rare limestone peaks, and the Sangro is joined by the Aventino river. The middle and lower valleys, with large areas of terracing, particularly in the middle valley, are cultivated with common Mediterranean staples – wheat, olives and vines – in addition to animal husbandry. Between the Sangro and Aventino rivers there is a mountainous limestone plateau (henceforth referred to as the Iuvanum Plateau) that correlates roughly with the municipalities of Torricella Peligna and Montenerodomo with peaks that reach above 1500 metres. This area of upland, although adjacent to the middle valley, is noticeably cooler in climate and less suited for fruit crops, and is, instead, used for a mixture of cereal cultivation and sheep husbandry.

3.4.3 The Upper Valley

Intensive field walking was carried out along the 20km² strip of walkable ground between modern Opi and Villetta Barrea (Fig. 3.3), the majority of which was in two basins – the western basin, where the Torrente Fondillo meets the Sangro, and the eastern where the Torrente Scerto joins. The areas walked were all around the altitude of 1000-1200 metres, although the surrounding mountains reach 1700-2000 metres. Some 25 scatters were recorded, but generally there were very few finds, in part due to a combination of visibility and preservation factors (the area is within the Abruzzo National Park meaning there is now almost no arable farming). However, some standing structures were recorded (Lloyd et al. 1997: 28). On the eastern side of the valley, the hilltop of Colle Sant’Tanni shows some later Iron Age activity, whilst Colle Santa Maria produced Roman tile and pottery, in conjunction with ancient terraces and the foundations of dry-stone houses. An area (Plan delle Corte) of square fields defined by terraces could potentially be Roman in origin, but this is inferred not confirmed. There is good evidence of communication routes with the Pescasseroli-Candela tratturo crossing in this area and traces of an ancient road (probably late Republican in date) through the narrow gorge between Pietramara and Villetta Barrea. A late Republican inscription from near Castel di Sangro usefully records the construction of a bridge over the Sangro by the prefects M. Caecilius and L. Atilius (CIL IX 2802; Lloyd et al. 1997: 32). Towards the west of the study area, it has been argued that Opi lies on the site of a major fortified centre, in no small part due to the presence of a nearby sixth- to fifth-century BC necropolis (Morelli in Lloyd et al.
containing at least 61 tombs (one of a number of necropoleis in the area – see Chapter Five). Located across the nearby torrent was a large porticoed rural building of third-/second-century BC date (currently unpublished). A rural sanctuary was also postulated on the basis of the presence of architectural blocks. In general, Late Iron Age and Roman period finds were more numerous towards the west of the study area (ibid.).

Figure 3.3. The approach to Opi in the upper Sangro Valley (Photo courtesy of Neil Christie)

3.4.4 The Middle Valley

In the middle valley zone, the survey was concentrated around the ancient fortified site of Monte Pallano that dominates the eastern bank of the Sangro (Lloyd et al. 1997: 39-44). A 1km wide transect was surveyed from the Sangro river eastwards to the commune of Tornareccio and a 2km² area to the southeast of Monte Pallano (Figs. 3.4 and 3.5) covering 538 units totalling 4.3km². The fields in this survey were far more suitable to intensive survey than in the upper valley, and some 25 scatters were identified along with substantial 'off-site' material. Particularly large and significant scatters were found at Sambuceto, with perhaps a village located below Fonte di Fontecampana, and Acquachiara – an area excavated by phase 2 of the project. Two separate sites were excavated: the earlier dating to the sixth to fourth centuries,
appears to be an open-air rural industrial/processing area, perhaps linked to cereal cultivation, based on the botanical evidence (Fig. 3.6). The other site is Roman in date and has structures including a circular rock-cut structure lined with tiles that appears to be a storage tank of some description (Sangro Valley Project: Report on 2003 Season) that have led to an interpretation as a *villa rustica* (see Bispham et al. 2008 and further discussion in Chapter Four). Extensive survey within this micro-region brought to light more scatters confirming Iron Age and Roman occupation on many of the slopes, ridges and hilltops surrounding Monte Pallano. There is a possible correlation between the springs rising at 600-700 metres and site scatters that are found in the fields directly below them, but this may in part be a relic of the location of walkable fields. Indeed, the heavy vegetation and woodland now covering much of the upper slopes of Monte Pallano may conceal further evidence, as dry-stone walls and structures of presumably medieval and post-medieval date can be found all over the area.
Figure 3.5. Roman fieldwalking scatters in the Middle Sangro

Figure 3.6. Excavations of a rural complex at Acquachiara (www.sangro.org)
Excavations on Monte Pallano itself, near to the Fonte Benedetti, have brought to light a monumental religious complex that dates from at least the third century BC and may have continued in use until the Imperial period, assuming a later structure is related (Fig. 3.7). The earliest evidence is of successive terrace walls found together with deliberately destroyed temple pediment and statuary, that indicate the presence of a sanctuary similar to those known elsewhere in Abruzzo dating from the Hellenistic period (e.g. Quadri, Schiavi d’Abruzzo, Chieti). The finds strongly suggest established contacts with other regions across Italy and the Mediterranean rather than the rather isolated rural area that the Sangro valley is today.

Figure 3.7. Features on the summit of Monte Pallano (From Faustoferri 2008: 81)

3.4.5 Fara

Just to the north of the main transect, but still in the middle Sangro valley zone, a compact area of 90 fields covering 0.9km² was surveyed near the hamlet of Fara. Significant quantities of Iron Age and Republican-period material were recovered on the lower slopes, including an apparent dump of impasto storage jars (a similar feature was found in the excavations at Acquachiara – Bispham et al. 2008). On the middle slope, slightly later material (Republican to late antique) was recovered, but the small scale of this part of the survey prevents any generalisations being made.
(Lloyd et al. 1997: 46-47). Greater detail of this area will come out from the final report (Christie, pers. comm.).

3.4.6 Iuvanum Survey Project (ISP)

As already noted, the Iuvanum Plateau is in the shadow of the Maiella massif. The ISP, a sister project of the SVS, focussed their survey upon the Roman town of Iuvanum. This is one of the highest known municipia in central Italy at 1000m asl and it has seen excavation since the 1940s, revealing the remains of a late third-/early second-century BC sanctuary complex consisting of two temples and a theatre, and an imperial period forum complex (Fabbricotti 1990; 1996). It therefore provides an important counterpoint to the apparent regional centre of Monte Pallano located less than 10km to the east. The plateau is suitable for pastoralism and cereal cultivation providing many suitable fields for survey. The ISP, set up in 1999 to analyse the territory of Iuvanum and its related hillfort structures (Bradley, G. et al. 2008), covered 453 fields in a 27km² rectangular transect and of this area 4km² were actually walked, most of which lay within 2km of the municipium (Figs. 3.8 and 3.9). Some 38 site scatters were identified, many surrounded by possible manuring halos. Within the scatters there is considerable variation in their make-up and therefore a strong case for variation in the sites that would have existed in the past. Notably, there is a definite concentration of activity around the city of Iuvanum after its municipalisation under Augustus (ibid. 140-142). Also, some investigation was carried out on local hilltops, producing evidence of fortifications – Montenerodomo, Monte di Maio – and house platforms – Monte Pidocchio (excavation of which is ongoing). Montenerodomo, in particular, seems to have been an important centre: several stretches of wall are found around the edge of the modern town, although, as at Monte Pallano, they do not form a full circuit (ibid. 142-147; contra Oakley 1995).
Figure 3.8. IA fieldwalking scatters on the Iuwanum Plateau

Figure 3.9. Roman fieldwalking scatters on the Iuwanum Plateau
3.4.7 Discussion of the SVS and ISP

The area of the Sangro Valley and Iuvanum Plateau provides three well-studied zones, linked to the centres of Opi, Monte Pallano and Iuvanum, that will allow good comparisons to be made. The lack of publication of much of the material (due chiefly to the premature death of the director John Lloyd) means there have been few published interpretations made about the surveys. The majority of attention has focussed on Monte Pallano as the centre of a so-called pagus-polity, examining the density and hierarchy of rural settlement (Lloyd et al. 1997; Faustoferri and Lloyd 1998; De Benedittis 2004; Faustoferri 2005 and 2008; Kane 2008). But these appear as empiricist attempts to read the society from the scatters of pottery found across the hilltop. There is no in-depth discussion of the communities that would have lived in the rural sites and villages, their organisation and their relationship to the hillfort. Nor has there been much discussion of what went on in Monte Pallano itself except through analogy with the very different hillforts of Monte Vairano in Molise and Roccagloriosa in Lucania (Lloyd et al. 1997: 39-42; De Benedittis 2004; Gualtieri 2004). Monte Pallano has therefore been called a typical Samnite centre largely because it has been shown not to exist in isolation (Gualtieri 2004). The sanctuaries at Monte Pallano and Iuvanum provide a further interpretational problem, both having been described as rural sanctuaries in the mould of Chieti and Pietrabbondante (Faustoferri 2005; Firpo 1990), but we might question how rural they are given that they both seem to be central to the surrounding areas of habitation.

3.5 Potenza Valley Survey (PVS)

3.5.1 The Project

The Potenza Valley Survey (PVS) is one of several active survey projects in Le Marche with the objective “to measure the evolution of social complexity within the valley of one of the Marches' major rivers” (http://www.flwi.ugent.be/potenza/) between 1000 BC – AD 1000. A wide range of methods is being employed to build the fullest picture possible – aerial photography covering all 400km² of the valley (Vermeulen et al. 2006a), targeted geophysics of the town sites of Trea and Potentia (Verdonck and Vermeulen 2004: 202-203; Vermeulen et al. 2006b), excavation at the town of Potentia at the mouth of the valley and the nearby amphora production site at Porto Recanati (Vermeulen et al. 2009), and, most importantly for this thesis, three zones of
field-walking in the upper, middle and lower valleys (Vermeulen et al. 2006a). Other publication has primarily focussed around the investigation of the *colonia of Potentia* (Vermeulen, et al. 2006b), but short interims exist of the fieldwalking and aerial photography from the upper and middle valleys (Boullart 2006; Verdonck and Vermeulen 2004) along with a synthesis of some of the Roman material (ibid.).

3.5.2 Geomorphology

The Potenza valley is situated 30km south of Ancona in the province of le Marche, running from the Apennines of Umbria in an east-north-easterly direction to the Adriatic. It is typical of the river valleys of this region with rolling limestone hills cut by deep drainage valleys. There is a great deal of climatic variation between the inland mountains and the coast: the average temperature in the mountains is 5 degrees lower, and there are half as many days of rain on the coast. The area is highly suited to agriculture – mostly grain, but also vines, olives and fruit – although this is in part due to modern practices making steeper slopes more viable, and due to the drainage of the valley bottoms. Pastoralism is viable on the 9% grassland, and 19% of the region is wooded (principally on the flanks of the Apennines in the upper valley). Geological research suggests that the Potenza would not have been navigable in antiquity, and that the river would have had multiple beds matted with woodland vegetation that would restrict settlement to the valley slopes (Vermeulen et al. 2004: 75-6).

3.5.3 The Upper Valley

Intensive survey was conducted in a 17km² area at the foot of the Apennines between Pioraco, Castelraimondo and Camerino; there was no survey of the high scarps. The area lies at the junction of the Potenza with the north-south corridor linking Colfiorito to the Esino Valley that is populated by the Roman settlements of *Prolaqueueum, Camerinum* and *Matilica*, although it is certain that some of these have prehistoric origins (especially Matelica – see discussion in Chapter Three). In total, 83 fields totalling 3.1km² were fieldwalked, identifying 35 sites (Figs. 3.10 and 3.11). Aerial photography was particularly successful in recovering the plans of some Roman farms and activity atop Monte Primo (Vermeulen et al. 2006a). Sites regularly held good access to the Potenza or its major tributaries and were in close proximity to the perennial springs that occur between 375 and 405m (Verdonck and Vermeulen 2004: 207-208). The protohistoric sites had a stronger affinity with water sources, often
found in theatre-shaped depressions. One site in particular, found near the confluence of two streams, contained a mixture of pottery and ungulate bones, indicating some pastoral activity in the Early Iron Age (Boullart 2006: 732). There was remarkable growth in site numbers in the late Republic, but Verdonck and Vermeulen (2004: 214-215) argue similarities to the Iron Age settlement pattern may well suggest the persistence of the local elite in this micro-region.

Figure 3.10. IA fieldwalking scatters in the Upper Potenza (Vermeulen et al. 2006: Fig. 24)
3.5.4 The Middle Valley

In the middle valley the study area was 18.9km², of which only 3.6km² were walked (85 fields) due to an earlier survey to the west (see Moscatelli 1988. Whilst there were many sites recorded, their precise location is suspect – Vermeulen pers. comm. It is unclear which areas were not surveyed, and the recovered assemblages are not published). The area consists of hills (250-350m) that create a system of ridges and deeply incised valleys through which the Potenza flows. The prominent plateau of Monte Franco abuts a Z-bend in the river with Iron Age cemeteries, now known on both banks. On the opposite bank to Monte Franco, 500m from the river, lies the municipium of Trea. Thirteen sites dating to the Iron Age and/or Roman period were found (Figs. 3.12 and 3.13; ibid. 215-223), two of which lie along the Roman road that here runs parallel to the Potenza; the high concentration of tablewares, lamps and amphorae has been interpreted as evidence of roadside tavernas or vici (ibid. 221-222. Recent rescue excavations also seem to support this hypothesis, but their results are not yet published).
Figure 3.12. IA fieldwalking scatters in the Middle Potenza (Vermeulen et al. 2006: Fig. 25)

Figure 3.13. Roman fieldwalking scatters in the Middle Potenza (Vermeulen et al. 2006: Fig. 30)
3.5.5 The Lower Valley

Survey at the mouth of the Potenza covered 143 fields (3.9km²) in a block of 34.4km² (Figs. 3.14 and 3.15). Additionally, highly intensive surveys (in 400-900m² squares) were undertaken at two sites and their adjacent fields – the Iron Age plateau site of Montarice and the Roman *colonia of Potentia* – to complement the excellent results of aerial photography and geophysics. Of particular interest was the volume of imported ceramics in both the Iron Age and Roman periods which, together with the high number of villas in addition to the amphora production site excavated at Porto Recanati, strongly suggest that this micro-region was far more integrated into wider economies than the Middle or Upper valley.

Figure 3.14. IA fieldwalking scatters in the Lower Potenza (Vermeulen et al. 2006: Fig. 26)
3.5.6 Discussion

A few weaknesses perhaps exist in the survey project. There is a strong adherence to the literary record throughout the published reports, particularly concerning the transition from the Iron Age period to the Roman in 268 BC. As the archaeological dating is based on the ceramic typologies, this means that there appears to be little flexibility for Iron Age and Roman ceramics to have been in use at the same time (firm evidence of just this comes from further south – see, for example, Rainini 1996) and the data are displayed as snapshots of the landscape that are perhaps too distinct from one another. Understanding the Romanisation of the area is frequently described as an overall aim, but there is little definition of what is meant by this, despite the frequent calls for clarification over the last two decades (e.g. Mattingly 1997; 2004). It can be inferred, though, that in the context of this project Romanisation means changes in social organisation, urbanisation and the opening up of the area to the economy of the Roman world. The coloniae and municipia are argued to have been Roman ‘islands’ (Vermeulen and Verheoven 2004: 79-80), but, as mentioned above, this conflicts with the way the data are presented and more work (perhaps excavation)
appears necessary to integrate the results of the urban and rural surveys. A mixture of Roman and Piceni elites are seen as the instigators of change, despite insufficient justification of this claim. More useful are the discussions of movement and trade: towns, especially, are shown as located in areas making best use of, and controlling access to, trade along and across the valley. This trade seems to have been most active in the Adriatic rather than across the Apennines with Rome, and the material evidence, particularly Attic pottery, suggests links with the eastern Mediterranean from the sixth century BC.

### 3.6 Other Surveys

Of the other surveys, results from the South Picenum, Upper Esino and Tirino Valley surveys were not fully compiled or published during the data collection period of this thesis. It is hoped that, in the future, these may be compared with and, potentially, added to the data compiled here. The surveys carried out by the Soprintendenza of Abruzzo in northern Abruzzo (Staffa and Moscetta 1986; Staffa 1991; Staffa et al. 1995) and around Avezzano (D’Ercole 1991), along with those of the *Forma Italiae* series (Superaequum, Corfinium, Sulmo – Van Wonterghem 1984; Trea – Moscatelli 1988), utilised a mixture of extensive and topographic methods. These are therefore unsuitable for the kind of GIS-based methods of this study as they lack data on exactly which areas (i.e. fields) were surveyed, and without complete collection or counting of finds they cannot be considered truly representative or reliable. However, sites and the findings of these surveys will be referred to throughout subsequent chapters.

### 3.7 Comparing the surveys

In recent years there has been a surge of interest in synthesising the results of field survey in order to tackle high-order questions of inter-regional scope (e.g. Alcock and Cherry 2004; Cherry 2003; Witcher 2006). Scholars have sought new methods in comparing these data (e.g. Alcock 1993; Witcher 2005; Stewart 2007; Van Dommelen and Gómez Ballard 2009), involving analysis of site numbers and densities, site hierarchies, site locations and distributions and site turnover. Although all three main surveys discussed await full publication of their results, their data are complete enough to consider these variables.
3.7.1 Site Density

All of the five survey areas show a marked increase in site density from the Iron Age to the Roman Imperial period (Table 3.1), but with some notable differences between the different areas. Thus, during the third to first centuries BC, the Potenza Valley saw an uneven development of sites with steady progression in the Lower Potenza, slower growth in the Upper Valley, and a decline in the Middle Valley. All parts of the valley, however, saw exponential growth in site densities in the first centuries that coincides neatly with the wealth of excavated evidence for new villas built during this time in central Le Marche (see Mercando 1979; cf. Verdonck and Vermeulen 2004). A somewhat different trend is apparent in the two survey areas of the Sangro Valley where growth follows a linear trajectory and, in the Middle Sangro especially, is slower.

Table 3.1. Site densities

<table>
<thead>
<tr>
<th></th>
<th>Lower Potenza</th>
<th>Middle Potenza</th>
<th>Upper Potenza</th>
<th>Iuvanum Plateau</th>
<th>Middle Sangro</th>
</tr>
</thead>
<tbody>
<tr>
<td>IA sites / km²</td>
<td>1.3</td>
<td>1.6</td>
<td>2.5</td>
<td>2.7</td>
<td>4.5</td>
</tr>
<tr>
<td>Republican sites / km²</td>
<td>2.6</td>
<td>1.1</td>
<td>3.2</td>
<td>5.2</td>
<td>5.1</td>
</tr>
<tr>
<td>Imperial sites / km²</td>
<td>6.4</td>
<td>3.5</td>
<td>11.1</td>
<td>8.1</td>
<td>5.5</td>
</tr>
</tbody>
</table>

However, there are methodological problems to this picture. The Sangro and Iuvanum surveys were more intensive than the sectors of the Potenza in terms of the coverage of fields and the interval between walkers (10m compared to the 15m of the Potenza. Note that the South Picenum Survey concluded that 5m intervals were required in order to recover Iron Age sites that may consist of as few as 8 pottery sherds – Menchelli 2008: 33). Not surprisingly, perhaps, these were more successful in recovering Iron Age and Republican scatters.

Comparing the surveys, it is remarkable to what extent the site densities vary from survey region to region with the highest value several times that of the lowest in every time period. The densest settlement patterns are found in the upland areas – the Upper Potenza and Iuvanum Plateau. This counterintuitive variation can be elucidated by considering the range of sites occurring.
3.7.2 Site Hierarchies

The Potenza Valley Survey (Verdonck and Vermeulen 2004) has developed a highly
detailed range of site types based on the size of the site, the period, and the range of
building-related and ceramic finds, which, with some adaptation, I have applied to the
data from the Sangro and Iuvanum surveys (Tables 3.2 and 3.3):

Table 3.2. PVS Iron Age site hierarchy

<table>
<thead>
<tr>
<th>Site Type</th>
<th>Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Small Site</td>
<td>200-1200m²</td>
</tr>
<tr>
<td>Medium Site</td>
<td>1200-2500m², normal density of finds</td>
</tr>
<tr>
<td>Large Site / Village</td>
<td>2500m²+, high density of finds</td>
</tr>
<tr>
<td>Hilltop Site</td>
<td>Identified by other means</td>
</tr>
</tbody>
</table>

Table 3.3. PVS Roman site hierarchy

<table>
<thead>
<tr>
<th>Site Type</th>
<th>Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Small House Unit</td>
<td>200-1200m², simple building materials, low density of ceramics</td>
</tr>
<tr>
<td>Farm</td>
<td>1200-2500m², simple building materials, normal range of ceramics</td>
</tr>
<tr>
<td>Large Farm / Simple Villa</td>
<td>2500-4000m², zoning in scatter, diverse building materials, but no luxuries, normal range of ceramics</td>
</tr>
<tr>
<td>Villa</td>
<td>3000-6000m², zoning, diverse building materials, luxury architecture – marble, mosaic, columns.</td>
</tr>
<tr>
<td>Roadside Settlement / Tavern</td>
<td>Very large (6000m²+), high number of table wares and amphorae</td>
</tr>
<tr>
<td>Vicus</td>
<td>12000m²+, wide variety of building materials, and high number of fine pottery wares.</td>
</tr>
<tr>
<td>Town</td>
<td>Identified by excavation and epigraphy</td>
</tr>
</tbody>
</table>

This allows the creation of the following tables of sites (Tables 3.4 and 3.5):

Table 3.4. Iron Age site numbers

<table>
<thead>
<tr>
<th>Site Type</th>
<th>Lower Potenza</th>
<th>Middle Potenza</th>
<th>Upper Potenza</th>
<th>Iuvanum Plateau</th>
<th>Middle Sangro</th>
</tr>
</thead>
<tbody>
<tr>
<td>Small Site</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td>Medium Site</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>3</td>
<td>9</td>
</tr>
<tr>
<td>Large Site / Village</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>Hilltop Site</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>TOTAL</td>
<td>7</td>
<td>6</td>
<td>7</td>
<td>13</td>
<td>22</td>
</tr>
</tbody>
</table>
Table 3.5. Roman site numbers

<table>
<thead>
<tr>
<th>Site Type</th>
<th>Lower Potenza</th>
<th>Middle Potenza</th>
<th>Upper Potenza</th>
<th>Iuvanum Plateau</th>
<th>Middle Sangro</th>
</tr>
</thead>
<tbody>
<tr>
<td>Small House</td>
<td>5</td>
<td>2</td>
<td>8</td>
<td>9</td>
<td>18</td>
</tr>
<tr>
<td>Farm</td>
<td>4</td>
<td>3</td>
<td>13</td>
<td>11</td>
<td>9</td>
</tr>
<tr>
<td>Large Farm</td>
<td>5</td>
<td>2</td>
<td>10</td>
<td>14</td>
<td>4</td>
</tr>
<tr>
<td>Villa</td>
<td>6</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Roadside Settlement /</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Tavern</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vicus</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>Town/Sanctuary</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>TOTAL</td>
<td>22</td>
<td>12</td>
<td>33</td>
<td>38</td>
<td>38</td>
</tr>
</tbody>
</table>

From these results, the more upland areas of the Upper Potenza, Iuvanum Plateau and Middle Sangro all reveal hierarchies heavily weighted to smaller, humbler settlement types—small houses, farms and large farms. Large, richly equipped villas seem largely absent from these areas, whereas in the Middle, and especially the coastal Lower Potenza they are of fundamental importance. Thus, the differing site numbers probably reflect the more dispersed settlement pattern of mountainous environments and the impracticability of creating large rural estates in these areas. Also, this categorisation is useful for noting that there are possible associations between roadside settlements and taverns with towns and the similarity between the Iron Age and Roman periods in the Middle Sangro. This hints at the heterogeneous developments of the different micro-regions that I shall investigate in later chapters.

Fentress (2008), Wilson (2008) and Witcher (2005; 2008) have utilised figures like these to consider the potential demography of these regions. This is an important issue which I consider in depth in Chapter Five.

3.7.3 Continuity and Change

Turning towards the replacement of sites, it is highly noticeable that many sites were occupied or frequented in both the Iron Age and Roman periods in all areas surveyed (Table 3.6). As already noted, this may in part be a false pattern as Iron Age sites are far more likely to have been observed archaeologically if they underlie Roman sites (because the area is then more intensively fieldwalked). A few sites in each of the survey areas lack evidence for occupation from the Republican or Imperial periods onwards, but the overwhelming picture is of continuity of existing settlement alongside the growth and expansion already discussed. The same pattern was also observed in survey around Cingoli (MC, Le Marche), but not elsewhere in the...
Marecchia, Conca, or Metauro valleys (MC and AN, Le Marche) where the Roman period is considered to have brought an abrupt halt to the Iron Age settlement pattern (Verdonck and Vermeulen 2004). The most important change across the study area seems to be the decline of hilltop sites and the reorganisation of administrative and religious landscapes around the towns that were founded from the second century BC — a subject explored in Chapter Seven.

Table 3.6. Site turnover

<table>
<thead>
<tr>
<th>Survey</th>
<th>Number of sites frequented in IA periods</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lower Potenza</td>
<td>5 of 7</td>
<td>71.4%</td>
</tr>
<tr>
<td>Middle Potenza</td>
<td>3 of 6</td>
<td>50.0%</td>
</tr>
<tr>
<td>Upper Potenza</td>
<td>6 of 7</td>
<td>85.7%</td>
</tr>
<tr>
<td>Iuvanum Plateau</td>
<td>13 of 13</td>
<td>100%</td>
</tr>
<tr>
<td>Middle Sangro</td>
<td>18 of 22</td>
<td>81.8%</td>
</tr>
</tbody>
</table>

3.8 An Evaluation

These analyses might initially seem quite useful. Similarities and differences have been drawn from the data that highlight possible differences in Iron Age vs. Roman, the Potenza vs. Sangro Valleys and uplands vs. lowlands. Yet it should also be apparent that these approaches consider only those collections of ceramics which are termed sites and that these are rapidly reclassified as settlements of one kind or another. Accordingly, there are a number of problems which I seek to address:

Firstly, the basis of site hierarchies found in other survey projects in Italy (e.g. The Biferno Valley Survey — Barker 1995c; South Etruria Survey — Potter 1979; Albegna Valley — Carandini and Cambi 2002) is to be found in sparse literary sources or to derive from normative assumptions of rural life rather than the archaeological data. In Chapter Four I shall therefore explore all the archaeological evidence for settlement, to consider not just the different forms in which they were present, but how they were built, for how long they were used, and when and how they were destroyed? How might a settlement be occupied in both the Iron Age and Roman periods? Do scatters of Impasto and Roman coarsewares represent continuity, intentional re-use or coincidence? Can we securely identify continuity from one to another phase?

Secondly, the site-based approaches discard the data from the majority of the fields walked as so-called off-site material or background noise. If we are interested in what people were doing in the past rather than how many and where, these data must be
engaged with. In Chapter Five I seek to do just that by using all the pottery sherds from fieldwalking as a correlate for changing land-use. I build this within a framework of intensification, extensification, expansion, specialisation and abatement that provides a fresh perspective on the key questions of demographic growth, and, for the Roman period, the extent of slave labour and the change to plantation agriculture.

Thirdly, placing the level of analysis at the site smoothes out all differences found within the site categories, so that we end up with groups of ‘farm people’, ‘villa people’ or ‘town people’. One means of discussing the identities of the inhabitants of the survey areas is to look at what items they consumed, and in survey we have excellent data in the form of the ceramics they used and potentially broke and discarded on a day-to-day basis. Chapter Eight therefore treats the survey data as a series of assemblages from varying social and functional contexts in order to explore the range of ways of living and the manners in which these formed different communities.
Chapter Four: Household Constructions — Settlements and Farmsteads

4.1 Introduction

This chapter aims to discuss the available physical and material evidence for settlement and settlement models in central Adriatic Italy. As few sites have been excavated and fewer still published I have extended the limits of my study chronologically to include the Early Iron Age and geographically to include northern Marche and, to the south, the region of Molise. The chapter will first discuss the current models for settlement, especially those presented in the publication of the Biferno Valley Survey (Barker 1995a) and the recent arguments on farm and villa development presented by Terrenato (2001; 2007). Secondly it will review the sites in which settlement structures have been excavated, paying particular regard to how this material can help in the interpretation of field survey data. Finally, the chapter will utilise Gerritsen’s house biography approach (2003; 2008) to consider the trends and development in house construction and use throughout the study period.

4.2 Current Models

More than 30 years after it was initiated, the Biferno Valley Survey (BVS) remains the major source of published evidence for settlement reconstruction in central Adriatic Italy in the first millennium BC (see, for example, the reliance in Bispham 2007), and, as such, it is worth considering in detail. For the first half of the first millennium BC, Barker and Suano propose elite-dominated large nucleated settlements or villages 10-15km apart and protected by natural defences; these were the centres of social and economic power and they were supported by a number of very small sites less than a tenth of their size (1995: 162-3, 176). In the second half of the first millennium BC, this village-centred pattern formed the basis of the settlement hierarchy, but developed with the occurrence of smaller isolated farm-like settlements and the fortification of hilltops with prominent cyclopean walls (Lloyd 1995a). To some extent this mirrors the trends seen in Etruria and Latium and other parts of central and southern Italy where this period, in particular the fourth and third centuries, saw a flourishing of small to medium farmsteads (Terrenato 2007: 140-4). Terrenato attributes this to wider Mediterranean processes, favouring a growing interest by
elites in urban centres that lessened or modified their control over the countryside (2007: 143-4), but this is difficult to match to the data from the Biferno Valley, given the relative dearth of urban centres until the second century BC in this region. However, strong arguments have been put forward to consider the hillforts, especially the larger examples, as proto-urban centres (e.g. De Benedittis 1988; 1991; Oakley 1995; Gualteri 2004; Faustoferri and Riccitelli 2005). Yet, both Bradley, G. (2000: 29-102) and Bispham (2007: 200-204) have strongly critiqued this approach as overemphasising the importance of cities over other changing social and political organisations, such as states and minimising the role of sanctuaries (see Chapter Seven).

Expanding economic horizons, chiefly as a result of Greek and Roman colonisation or more Mediterranean-wide trading links are another potential reason for changing settlement systems. The evidence is circumstantial at best though; the area around Ancona shows contacts with areas as far afield as the Baltic and the Aegean, through the presence of amber and Attic pottery from at least the eighth century BC, and the range of figurative art suggests links with Alpine Hallstatt networks (Rebay-Salisbury, pers comm.). Conversely, historical and epigraphic sources such as the Oscan names of negotiatores (i.e. merchants) on inscriptions at Delos would suggest that the region only started to open up from the very end of the third century (Wilson 1966: 105-111). Finally, we may note changing agricultural practices such as the development of oleoculture and viticulture, attested in both Le Marche and Molise by the second and first centuries BC. Amphorae were certainly made for export in Adriatic central Italy during this period (Pesavento Mattioli 2000; Staffa 2003; Vermeulen et al. 2009). Yet much of the study area consists of uplands and marginal land and more research is required to establish in what areas and landscapes the new farmsteads identified by the BVS were constructed. Do they, perhaps reflect a greater interest in wool production for example? The work of Crumley (1987; 1995) adds a twist to this argument. She argues that significant climate change from the fourth century (primarily rising temperatures — Lamb 1977) may have had a profound social impact (although her research is primarily concerned with the effect of Mediterranean-like climates in Northern Europe). However, this should be tempered by the ability of humans to manage their environment. Rising temperatures may cause tree lines to retreat, for example, but stock management practices and felling activities may have a more profound effect (Cherry 1988: 15).
The development of villas in particular has often been singled out (for Le Marche see especially Mercando 1979) as, although previous work has largely concerned areas of Latium, Campania and Etruria, the results are regularly generalised across Italy. Most have argued that, towards the end of the third century, farms based on a Hellenistic model were introduced into Italy, bringing new architectural forms and luxury (McKay 1975; De Albentis 1990) that were gradually developed into the opulent villas of the late Republic and Augustan periods. Marxist archaeologists, most prominently Carandini (1989), favour economic explanations, arguing that villas were a product of the introduction of Hellenistic mode of production that saw a transition to plantation style estates with accompanying industrial-sized agricultural facilities. This capitalist economy favoured the expansion of a few successful enterprises at the cost of the smaller less profitable majority. These complementary interpretations favour a development in which individual small farms were expanded and rebuilt over and over again until they reached the size of villas. A possible example of this might be the villa of Matrice (Lloyd 1991; Lloyd 1995b: 224-225) in which each successive phase was a step larger than the previous, and only in later phases were facilities such as oil presses added.

In recent years Terrenato (2001; 2008) and Becker (2006) have criticised this model, pointing out the lack of intermediate villas. In Terrenato's assessment (2001: 28) villas have their origin in the early Republic (c. fifth century BC) when aristocrats decided to mark their political and social control on the landscape with residences of exceptional size and quality that could be used as central places to extract surpluses from the surrounding population. Conversely, farms, used for agricultural production consistently remained small in size until the first century. The evidence of field survey would also suggest that small farms proliferated rather than declined in the late Republic, unlike the model of Carandini and others.

As well as the expansion of settlement activity, we may consider where different people were living. As discussed in Chapter Two, in Italy the study of identity is largely concerned with defining territorial-ethnic groups, but some comment can be made on the elite versus the non-elite in these models. In Barker and Suano’s model of the Iron Age (1995), villages were inhabited by a dominant elite that displayed and established their hereditary power through conspicuous burial practices (Suano 1991). The villages acted as central places for both economic and social practices requiring structures or places for these acts, perhaps areas for iron-working, trading or
assemblies, as well as the areas for habitation. The non-elites then, we can presume, lived in attendance of the elites in the village and in smaller surrounding sites. Archaeologically, we might therefore expect village sites to reveal significant differentiation between houses, perhaps in size, storage facilities and/or material assemblages (particularly in imported and rare items). As non-elite sites, smaller settlements should show little wealth or integration into wider networks and lack significant areas for storage. In Terrenato and Becker's model we should expect a more complex distribution of social status reflecting the developments of the settlement hierarchy. In particular, Terrenato (2007: 140-41) suggests a sort of middle-class that could produce its own surplus in the small to medium farmsteads. We might expect these types of dwellings to have architectural or material pretensions, if without obvious signs of wealth. The occupation of hillforts is, as already hinted, much debated, but Bispham (2007: 200) claims that signs of housing are restricted to the elite, as is reflected in larger complexes and high levels of imports. The role of the villages in this later period is somewhat unclear and little studied. Did they decline in size due to the withdrawal of the elite from the countryside, and did they maintain a role as central places? The proposed model would suggest that they became simple agglomerations of houses for people of lower social status, but their subsequent development into towns as at Bovianum, Saepinum and Larinium surely contests this view.

Land and property ownership provide the final trajectory to consider. Current models (e.g. Capogrossi Colognesi 1994; Terrenato 2001), based upon literary and legal sources, argue that, in the early Republic, land ownership in central Italy (i.e. Latium) was kinship-based with a gens or clan controlling large tracts of land access to which was governed by the leader or pater of the clan through the parcelling of lots. Gradually, this was replaced by individual ownership and hence the lands of the gens were replaced by the large latifundia of the senatorial and equestrian classes. In this model Terrenato (2001) considers the very large palaces of Latium and Etruria, specifically those of Murlo and the Auditorium site, to be the seats of aristocratic power and that their owners derived their wealth through social means, i.e. taxation, rather than the economic output of these sites. Unfortunately all of this evidence is drawn from the western side of Italy. There are no palace sites and no literary or legal genres to use that are specific to the study region for the mid-first millennium BC. Inscribed stelae found in two groups, one in central Le Marche (North Picene), the other on the border between Le Marche and Abruzzo (South Picene) have been
interpreted as evidence of a tribal structure (\textit{toúta} – community or people) split into clans or familial groups (e.g. \textit{púpún} – common throughout the South Picene group) with prominent leaders, elders or kings (\textit{nerf or nir}) (Betts 2003b: 92-103). Only a few words of these inscribed stones are understood and their function is unclear (but most derive from within or close to necropoli) although they certainly could relate to the kinship-based system described above.

The discussion so far has been very much top-down, focussing on interpreting those settlements that had a political role in polities and territories. The weaknesses of the Biferno model can be seen in the way that it deals with the smaller sites in the settlement hierarchy. The BVS labelled these enigmatically as domestic sites (perhaps suggesting that other sites lacked domestic activity?), and Lloyd (1995: 196) describes them as ‘primitive’, common throughout Italy, and perhaps similar to simple homesteads found in modern Molise, thereby generalising across time and space. In the most recent discussion of this evidence, Bispham reiterates this view (2007: 197-8), despite the warnings of Horden and Purcell (2000, esp. 275-8) about the erroneous historicity of the timeless Mediterranean peasant. Whilst the settlement models may be confused, they certainly do suggest significant changes in what land was used and the ways it was utilised and the opportunities and aspirations of the people who inhabited it. It seems untenable that housesteads reflected none of these changes. The rest of this chapter will therefore attempt to invert this perspective to describe settlement and settlement structures from the point of view of the household.

\subsection{4.3 Types of Structures}

To structure my discussion I will split the sites into four broad categories drawn from across Le Marche and Abruzzo (Fig. 4.1):

1. Caves and shelters
2. Post-built structures
3. Structures with stone foundations
4. Multiple-roomed structures

These will be discussed in turn (Section 4.3), drawing attention to the characteristics of key sites and the types of settlement they form. Next (Section 4.6), I will turn to key aspects of any settlement – its function, method of construction and maintenance,
organisation and non-structural features. Finally (Sections 4.7 to 4.8), I will conclude with a discussion of important aspects of the data and possible new interpretations that feed into the general argument of this thesis.

Figure 4.1. Map of sites discussed in this chapter
4.3.1 Caves and Shelters

In the Biferno Valley, the cave site of Ponte Regio produced 33 sherds of classical coarseware and 9 sherds of Black Gloss that show evidence of Hellenistic-period activity. Whilst Lloyd describes this as the “humblest category of occupation site” (1995: 196), the Black Gloss ceramics show that the people who used it were at least linked into local trade networks and that they had access to the predominant fine ware of the area. Christie (1995; 2006: 477-482), whilst discussing late antique instead of Iron Age evidence, draws out the possibilities of cave living that may be linked to particularly dangerous times. In my study period these included the Samnite Wars, Pyrrhic Wars, Hannibalic War and the Social War, to name just the most famous conflicts. As well as providing places of refuge, caves appear to be very much linked into social networks and provide a cautionary tale to dismissing the (perceived) humble and the impoverished from archaeological discussion. Indeed the range of functions certainly included religious use throughout the period, shown by the deposition of votive forms of material (see Chapter Seven for a fuller discussion), and could have included such activities as: animal usage, storage, picnicking, hideaways, workshops and long-term domestic occupation (ibid. 478-479). We are not necessarily obliged to consider these as legal either; caves have often been recognised as secluded shelters for which detailed local knowledge is required to find them, and Given (2004) provides a range of plausible scenarios from use as bandit camps to hiding agricultural surpluses and even producing alcohol illegally (although this last case may not strictly have correlates with the period under study). No easy interpretation can be affixed to caves as a group, rather they provide a source for showing the varied uses of the environment and the problems of simplistic site hierarchies.

Mountaintop occupation is also becoming increasingly recognizable. The site of Colle Prezioso in southern Abruzzo is located around 1260m asl, and despite the high erosion caused by the steep-sided geology, a large quantity of Iron Age pottery fragments has been recovered from a site on the south side of the mountain (Iezzi 2006). Excavation identified evidence of levelling of the gravels and floors, made from beaten clay, that probably made use of natural cavities. Isolated postholes, an area of burning and fragments of daub, indicate that these were augmented with some kind of structure. Despite the fragmentary nature of the stratigraphy, it would appear that all parts of the site saw phases of use and abandonment over a long period (ibid. 36).
The only other excavated site is 301 from the survey on Monte Mare (Baker in Baker et al. 2006: 37-40), interpreted as a possible transhumance site dating to the Roman and potentially the Iron Age period. Excavations suggest this was a hut within an enclosure, which lay in a hollow above the tree line, but the evidence is not conclusive. Baker argues that the forms of structures related to the summer pasturing of ovinicaprids and has not changed much in the last 2000 years and possibly more. One significant difference in the ancient example was the presence of tile which must have been brought up the mountain and this implies a level of long-term usage (the modern barracas have a tarpaulin roof – ibid. 36). There is no published plan of the site but there are details of the finds – 10 sherds of late Bronze Age to Iron Age ceramic were found, 9 of which related to different cooking pots, the other a Daunian ware crater from Puglia. The Roman material indicates seven fabrics, coarse and fine – bowls were plentiful, but jars, jugs and bottles were also present, as was glass. This material suggests long-distance contacts with lowland areas that perhaps indicate transhumance, as African red slip wares were rare in the survey of sites in the adjacent Upper Volturno Valley (ibid. 39).

Similar associations might be made with the evidence of occupation found on mountain plateaus of the Matese from the Samnite period by the BVS (particularly sites D19, D20 and D23, these included finds of a single sherd of Black Gloss pottery and roof tiles – Barker 1995c: 30).

The evidence from all these sites clearly demonstrates that they were not the hovels of isolated hermits, but denote people firmly linked into wider economic systems of supply. The mountain sites of the Biferno and Upper Volturno Valley indicate the transportation of building material up difficult paths, showing considerable investment and cooperation with local communities. The site of Colle Prezioso lacks evidence of wider contacts, but can certainly be linked into cyclical uses of mountain plateaus. Whether such sites relate to summer transhumants from southern Italy, local pastoralists involved in vertical transhumance, or a combination of the two remains to be explored fully.

4.3.2 Post-built houses

Post-built houses can be defined as that class of structure that was constructed from wooden posts, wattle and daub and entirely without stone. Dating from the Bronze Age to the early Iron Age, they have been excavated across Abruzzo and Le Marche.
Unfortunately, settlement evidence from the early Iron Age, the period of interest, is particularly poor for Abruzzo and so discussion will concentrate primarily on Le Marche and especially the area around Matelica. Excavations in the 1990s and 2000s, linked to the development of large industrial estates around Matelica, have uncovered settlement evidence on an unprecedented scale. Ten sites have revealed evidence of post-built structures along a 5km strip of the river Esino dated to the eighth to fourth centuries BC (Fig. 4.2; Gobbi and Biocco 2003; Biocco and Silvestrini 2008), along with substantial cemeteries of the same period.

The earliest site – Crocifisso – features postholes belonging to eight long rectangular post-built structures aligned south-east to north-west (Fig. 4.3; Gobbi and Biocco...
2003: 155-8). These vary in length from 21.5-24.5m and are typically 6m wide, although one house (A) was twice this width, and another had a smaller structure built up against it (B and C). The entrance to these houses appears to be at the southern end, whilst the northern end is characteristically rounded; there is little evidence for internal divisions apart from central posts that seem structural.

Figure 4.3. Excavated area of Crocifisso. A-I longhouses, (Sabbatini 2008a: Fig. 36)

At Crocifisso, the houses are similarly aligned and not overlapping, but this is not the case at the other sites of Matelica: the areas exposed at Via Tiratori and Via Spontini (Figs. 4.4 and 4.5; Gobbi and Biocco 2003: 158-162) showed a mass of postholes without clear patterning (although there are perhaps some north-south alignments at Via Spontini). Whilst it is not possible to reconstruct houses from these postholes, they do show a trend towards rebuilding houses on the same spot (although perhaps not the same alignment or structure) that was not apparent in the earlier period at Crocifisso. Drip-gullies were visible at Via Tiratori, but this may be because of reduced truncation rather than denoting a new construction style, as keeping water away from the base is important in any post-built structure. These areas date primarily to the seventh and sixth centuries, but later occupation is attested through the presence of ceramics to the fourth to second centuries BC.
At Via Pergolesi structures from the eighth century were excavated of similar type to those already discussed. Particularly noteworthy were two pottery kilns, 2m apart, that were surrounded by a semi-circle of postholes (Fig. 4.6).
The area under the scuola I.P.S.I.A. in località Trinità seems to preserve an area of craft production, with four kilns (presumably for pottery) of the figure-of-eight style known elsewhere in Le Marche (Gobbi 2002). Two of the kilns share the same flue (Fig. 4.7).
In the very centre of Matelica, Iron Age remains have been discovered, underlying the remains of the renaissance town and earlier Roman *municipium*. The largest area c.480m² has been opened up in the Palazzo Chierichetti (Fig. 4.8). At least two rectangular buildings are recognizable from the array of postholes, ditches and pits, together with finds of daub, impasto ceramics (including a miniature *kantharos*), loomweights, metal artefacts and animal bones. Also, at least six kilns were excavated, again of a two-chambered figure of eight type. They seem to have been in use only for a short period before being reused, either in the construction of new kilns, or as pits. Among the materials found within them were piles and supports, fragments of dolia, impasto jars — three of which were still *in situ* stacked within the kiln, sherds from a buccheroid kantharos, an anthropomorphic bone pendant and a pyramidal loomweight. Beneath the Palazzo Ottoni are levels containing hearths, ditches and the postholes of structures dating to the seventh and sixth centuries BC, but there is no clear plan of these features. Similarly, an excavation south of Corso Vittorio Emanuele II uncovered a clay layer, rich in impasto (particularly two-handed jars), and preserving some of the compacted clay walls of a structure. Finally, in the area of the Teatro Comunale, a structure with foundations of dry river stone and pebbles has been excavated dating to the sixth or fifth century BC.

*Figure 4.8. Excavated features at the Palazzo Chierichetti (Biocco and Silvestrini 2008: 32)*
Further, to the north within the complex of sites at Matelica, the site of Cavalieri preserves a remarkable 56 structures spread over a colluvial terrace of some 35 hectares, between the river Esino and one of its tributaries (Fig. 4.9). A wide range of construction types are represented in three areas (A, B and C) covering the period of the seventh and sixth centuries BC. Like Crocifisso, the area is also notable for its immediate reuse as a tumulus cemetery, with tombs dating from the seventh to fifth centuries. After several centuries of apparent disuse, the final phase of activity on the site dates to the buildings, of Republican and Imperial periods that are seemingly agricultural in nature (the excavation of these structures is not published).

Figure 4.9. The site of Cavalieri (Biocco et al. 2008: 41)

Area A has nine visible structures (Fig. 4.10), all but one (st. 26) of which are aligned south-east to north-west. St. 25, 34, 35, 36 and possibly 24 and 26 share similar characteristics to those discussed at other sites around Matelica – they are rectangular with many postholes along the sides and 1-3 very large postholes down the centre of the house, although only st. 35 preserves an apsidal end. Particularly intriguing was a large sandstone slab in st. 34 under which were found fragments of impasto pottery, concotto and several rods of iron wrapped in bronze wire. Of the remaining three
structures two are 6-posters, identifiable from the distance between postholes (up to 2.4m), and the last (st. 38) is interpreted by Biocco as a longer 12-post variant although it could be two 6-posters next to each other. Elsewhere in this area there are assorted pits and many more postholes that cannot easily be ascribed to structures, although a number to the south-east end of st. 34 appear to be a continuation of the house or related to it in some way. Assuming that the preservation of features has been fairly uniform, it might be interpreted that a small number of houses were arranged around a central open space 30 x 30m with ancillary structures to the south west and north east, and possibly a contemporaneous tumulus and cemetery to the north west.

Figure 4.10. Excavated features in area A, Cavalieri (Biocco et al. 2008: 42)

Just to the south of area A, at least 25 structures can be identified in area B (Fig. 4.11). Again, almost all are orientated south-east to north-west and are long houses with an apsidal end and central posts, or dividing walls creating vestibules, but lengths vary widely up to 23m. There is significant variation in other aspects of the houses' construction—some such as st. 31 have a number of postholes that suggest some kind
of porch, there is evidence of expansion in st. 13, and a number (usually the shorter, presumably, more recent houses) have gullies as well as postholes. Two houses overlap, but there is little data with which to phase the site. Houses apart, there are many 6- and 4-posters that are scattered throughout the area, but found in three concentrations – to the north, in the centre and to the west. The excavators interpreted other unattributed postholes to animal pens, other ancillary structures and some kind of fence line running for c.75m south-east to north-west. A ditch cut at the south-western end of the area lay beyond the natural colluvial silt and might have been dug for clay extraction. The presence of 13 loomweights in a nearby posthole also points to craft production (Fig. 4.12).

Figure 4.11. Excavated features in area B, Cavalieri (Biocco et al. 2008: 43)
In the final area investigated (C), the remains of 15 structures were excavated (Fig. 4.13). As with the two other areas a tumuli cemetery lies on the eastern edge of the settlement. St. 50, the largest house in the area was probably constructed in two phases, built initially as a rectangular structure, 10x5m, then extended a further 10m to the east. Elsewhere there are a variety of different sizes, some more square than others, with beam slots incorporated in at least four of the structures. St. 45 appears somewhat different from the others as it seems to consist of a central hall with two wings, creating a sort of courtyard to the south; this is a similar arrangement to st.5 in area B, but the function is unclear (Biocco interprets them as ancillary). St. 46 is particularly well preserved, having the character of a four-poster with four slots punctured by stake holes outside them (Fig. 4.14). The large number of dolia sherds from these features have led the excavators to interpret it as a storage building. A large pit, 2.1 x 1.6 x 0.5m, dug between two houses (st. 50 and 51), preserved the remains of daub, imprinted with wattle, along with sherds of impasto and leucitite quernstones (an extrusive igneous rock found in the area between Rome and Mt. Vesuvius). Finally, lines of postholes divide the inhabited area and may relate to defining the space within the settlement and the management of livestock.
Figure 4.13. Excavated features in area C, Cavalieri (Biocco et al. 2008: 48)

Figure 4.14. Four-post structure from area C (Biocco et al. 2008: 49)
Across the three areas, there are 20-30 structures that might be considered habitations in groups of one to three, each with a number of ancillary buildings, dispersed at distances of 50-200m. Phasing is difficult, but occasional overlaps, and two distinct orientations (south-east to north-west and east to west) suggest that they are not all contemporary even though all probably date to the seventh and/or sixth centuries. Although the site is referred to as the 'habitat di Cavalieri' (villages of Cavalieri), the layout is rather more dispersed. Perhaps no more than 100 people occupied the 8-9ha excavated at any one time. A similar situation has been observed with shifting occupation in the settlements of the Paris region (Haselgrove 2007). It is worth noting that other possible posthole structures of the kind found at Matelica are mentioned in the excavation reports of Iron Age cemeteries at Fabriano (Sabbatini 2008b) and Moie di Pollenza (De Marinis and Percossi 2005), but they are not discussed in any detail.

Although Matelica is unique for the extent of excavations undertaken there are other data available on post-built houses. There are two lakeside settlements: Moscosi di Cingoli and Celano-Paludi, each defined as an abitato palafittico or pile-dwelling settlement. Moscosi di Cingoli is a multi-period site that dates from the Middle Bronze Age to the fifth century BC (Fig. 4.15; De Marinis and Silvestrini 2003). It features a rectangular post-built structure, about 12m x 6m oriented north-south; the roof was double-sloped with a central beam and roof-tiled (the collapsed roof is the earliest known use of tiles in the study area) (ibid. 89). The remains are quite complex: a drainage ditch ran along the west side, and probably the south end, into a pit at the northern end, but no definitive traces of this were found on the northern or eastern sides. Within these ditches are the lines of stake holes; further within are the structural postholes. There are some indications of an internal division running east-west across the centre of the structure, but this could also be the threshold between internal and external, with a tiled floor surface in a wing of the structure. Near the structure, lay the remains of a small kiln, which the excavators initially interpreted as a votive deposit because it was associated with the remains of jars, loomweights and miniature vessels (ibid. 88). However, the consistency in the shape of the vessels found from contemporary deposits, and numerous examples of wasters, suggests more kilns, and that this was actually an important production site rather than a typical dwelling. There are several types of ceramic tile and brick (especially interesting because these are not associated with any structural elements of the site) as well as a pit for grain storage of a type normally associated with the early medieval
period. Other finds included a large number of dolia fragments and pieces of quernstones made from a volcanic stone (*ibid.* 89-91) probably from the area around Mount Vesuvius. Therefore, the evidence points more towards a storage and industrial site rather than a domestic one, as features such as hearths are absent.

**Figure 4.15. Plan of features from Moscosi di Cingoli (De Marinis and Silvestrini 2003. Fig. 3)**

Discovered in the mid-1980s the site of Celano-Paludi in the Fucine Basin similarly dates from the Middle Bronze Age to the Early Iron Age and is notable for the preservation of the posts *in situ* (Fig. 4.16; Cosentino *et al.* 2002). Several rectilinear structures are identifiable, the largest of which is at least 30 x 10m, but, typically, three rows of posts seem to have been favoured. The best studied is the house in quadrant B5 which produced substantial quantities of early Iron Age material including ceramics and bronze objects (Fig. 4.17; *ibid.* 340-341). The faunal remains, similar to other Iron Age sites, consisted of a mixture of domestic cattle, pigs and ovicaprids which dominated the assemblage (the only other animal bone remains were three deer fragments).
Figure 4.16. Plan of features from Celano Paludi, quadrant B5 marked by square (Cosentino et al. 2002: Fig. 1)

Figure 4.17. Plan of features from quadrant B5 of Celano Paludi (Cosentino et al. 2002: Fig. 2)

The site of Tortoreto-La Fortellezza lies on a plateau 2km from the coast in northern Abruzzo (Vanzetti et al. 2003). Originally, excavations (completed in 1982) were on the site of an intended residence terrace, but these were abandoned, and excavation continued through smaller unconnected trenches and is only now approaching publication (ibid. 339). The stratigraphy is complex with several deposition processes linked to the hill, but at least three phases are distinguishable. Each of these characterised by layers interpreted as household waste, and concluded by a phase of structural degradation with large pieces of building material, pottery and colluvial
material (Fig. 4.18; *ibid.* 341-343). The stratigraphy is also suggestive of natural terracing with some activities taking place outside the structures. The best preserved remains relate to the first phase and consist of three lines of postholes visible over an area of 10 x 3m; these have been interpreted as either the demarcation of a settlement area (although the postholes are perhaps a bit far apart for a stockade) or the basis for a suspended floor. The excavators draw parallels with the use of similar coastal plateaus at Martinsicuro and Teramo, where similar layers of dumping activity were identified (*ibid.* 352).

**Figure 4.18. Plan of features from Tortoreto-La Fortellezza (Vanzetti *et al.* 2003: Fig. 3)**

Located on a river terrace overlooking the Pescara River, the site of Madonna degli Angeli lies 40km inland and has been investigated archaeologically several times. A Bronze Age settlement with the remains of at least one rectangular and two circular houses was initially excavated (Leopardi and De Pompeis 1980), and 300m closer to the edge of the terrace two early Iron Age houses have been investigated (Mieli *et al.* 2003). House B had a number of unique elements and displayed several phases of rebuilding (*ibid.* 400-402). The first phase was a large trough measuring at least 2 x 4m and 0.8m deep, although the limits of excavation border it on two sides, and it was not bottomed (Fig. 4.19). This trough had a rectangular shape and was adjacent to a line of postholes on its western side; a thick layer, almost black with charcoal and including an elliptical hearth, sealed the lowest layers of this structure. Above, lay a
series of beaten clay floors, burnt in places (apparently from domestic activity). Finally, a curved line of postholes, associated with another beaten clay surface, cut through the centre of the rectangular structure, although the outline of this later structure is unclear (Fig. 4.20). This structure is the only published example of a sunken-featured building found dated to the Iron Age of the study area and it is unclear whether, as in early medieval Europe (see discussion in Tipper 2004), this had a raised floor or whether the floor was also sunken. Certainly in the later phases, the trough was largely filled in and the floors laid directly over the earlier structure in a similar position (perhaps guided by the indentation left by the earlier structure?). The circular structure suggested by the postholes is also problematic, since if these relate to a roundhouse, then it would be very large and there are few parallels to this kind of sizeable structure.

Figure 4.19. Plan of first and second phase features from Madonna degli Angeli (Mieli et al. 2003: Fig. 1)
At Vastogirardi, in the Trigno valley, three areas were excavated as part of the mitigation strategy for the construction of the Campochiaro-Sulmona gas pipeline in the 1990s (Mieli and Cosentino 2006). Sectors A and B produced early Iron Age impasto pottery and other signs of occupation, but few clearly identifiable structures; Mieli and Consentino attribute this to adverse climatic events, presumably floods and or landslides. Higher up the valley, sector C was particularly notable for the preservation of floor layers with associated postholes. Although somewhat plough-damaged, at least two distinct phases were distinguishable (Fig. 4.21). The first, preserved only through its postholes, is probably circular in shape, perhaps 4m in diameter. This is overlain by burnt floor layers of the second structure that cover an area of some 30m². Within this area are three surviving postholes, spaced 2-3m apart, of an apparently rectangular structure with a hearth in the centre of the northern side (the base of which was created in part from large sherds of pottery). Widespread evidence of burning suggests the structure was burnt down rather than abandoned. The ceramic evidence does not provide firm dating evidence, but it seems to be of tenth-eighth century date (Early Iron Age).
Barker and Suano link their descriptions of Iron Age villages to Arcora near Campomarino in the lower Biferno Valley (1995: 163-4). The site dates largely to between the eighth and fifth centuries BC (although the earliest radiocarbon date was 1120-960 BC), and lies on a coastal peninsula, delimited on its north-east side by a ditch of apparently Iron Age date (Di Niro 1991: 36). Sixty discrete concentrations of archaeological material were surveyed, sub-rectangular in shape, ranging from 6-18m by 5-9m; they consisted of dark soil, stones, ash and artefacts (Fig. 4.22; Barker and Suano 1995: 163). Excavation and modern truncation showed evidence of floor surfaces of semi-burnt and beaten clay (similar to those described at Madonna degli
Angeli), postholes, pits and sunken hearths; the evidence suggests that these were wattle and daub houses on stone footings. The pottery was largely impasto with some Daunian imports; other finds included ceramic spindle whorls, loomweights and flint, especially pressure-flaked flint arrowheads. Barker and Suano argue for a substantial community living in a nucleated village (ibid. 164). However, the length of occupation surely raises the possibility that this could be a small hamlet that was active for a long period, repeatedly moving its place of habitation, particularly if many of the structures were for storage or labour activities (parallels could be drawn with the six-post structures at Crocifisso, Matelica).

Acquachiara also deserves mention, as recent excavations here have uncovered the remains of Iron Age and Roman sites in adjacent fields. The most interesting trench – ACQ8000 – produced material carbon dated to 760-510 cal BC (assuming all dated samples were from contemporary features) relating to a series of beaten clay floor surfaces, that included a curious impasto tile-lined circular feature and two sets of impasto supports for what appear to be cooking stands (Fig. 4.23; Bispham et al. 2008: 56-58). The archaeobotanical evidence suggests that this was an agricultural site involved in the production and processing of cereals – emmer wheat and barley – and legumes, especially bitter vetch (Shelton 2006: 31).
Another coastal site, Martinsicuro, located on the border of Le Marche and Abruzzo, also dates to the late Bronze Age and early Iron Age, although excavation has been limited and not widely published. A single post-built structure of unclear form and a material rich deposit were found in an emergency excavation for a motorway tunnel, but only 18m² were dug and no clear interpretation was possible (Di Fraia 2005). In the bedrock were three crests and artificial depressions with a series of sloping deposits overlying a reddish-yellow make-up layer, and a black soil rich in artefacts. An interesting phenomenon was the deliberate conservation of decorated middle to late Bronze Age pottery sherds at this site, also reported at Archi (ibid. 762-763).

Elsewhere along the coast of the Adriatic there are a number of sites that have produced limited evidence of settlement. Montedoro di Scapezzano, located on a sandstone plateau in northern Le Marche, has been highlighted by Boullart (2003) as particularly characteristic of Iron Age settlement in Le Marche. Three long structures are preserved through a number of postholes. One is seemingly of eighth century date whilst the other two are from the seventh century, although the excavators imply that more structures remain to be found. The presence of a number of other features has led to the consideration that this site is a village: two well-preserved pottery kilns complete with tubular spacers and emplacements for bellows, and two ditches cut into the hillside. At Ancona on the Colle dei Cappuccini, Lollini’s excavations uncovered...
tracts of stone wall, the bases of houses, fragments of daub and either hearths or kilns. Unfortunately no plan has ever been published of these excavations, (the only published report is a note in BPI – Lollini 1956). Despite this, finds of ceramic animal figurines, bone and antler tools, and pottery, some of it from southern Apulia and Greece, date the site from the tenth to fifth centuries BC. Piana Ischia is located on a terrace on the bank of the Salinello river and known archaeologically from 1947 when Cicconi mentioned the remains of ‘primitive dwellings’. Quarrying work led to further excavations in 1977, which brought to light material from the Iron Age and Roman periods. Three parallel channels and a row of stones points towards some kind of structure, but its form is not clear. The site of Campo di Fiera, part of a complex of sites around Teramo, overlooks the Rivers Tordino and Vezzola on an upper part of the same terrace as the later Roman town of Interamnia. Little Iron Age material survives on the terrace, but as many as ten phases of dumping and landslides are identifiable on the edge of the terrace (Fig. 4.24; Bietti Sestieri et al. 2003: 565). The excavations produced c.40,000 sherds of impasto and abundant faunal and botanical remains (ibid. 566). Finally, excavations in Lanciano, inside the Santuario del Miracolo Eucaristico, has produced evidence of habitation – two post-holes and three beaten clay floors (one with evidence of burning) – that relate to either two or three phases of use. Excavations elsewhere in the city have recovered ceramic assemblages that stretch from the Iron Age to medieval period.
Figure 4.24. Excavated dumping and landslide deposits from Teramo (Bietti Sestieri et al. 2003: Fig. 1)

4.3.3 Stone Foundations

Later sites found in Abruzzo produce quite different remains of structures to the postholes discussed above. From the fifth century BC, stone foundations became a fairly common construction element, with wattle and daub walls and a wooden frame that supported a roof that often was tiled. A prime example is at Colle Fiorano, Loreto Aprutino in northern Abruzzo where foundations, carbonised beams and numerous tiles relating to two structures were preserved (Fig. 4.25; Staffa 1998; 2002). The slightly different orientations in the plan suggest two phases of construction rather than contemporaneous structures (perhaps 5 x 12m), but the stratigraphy is not clear. Several interesting features have been observed at this site: what appears to be a hearth is preserved in the eastern corner; a beaten floor surface survives in the south-
western structure; and a dolium, apparently *in situ*, is buried below the depth of the foundations adjacent to the north-western wall.

![Figure 4.25. Plan of structures from Colle Fiorano (Staffa 1998: Fig. 84)](image)

Further away, a kiln, 3-4m in diameter, was located to the south-west and a deep ditch a short distance uphill from the site was possibly a quarry site for the building materials; this produced substantial deposits which could be interpreted as waste from the houses. Finds from Colle Fiorano include several loom weights as well as ceramics dating from the fourth-third centuries BC. This site has parallels in Etruria with the Tuscania farm and the first phase of Podere Tartuchino; these were simple cottage-like structures with stone footings and tiled roofs in use from the sixth to second centuries BC that are considered to have housed modest rural households (Barker and Rasmussen 1998: 169-71; Perkins and Attolini 1992). Barker and Rasmussen (1998: 191-2) interpret the sunken storage jars found at these sites as evidence for wine or oil storage (and, by inference, surplus production – see Perkins and Attolini 1992: 127-8) as part of a mixed agricultural regime.

Similar structures have been recognised under the Roman town wall at Pesaro in northern Le Marche, where two structures, one 12 x 6m and the other 10-11 x 5-6m have been found. Both have stone foundations, wattle and daub walls and tiled roofs (Fig. 4.26; Naso 2000: 220-4).
Several other structures with stone foundations are known, but poorly published. At Cupra Marittima three houses have been excavated at two different sites by Dall’Osso (Baldelli 2000). The best known of these was constructed on a terrace with stone foundations, wattle and daub walls and a tiled roof. The floor plan was simple with three rooms and a porch. Pottery found in the layer above dated no later than 400 BC (Percossi Serenelli and Frapiccini 2000). Dall’Osso also uncovered a building at Belmonte Piceno (1915). This is recorded as a large T-shaped structure that was 30m long, but the excavation techniques make this interpretation suspect. Atop the hill of San Sevino, Pievebovigliana, several seasons of excavations have uncovered the remains of structures built directly on to the bedrock. Although no clear plan was attainable (in part due to several landslides) they were likely rectangular in shape and one was perhaps 8 x 3.1m. Ceramics from the site date to the second half of the fourth century BC. The sites of Montorso di Genga and Cessapalombo, are of similar design (stone foundations, wattle and daub walls and tiled roofs) and date to the fourth to second century BC (Landolfi 1998), unfortunately no plans or excavation reports are available. It should be noted that these sites seem to have contained only a handful of structures (typically only one or two) and although several of these sites are on hills or plateau, there is no suggestion of fortifications or enclosure.

4.3.4 Multiple roomed structures

A variation of the structures detailed above appears in the archaeology from Molise. Sites such as Fonte del Romito, San Vincenzo al Volturno, and, further south,
Cercemaggiore and Matrice, all of which date to between the fourth to first centuries BC, are notable for their roughly square plans and, more importantly, their internal multi-room structure.  

Dating from the third to second centuries BC Cercemaggiore has two main phases (Fig. 4.27; Di Niro and Petrone 1993: 15-18; Lloyd 1995a: 194-6). In its first phase the building was at least 14m across and had two or more rooms, one of which was c.16m². The rest of the earlier structure is unclear, although possibly it was square and similar to, but smaller, than the later phase. The second structure perhaps incorporated some of the earlier elements and was larger at 19 x 17m. It consisted of at least 6 rooms arranged around a central courtyard, with two or more ancillary rooms towards the south-east of the structure. Domestic accommodation appears to have been towards the front of the building in the two rooms either side of the main entrance (ibid. 196). In other rooms a small basin and several dolia have been found that suggest the processing of agricultural produce (Di Niro and Petrone 1993: 17). The floors are a mixture of beaten earth on the outside and layers of natural rock, stone slab, mortar and tile fragments on the inside (Lloyd 1995a: 196).
Fonte del Romito is the best published example of a multi-roomed stone building that originates in the middle of the sixth century BC (see Capini 1996; Rainini 2000). Situated in the Trigno valley, it is the area where the famous Agnone tablet (an Oscan inscription on bronze apparently of religious nature) was found; however, instead of the expected sanctuary, excavations uncovered a range of buildings across a 50 x 50m area arranged around a central courtyard (Fig. 4.28; Capini 1996: 43-6). The site is multi-phased, extending to Roman periods with at least four major phases identified. The earliest phase dates to the ninth or eighth centuries and consists of the remnants of a floor layer no more than 2m across, a hearth and two fornelli (cooking fixtures) preserved in situ. Adjacent to this house are the slight foundations of two walls, at right angles that border a layer of compacted yellow clay. Rainini suggests these walls may have been part of an animal enclosure contemporary in date with the other features, but it is also possible that they represent a later structure. The second phase dating to the fourth-third centuries is equally enigmatic, a series of walls show occupation across a wide area, perhaps around a central courtyard, with a number of
small rooms identifiable. However, large parts of this phase were seemingly levelled in the construction of later periods which prevents the creation of a complete plan. In the second to first centuries BC a large rectangular six-roomed building measuring 16 x 11m was constructed, with three additional rooms built in the previous period attached to the north side. Finally, in the Roman period this was supplemented by the construction of a pottery kiln in the courtyard.

Figure 4.28. Plan of Fonte di Romito (Rainini 1996: Tav. 21)

Also in Molise (and in the same valley) is the site of Ponte San Mauro in the locality of Vastogirardi, where a structure dating from the second to first centuries BC was uncovered during work on the installation of a pipeline (Capini 2000: 256-7). Here there were at least four rooms in a roughly square structure c.15 x 12m, which, judging
from the layers of rubble collapse, may have been entirely stone built (Fig. 4.29). The floors of three of the rooms had a high-quality cocciopesto floor and, interestingly, finds included lamps, bronze objects, a spearhead and elements of horse harness (ibid.). Together, these elements imply residents of some wealth, although, as the site was not found through ploughed material, perhaps we just have better preservation of both structure and artefacts.

Figure 4.29. Plan of Vastogirardi (Capini 2000: Fig. 2)

Under the directorship of Richard Hodges, the San Vincenzo Project excavated a multi-phase site from the second century BC to the fifth century AD east of the famous early medieval monastery (Gilkes et al. 2006). Field survey conducted in 1980 established the presence of a scatter covering several hectares, in the centre of which was a large terrace (ibid. 93-94). Pantoni recorded walls of classical date underlying the south side of the terrace, as well as a group of fourth-third century BC cups and bowls (1980, cited in Gilkes et al. 2006: 93), that may represent a votive deposit on the terrace. A watching brief of machine-dug pits for olive cultivation confirmed the presence of stone-built structures in this area. Two ditches up to 5m deep and 9.5m wide enclose the southern half of the site apparently of Samnite/Roman date (or earlier), with the northern ditch crossed by a bridge dating probably to the second to
first centuries BC (Bowden and Gruber in Gilkes et al. 2006: 95-6). Phase 1.1, the second-first centuries Samnite occupation is most relevant to this discussion (Fig. 4.30): the remains of three possible buildings were recognised, the first two constructed with clay-bonded rubble and the third surviving only as a foundation course. Several floor levels are identifiable – the earliest a layer of crushed and trampled travertine, succeeded by cobbles set in clay, and finally another trample layer (ibid. 99). The adjacent building had a make-up layer sealed by a surface of rubble and mortar upon which an occupation horizon 50mm thick had built up. To the east of these two buildings, the bedrock was cut to create a terrace, upon which the corner of the foundations of a wall sat (ibid. 100). The alignment of this building was followed by all subsequent buildings constructed until the fourth century AD, which also resulted in the levelling and clearance of the majority of the remains of the earlier building.

Figure 4.30. Plan of Samnite and Roman features at San Vincenzo al Volturno (Gilkes et al. 2006: Fig. 4.5)

In the site hierarchies of the BVS villas were considered a separate site category, as rural sites that were distinctively larger and richer than other farms. Strikingly, nearly all of the excavated villas in the Biferno Valley (where once again the best known sample is) show continuity from the Samnite period to Late Antiquity (Lloyd 1995b: 230). The site of Matrice, which still awaits full publication, is a prime example (Fig.
4.31). The earliest Samnite phase consists of two walls in a rectilinear arrangement, perhaps forming a structure 16 x 8m, little of which could be excavated due to the presence of a modern road. In the first century this was expanded into a more regular rectangular structure at least 20 x 16m keeping more or less the same alignment. In the early imperial period this was greatly expanded again to form a complex some 65m across, rooms for presses and other agricultural activities were also added at this stage.

Morrone del Sannio-Casalpiano is one of the less well published Roman villas that overlies an earlier structure dating from the end of the second or the start of the first century BC (Terzani and Benedittis 2005: 1-2). Multi-roomed with *opus signinum* floors (pavements of gravel, stones or terracotta with either simple patterns or no pattern at all), it was subject to several phases of rebuilding, and the quality of the construction suggest that this was a rich building. Another example is that of San Giuliano di Puglia where a similarly dated site has the preserved remains of an olive and / or wine press (Di Niro 2004: 2). The San Giacomo degli Schiavoni settlement has a long period of occupation from the fourth century BC (Ceglia in Albarella *et al.* 1993: 162; Ceglia 2008: 193). Finally, a Roman villa at San Martino in Pensilis preserves traces of earlier occupation (Fig. 4.32; Ceglia 2008). A drainage channel underlies the imperial villa and produced finds from the fourth century to first centuries BC, including a coin hoard from the mid-third century of 163 silver coins in
a Black Gloss olpe (ibid. 198-200). First century BC beaten earth floor layers under the main courtyard of the villa are noteworthy, but related structural remains are absent (ibid. 198).

Figure 4.32. Plan of San Martino in Pensilis (Ceglia 2008: Fig. 3)

Villa sites from Abruzzo (dating to from the fifth to first centuries) are sparse, but the site of Colle S. Leopardo can be noted, but Le Marche is better known. Villas here are less well published, but those of Colle Aquilino in the Tronto valley and Osimo-Monte Torto in the Musone valley are the best known (Verdonck and Vermeulen 2004: 172-175). Excavated in the 1970s, the site of Colle Aquilino had a multiple-roomed rectilinear structure c. 20 x 18m and was dated by Campana ware and terra sigillata to the first century BC (Fig. 4.33; ibid. 172). As at many other sites, the remains composed of stone-built foundation layers and beaten earthen floors and it is argued that the walls were probably of perishable materials.
Osimo-Monte Torto, like the sites in the Biferno Valley has an early Imperial villa that overlies earlier structures. As with Cercemaggiore and Matrice the site is organised around a central courtyard and is particularly notable for its well preserved olive and wine presses, treading basins, fermentation vats, crushing mill and sedimentation tanks (Figs. 4.34; *ibid.* 173-5). The scale of this site suggests an estate centre rather than a small farm, but the character of the Republican phases is not clear.
Angeli di Mergo, constructed on an alluvial terrace next to the river Esino is a site that was in use from the second half of the third century BC until at least the Roman Imperial period (De Marinis et al. 2007). Two areas were investigated (Fig. 4.35), although the stratigraphy was somewhat complex, a roughly rectangular building was discernable divided into square rooms built from rough river stones, fixed with mortar. Particularly notable was a large water system of various sections of piping and at least one well. The excavators considered this site to be part of a villa complex although a central structure has yet to be located.
The site of Cesano di Senigallia, north west of Ancona, was excavated in advance of modern drainage work. Although much of the site could not be excavated due to the presence of a motorway embankment, there was the platform of a crushing mill and a number of tanks, perhaps for processing olive oil. The site probably dates to the end of the first century BC.

4.4 Hillforts

Hillforts or *centri fortificati* are poorly represented among the published excavated settlement structures. At least 200 hilltop fortified sites of proto- or prehistoric date are known from Abruzzo (Mattiocco 1981; 1986; Grossi 1989; Oakley 1995) and, although far fewer are known in Le Marche, certainly some were constructed here.
However, no sites have been extensively excavated and the few buildings recorded are somewhat difficult to clarify.

Hillforts are not easily defined. Oakley (1995: 16) asserts that polygonal walling is the best indication, but, as this technique was also regularly used to provide terracing for roads, villas and sanctuaries it must be found on a hilltop. However, even with this simple definition problems arise where defensive circuits are absent (as at Monte Pidoccio – Oakley 1995: 81; Bradley et al. 2008: 145), are incomplete, even with the addition of ‘natural defences’ (as at Monte Pallano – Oakley 1995: 84-87), or utilise ditches instead of walls – (as at Montarice – Vermeulen et al. 2005). Dating is also highly problematic. Literary evidence has been the prime testimony in Abruzzo as scholars have linked their use to the Samnite Wars of the late fourth and early third centuries BC (Oakley 1995: 135), but there is no consensus on the date of construction. Salmon considered hillforts to have been constructed in the seventh or sixth centuries (1967: 133), La Regina the fifth and fourth centuries (1975: 272-4) and Conta Haller the late fourth and early third centuries (1978: 133-134). Datable evidence for the walls is sparse – there are surface collections of ceramics, but these are rarely diagnostic and few sites have been excavated. At La Giostra an early first-century BC date was derived by Letta (1979: 130-131), although Paoletti (1991: 301-306) has reinterpreted this as a second phase, with the original circuit built in the fourth century BC. Also, the gate of Monte Vairano, Molise can be securely dated by a sealed late fourth century deposit (De Benedittis 1988: 115). Even when there are spot dates as Oakley (ibid.) points out these may relate to hilltop use or occupation that is only incidently associated with the walls such as shepherding. Equally, walls need not have been constructed all in one phase and the limited dating evidence provides no detail on possible periods of abandonment and re-use. Occupation provides the next obstacle to interpretation. A few buildings have been excavated that produce dates ranging from as early as the seventh, but more commonly the fourth to first centuries BC, but these have frequently been interpreted as sanctuaries or temples (see further Chapter Seven) rather than houses or other structures linked to habitation (Table 4.1). The size of hillforts is also extremely varied. Averini and Cerasuolo (2008) conducted a study of 41 sites in Abruzzo and demonstrated that more than half (24) were less than 1.5ha in area and only three were more than 7ha (11, 46 and 64ha). Finally, they are also not evenly distributed, and some are no more than a few hundred metres apart suggesting that they are not always best considered as individual sites. In general they seem to be largely a phenomenon of the intermontane basins of the Abbruzzese Appenines and
further south into Campagna and Molise, but this may just reflect where topographic studies have concentrated.

### Table 4.1. Excavated Structures from hilltop sites

<table>
<thead>
<tr>
<th>Site</th>
<th>Enclosed Structures</th>
<th>Excavated Structures</th>
<th>Interpretation of Structures</th>
<th>Dating</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Monte Pallano (CH), Abruzzo</strong></td>
<td>Partial Walls</td>
<td>Large courtyard complex; Terraced building platforms</td>
<td>Sanctuary</td>
<td>3rd-1st centuries BC</td>
<td>Faustoferri and Lloyd 1998</td>
</tr>
<tr>
<td><strong>Monte Piddochio (CH), Abruzzo</strong></td>
<td>No Hut Platforms</td>
<td>Habitation</td>
<td>Mid-2nd-1st century BC</td>
<td></td>
<td>Bradley 2008: 145</td>
</tr>
<tr>
<td><strong>Alfedena (CH), Abruzzo</strong></td>
<td>Walled</td>
<td>Two stone walled buildings</td>
<td>Sanctuary</td>
<td>Late 3rd century BC- 1st century AD</td>
<td>Mariani and De Amicis 1901: 446-451</td>
</tr>
<tr>
<td><strong>Colle Mitra (AQ), Abruzzo</strong></td>
<td>Walled</td>
<td>20m² structure built into circuit wall</td>
<td>Not stated</td>
<td>7th-4th/3rd century BC</td>
<td>Mattiocco 1981a: 61-63</td>
</tr>
<tr>
<td><strong>La Giostra (AQ), Abruzzo</strong></td>
<td>Walled</td>
<td>Two stone-walled buildings and cistern</td>
<td>Sanctuary</td>
<td>4th-1st centuries BC</td>
<td>Paoletti 1989: 301-306</td>
</tr>
<tr>
<td><strong>Colle del Vento (TE), Abruzzo</strong></td>
<td>Walled</td>
<td>One stone walled building</td>
<td>Sanctuary</td>
<td>2nd-1st centuries BC</td>
<td>Franchi Dell’Orto and Staffa 1991</td>
</tr>
<tr>
<td><strong>Montalto di Cessapalombo (AS), Le Marche</strong></td>
<td>No Stone foundation structures</td>
<td>Habitation</td>
<td>4th-2nd centuries</td>
<td>Fasti 1956: n 2695</td>
<td></td>
</tr>
<tr>
<td><strong>Pievebovigliana (AS), Le Marche</strong></td>
<td>Ditches</td>
<td>2 stone walled buildings</td>
<td>Sanctuary</td>
<td>4th-3rd centuries BC</td>
<td>Percossi Serenelli et al. 2002</td>
</tr>
<tr>
<td><strong>Genga (AN), Le Marche</strong></td>
<td>No Structures</td>
<td>Habitation</td>
<td>4th-3rd centuries BC</td>
<td></td>
<td>Silvestrini and Pignocchi 2004</td>
</tr>
<tr>
<td><strong>Montedoro di Scapezzano (AN), Le Marche</strong></td>
<td>Ditches</td>
<td>3 structures</td>
<td>Habitation</td>
<td>8th-7th centuries BC</td>
<td>Boullart 2003</td>
</tr>
</tbody>
</table>
Sharples states that we will only be able to understand the significance of hillforts if we can identify their role in society (1991: 257). Several have been tempted to treat the walled enclosures of central Adriatic Italy as village communities akin to the proto-urban settlements of archaic Etruria and Hallstatt Europe (D'Ercole et al. 2002a; 2002b). As excavation is lacking they have turned to better known sites of southern Campania, Basilicata, and northern Calabria (ancient Lucania – Isayev 2007a) as comparanda (e.g. Gualtieri 2004). Here, at sites such as Roccagloriosa (Fig. 4.36), Laos, and Moio della Civitella, there is evidence of orthogonal streetplans, public buildings and/or many complex stone houses of fourth to second century date. Although contacts and interaction between the indigenous Lucanians and the Greek colonies of Magna Graecia makes the situation somewhat different (Isayev 2007a; Oakley 1995: 5). Despite this Oakley (ibid. 141-142) asserts that the presence of surface sherds and tiles at a large number of sites demonstrates occupation, and this is certainly supported by the frequent presence of medieval villages and castles on the same hilltops (as at Montenerodomo, Fig. 4.37). Others have preferred to see the centri fortificati largely as defensive refuges used only in times of crisis (e.g. La Regina 1975: 245) these arguments are often supported by the inaccessibility and inhospitable weather of many of the mountain locations, with many above 1000 metres asl Yet it is difficult to conceive how some of the very large or very fragmentary circuits could have functioned adequately as defensives. Thus neither interpretation of settlement or refuge is particularly convincing as an interpretation for the role of these sites, but neither can they be easily dismissed.
Figure 4.36. Plan of structures on the plateau of Roccagloriosa, Campania (From Gualtieri 1987: 36)
Another dimension to the debate on role can be taken from the discussion of hillforts in Britain. Here scholars have tended to emphasise more the social role of these sites in society. Cunliffe (1983: 168-169) proposed a model where the hillfort was at the top of a settlement hierarchy from which the elites could exert power over client farms (cf. Sharples 1991:257-265). Hill suggested that these hillforts were ‘locales for corporate gatherings and rituals, activities outside the normal bounds of culture, economics and social interaction’ (1995: 53). Whilst Hingley (1984) proposed that the presence of a prominent circuit could have reflected the identity of a social group, i.e. a mountain community rather than a lowland community. More recently, Sharples (2007) has emphasised the social role that constructing monumental wall circuits would have had in bringing communities together and forging group identities. Parts of some or all of these theories might be applicable to central Adriatic Italy especially given the number of excavated structures that were found to have had some religious significance and the potential for seasonal use. Unfortunately, the state of knowledge is too slight to do more than highlight the extreme variability in this class of site (Sterry 2006). Without wider excavation and investigation (for instance on the outside of the walls) and securely dated sequences their relationship to other elements of the landscape remains elusive and frustrating.
4.5 Scatters and Deposits

During the course of the Biferno Valley Survey small test trenches were opened up over several sites. Site D12, a scatter roughly 40m in diameter, had two charcoal rich deposits discovered by augering in the eastern half of the site (Barker 1995d: 83-5). Excavation of one of these revealed a rubble wall enclosing the remains of a beaten clay floor and what were interpreted as two double postholes. Fragments of tile and pieces of daub are suggestive of the modest structures of the sixth to first century structures such as Colle Fiorano already described. Black Gloss and coarsewares were found in the deposits within this structure. Nearby A11 also produced sporadic, charcoal-rich lenses in a circular scatter 60 x 40m. Several test pits produced no material, but one uncovered part of a clay-lined tank built from tile and brick and rubble that was perhaps from a collapsed wall (ibid.). The lack of daub, coupled with the nearby find of a limestone column, led to the interpretation that this was a rather grander building than those already discussed. Finds from these excavations and the survey scatter were of impasto, Black Gloss and coarseware, some Roman in date. A layer of charcoal was also found underlying survey scatter A26, a site 500m from the sanctuary at Colle Sparanise (ibid. 85-87). Whilst excavations found no structures, there was a single pit 6m across and 1m deep, filled with a mixture of ash, charcoal, tile, Black Gloss, coarse ware, buff wares, a loom weight, a piece of dolium and animal bones.

In Abruzzo, excavations and fieldwalking during the construction of a pipeline on the plateau of the coastal town of Civita-Poggio Civita point to an extensive Iron Age – Roman site dating from the third century BC. At a depth of 1.6m below the ground surface, a layer 0.5-0.7m thick featured a number of holes of different sizes and depths (probably pits, but it is not clear from the description) that contained many amphora fragments (Staffa 2002: 46). Whilst the excavator B. Di Marco attributed this to the waste of a furnace (in Staffa 2002: 46), Staffa prefers to see this deposit as related to a large farm (2002: 46-47). The two interpretations are not necessarily mutually exclusive.

4.6 Implications of the data

Even if this review of the known Iron Age – Roman houses from the central Adriatic highlights the paucity of the evidence and its uneven distribution, several aspects emerge that may be of some use in the interpretation of survey evidence, (Table 4.2).
<table>
<thead>
<tr>
<th>Structure/Habitation Type</th>
<th>Date Range</th>
<th>Size</th>
<th>Geographical Focus</th>
<th>Topographic Association</th>
<th>Altitude</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caves and Shelters</td>
<td>All periods</td>
<td>Small</td>
<td>Southern Abruzzo and Molise</td>
<td>Mountains and gorges</td>
<td>above 1000m asl</td>
<td>The small distribution and lack of data on these sites is likely due to a lack of research interest in small sites and mountainous areas</td>
</tr>
<tr>
<td>Post-built structure</td>
<td>Bronze Age-5th century BC</td>
<td>15-150m²</td>
<td>Widespread</td>
<td>River valleys and lakes</td>
<td>below 800m asl</td>
<td>Long houses are more common in the Le Marche and smaller ovoid structures are more common in Abruzzo</td>
</tr>
<tr>
<td>Stone Foundations</td>
<td>6th-2nd century BC (but few surviving examples)</td>
<td>60-80m²</td>
<td>More concentrated to Le Marche</td>
<td>Hills and coastal plateaus</td>
<td>below 500m asl</td>
<td>In Abruzzo and Molise these are only known under multiple roomed structures e.g. Matrice and Fonte di Romito</td>
</tr>
<tr>
<td>Multiple roomed</td>
<td>3rd century BC-Roman Period</td>
<td>170-360m²</td>
<td>Widespread</td>
<td>River valleys and low-lying areas</td>
<td>below 600m asl</td>
<td>Sites in Le Marche are new foundations</td>
</tr>
</tbody>
</table>
4.6.1 Site Interpretation

From the houses examined in this chapter, it is difficult to assign them to the kind of normative site hierarchies used by field surveys: e.g. major centre; vicus; villa; farmstead; domestic site; sporadic scatter (Barker 1995c: 4). Although the excavators claim that many of their sites are villages (e.g. Arcora, Fonte del Romito, San Vincenzo al Volturino), the small excavated areas and brevity of their reports make this hard to substantiate. The largest number of structures excavated at any one site are the 56 of Cavalieri close to Matelica, but of this site perhaps only half were habitations. Further, given that these kinds of houses seem to have been used for no more than a generation, if the site could be accurately phased, it would not be surprising if only a handful were occupied at any one time. The sites around Matelica are themselves unique; most other sites have only a single house. Therefore, we can not know whether the area of a field survey site or scatter was in use in its entirety over an extended period, or if it might represent a single household shifting every generation.

A second problem is the lack of critical debate about what an Iron Age village would constitute (although see now Stek 2008 which considers to what extent the term vicus is just an administrative term for a community or territory) and whether its most important aspects would be: (i) the size, in terms of area, number of houses or population, (ii) the facilities, spaces and infrastructure, or (iii) the social dynamics that, although rarely discussed archaeologically, can play a fundamental role as shown in ethnographic studies (see, for example, Forbes 2007). Rather, villages are treated as a catch-all category used to describe areas of concentrated activity.

If we consider the houses themselves, there is much variability and almost every house seems to have been built with different methods (e.g. long-houses, rectangular houses, sunken-featured, stone foundations, etc.), but little to suggest the differences in social hierarchy argued for in the settlement models presented at the start of the chapter. There is certainly no evidence of ‘elite’ housing until the Roman period. However, I would add the caveats that a quantitative analysis of the assemblages would likely reveal some evidence of social differentiation, and that the research strategy and excavation interests bias the evidence, particularly for the Later Iron Age – we essentially lack the houses that did not develop into Roman villas.
4.6.2 Construction, Maintenance and Reconstruction

Episodes of rebuilding and reuse run through most of the case-studies cited, with structures commonly constructed upon the remains of older structures. This of course has important ramifications for the interpretation of survey data. At the early sites of Matelica and Celano-Paludi, the settlement area was converted into a cemetery at a later date; whilst in excavation these have quite distinct assemblages, this distinction would be harder to make from field survey. Indeed, the later Iron Age sites are largely known through the excavation of the materially richer Roman villas; this of course means we lack clear plans of these earlier sites because of the impact of the later buildings that re-use and destroy elements of the earlier structures. This is most problematic through the episodes of levelling: as some sites were built directly onto bedrock, so part of later construction was to clear back all the debris of earlier structures. This is clearly seen at San Vincenzo al Volturno where one of the earlier structures is identifiable only from a small scattering of material and a row of small stones. Sites such as Madonna degli Angeli and Acquachiara, where there has been little levelling activity, demonstrate what is lost, with their layers of floors and make-up layers from which much of the archaeological material of field surveys must derive. Therefore, it is reasonable to assume that an Iron Age site that has no evidence of later occupation will produce substantially more archaeological material from deep ploughing than a site that is overlain by a Roman site.

The gradual change from post-built wattle and daub houses to those with stone foundations and even stone-built houses has various implications for the archaeological record. The development of ceramic tiles must have been one of the reasons for the change in construction techniques as the weight of the roof was significantly increased. In turn, tiles make the structures much easier to identify archaeologically, whether from the deposits of discarded broken tile found by excavation, the magnetic signatures made visible by geophysics, or the volume of material that makes its way to the surface. The increasing quality and durability of the tiles towards the Roman period magnify this visibility. The investment in stone structures also appears to have led to greater periods of occupancy in one structure, allowing us to hypothesise that Iron Age settlements might demonstrate a certain degree of drift or dispersal; however, the lack of extensive excavations makes this hard to prove.
4.6.3 Organisation

The emphasis of the discussion has been on the houses and their construction, but yards are equally important and may produce the material remains that form survey scatters. Unlike in some other parts of Europe during the Iron Age, enclosures were not common features of rural settlement, so it is harder to know what spaces would be associated with the house. There is some evidence of secondary buildings and features that are useful to consider. At Matelica, four, small, rectangular constructions of six-posters were found in a group in the south-eastern part of the excavated area (although they are divided by house G) which might have been a central area shared by the occupants of the houses. Although I know of no other examples from Italy, they are common in parts of north-western Europe from the Iron Age to the Roman period (e.g. Danebury, Cunliffe 1983; Someren, Kortlang, Gerritsen 2003). Many have likened them to Galician hórreos or granaries for storing grain (Fowler 1983: 183) that have a raised floor to prevent contact with moisture or vermin. However, these structures could have been used for the storage of other foodstuffs (Gerritsen 2003: 71-72, see also the discussion in Bradley, R. 2005: 3-9, 165-190 passim) and the excavators themselves interpreted them simply as storage buildings (Gobbi and Biocco 2003: 154). A further complication is that their presence could be related to the overlying cemetery rather than the phase(s) of habitation; indeed they are not dissimilar from structures interpreted as excarnation platforms (e.g. that of the Neolithic long barrow at Wayland’s Smithy, Oxfordshire). This largely highlights the difficulty of interpreting such ephemeral structures. Long linear ditches are associated with San Vincenzo al Voltorno and San Martino in Pensils, but it is unclear how enclosing these were or whether their primary use was for drainage.

A common thread that might be drawn, though, is the construction of terracing for settlement activity. Situated at the base of a terrace wall Acquachiara is strongly associated with the management of possible agricultural terrace systems (Bispham et al. 2008), and a similar site location was found at Monte Pitino (Sterry in Vermeulen et al. 2009) and San Vincenzo al Voltorno (Gilkes et al. 2006). A different form of terracing from the later Iron Age comes from the sanctuary sites such as Monte Pallano, Schavi di Abruzzo and Iuvanum. Here the terrace was used to clearly delimit a sanctuary space; these are discussed in more detail in Chapter Seven. In the later Iron Age-Roman periods, terracing systems surely continued, but sites did not seem to be so closely tied to them. Instead, many of the sites that eventually developed into
Roman villas were organised around a single or a series of courtyards, which appear to have been linked to increased agricultural production, often with presses or tanks for wine and olive oil. The best examples of this are from coastal areas, such as, the well-preserved processing facilities at Osimo-Monte Torto. But other agricultural produce may have been produced with new, more intensive methods in other areas such as intensification in sheep husbandry. Yet here we again come up against the problem of the limited scope of most excavations, as many parts of a farm might be located beyond the house. Indeed it is here that the definition of site and off-site becomes manifestly unhelpful for understanding the archaeological record (Powlesland 2008).

4.6.4 Non-structural features

Moving beyond structures, some identified features are of interest to the archaeologist studying field survey. Pits are almost unknown, but there are examples from Moscosi di Cingoli, used for the storage of grain, and another was excavated at site A26 as part of the BVS. However, neither of these can be simply interpreted as habitation sites: Moscosi di Cingoli was an important manufacturing site, and A26 was interpreted as a votive deposit linked to the nearby site of Colle Sparanise.

Dolia, that are often found buried may have played a similar role to that of storage pits and have the advantages of adding an insulating lining that could keep out pests and moisture, but others argue that they were mainly used in the production of oil and wine. There is some variability in the number of dolia recovered, with just one (buried) at Colle Fiorano (mirroring sites found in Etruria – see earlier discussion), but large numbers of sherds found at sites like Moscosi di Cingoli and Cercemaggiore, as well as some hilltop sites like Monte Pitino (Sterry in Vermeulen et al. 2009). In survey reports, dolia sherds are attested on some scatters in ones and twos, but very occasionally a large cache will be recovered. Potentially these represent different practices on different sites, they may be different forms of processing and storing produce, perhaps with some sites acting as storage centres for others. Alternatively, dolia sometimes found next to, but outside, the entrances of houses, may have served to collect water from the roof as a water-butt/cistern, useful for garden agriculture or household domesticate. Estates, as I have discussed, were probably not present in the Iron Age, but we may consider something more akin to the medieval tithe barn (Given 2004a has discussed the important role this has in power relations, although the scale is much larger as he is linking palace sites to farms and the numbers involved are
much larger. We might also reconsider the centralised storage structures at Matelica in this context.

A final feature present at some sites were small pottery kilns used for producing a range of pottery and building ceramics, particularly at Moscosi di Cingoli and Colle Fiorano: both are sites with the remains of one or two houses and this suggests localised pottery production. Ethnographic studies would suggest that households would not have produced all of the local pottery that they consumed, but certain households might have chosen to produce small surpluses as a way of supplementing their income. Some kilns, entirely independent of settlement, are known elsewhere, such as on the slopes of the contemporaneous hillfort of Monte Vairano. In this case, whilst they were clustered around one of the largest hillforts, the evidence suggests that they were more involved in producing specialised Black Gloss finewares rather than everyday coarsewares or tiles.

The implications of these features are that individual households had some ability to sustain themselves without the support of the wider community or the direct intervention of elites. Surely there was interdependence, but rather than think of these operating through a central place, the evidence is more in favour of small-scale specialisation into activities such as pottery production, salt-making, and ironworking. To this list we might add growing orchards, wine-making, fishing, cheese-making or indeed cereal production. Other activities—house construction, maintenance of field boundaries, terraces and tracks, harvesting and aspects of stock management would have necessitated greater organisation of labour, the majority of it relatively unskilled. It is necessary therefore to see the simple farmsteads as something more than a unit of subsistence production; they are nodal points in a web of interrelated activities that can sustain a sophisticated form of social structure. Isolated as they may seem on an excavation, their inhabitants always form a larger community that grows and contracts with the changing seasons.

4.7 Trends in house development

The data for these models are almost entirely based on the evidence of Etruria, Latium and Campania and there are significant problems in applying them to the Adriatic side of Italy. Firstly, in the first millennium BC there are no excavated structures with built surfaces greater than 500m². This means that there are none of the palaces that form the heart of the society in Terrenato’s model, nor the gradually developing villas of...
those who favour a Hellénisation or capitalisation of the countryside. By the standards of these models, the excavated evidence would suggest that the rural landscape remained a static one of small farms throughout the Iron Age and Republican periods, with change only occurring in the Imperial period.

Although the evidence is frustrating in its disparity and lack of definition, this negative evaluation is simply not true.

Several linked trends emerge from this review that require consideration:

1. There was a shift to more permanent materials used in house construction

   Timber structure, wattle and daub walls, thatch roofs
   
   ↓

   Stone foundations, timber structure, wattle and daub walls, tiled roofs
   
   ↓

   Stone foundations, stone walls, tiled roofs

2. The size of structures is larger in later periods, or there is a greater range of sizes on later sites (Fig. 4.38).

![Figure 4.38. Graph showing different house sizes ordered by date of construction](image-url)
3. The length of occupation of both sites and individual houses increases in later periods (Fig. 4.39), with episodes of extension and rebuilding ubiquitous by the Roman period.

![Graph showing the estimated length of occupation for houses built in different periods](image)

**Figure 4.39.** Graph showing the estimated length of occupation for houses built in different periods

### 4.7.1 House Biographies

The study of households, although prominent in Classical archaeology (e.g. Allison 1999; 2004; Ault and Nevett 2005; Bergmann 2007), has rarely strayed outside of highly preserved urban contexts (although see Foxhall 2004). Thus, it has contributed remarkably little to discussions of rural life, despite the assertion that rates of urbanisation for the Roman world are highly unlikely to be more than 30%, and probably closer to 10%. Indeed for most of the period and area under consideration there were no towns. In prehistoric studies, household archaeology has seen increasing interest (Tringham 1991; Brück 1999; Gerritsen 2003; 2008; Robb 2007). This body of research has sought to situate temporality and agency at the centre of analysis, seen most conspicuously in Gerritsen's house biography approach. This involves dividing the study of houses into four phases: construction, habitation, abandonment and post-abandonment, and considering the social processes involved in each (Fig. 4.40).
4.7.2 Construction

During the first half of the first millennium BC most houses seem to have been constructed upon new sites and utilised locally available materials. Without relegating the importance of experience and expertise, no outright specialists would have been required, but considerable numbers of people would have been needed at certain points of the process, such as the construction of the roof. A parallel might thus be found with barn-raising where a community comes together without formal payment (although essentials and reciprocal help must surely have been required) to construct a structure for a single family.

The houses of the late Iron Age could be constructed in similar fashion; stone foundations would not have required much more labour to construct and the walls were not dressed. However, the use of tiles do present a considerable change in production processes (McWhirr and Viner 1978; Fig. 4.41), compared to thatch which
could be collected (although would have required access and management of either reedbeds or fields of cereal). The most important difference between the late Iron Age houses and those of earlier periods, is the time needed to assemble the materials for the roof: for a house of 12 x 6m it might take a month to produce and transport the tiles as opposed to a few days for thatch. The principal limiting factor in the production of tiles is the long firing process (Rostoker and Gebhard 1981) and the need for a kiln. It is perhaps possible that the use of tile for building instigated the start of tile workshops that could produce and sell tiles throughout the dry summer period, although no examples are known earlier than the first century BC. Thus, in the late Iron Age, there are the first signs of a movement away from community labour to specialist workshop and workman labour, although community ties must still have been important in the construction of other parts of the house.

![Figure 4.41. Production process for ceramic tiles (McWhirr and Viner 1978: Fig. 1)](image)

The final building method would have required even less community involvement as there would be less dependence on managed resources – reeds, straw, wood – greater use of skilled labour for wall construction, and less time pressure as building in stone would have meant the structure would be more resilient to rainfall before the roof was built.
4.7.3 Habitation

As shown above, the use-lives of houses vary greatly from around a generation for most of the houses in the Iron Age up to several centuries for the houses built in the Republican period. This picture is derived from the durability of the materials used in the construction of the houses and the number of rebuilds that can be traced archaeologically (no more than one episode of rebuilding can be traced for the houses around Matelica, but several are known from later sites such as Fonte del Romito). It is very tempting to associate the houses of the Iron Age with a corresponding life-cycle of a household, suggesting that it was only inhabited whilst its main occupants were still alive. By the fifth century, this picture had certainly changed. Houses, or at least, house sites, were occupied for several generations at a time, but this may or may not have been within the same household. The houses from the fourth and third century show a similar pattern, but in this period, all houses that we know of were occupied for several centuries. This makes it highly likely that, in many cases, the houses outlived the households that constructed them and is, therefore, compelling evidence that the house was viewed as property, that is, it could be bought and sold, a fundamental change from the houses of the Iron Age.

4.7.4 Abandonment and Post-Abandonment

Excavations around Matelica have recovered relatively few traces of posts in situ. In fact, many posts were deliberately packed with a number of items (sandstone blocks, loomweights, pottery, bone) that suggests that these houses were often deliberately dismantled. The lack of immediate occupation over most of these sites further emphasises the shifting nature of habitation, so from generation to generation, settlement would be distributed quite differently. Finally, in many cases, most notably at Crocifisso, tumuli were built directly over the traces of houses, effectively ending the possibility of further occupation on that site. I would argue that this is evidence of a house having a life and death similar to its occupant/s. The significance of burial practices is further explored in Chapter Six).

In later periods, this kind of sequence no longer exists. The stone foundations of houses were often reduced, but there do not seem to have been closing deposits, and even if previous structures were completely dismantled, another structure might have been built on the same spot. Furthermore, the sites were not used for human burial, nor did they appear to have taken on new functions.
4.8 Discussion

Breaking down the use of houses into these phases sheds new light onto some of the social processes discussed in the opening of this chapter. Capogrossi Colognesi (1994), Cornell (1995) and Terrenato (2001) have all contributed to an argument of a transition from a kinship-based society, concerned with clans and family ties, to a more capitalist society based around land ownership and individual rights. This model actually fits remarkably well with the archaeological evidence. In the former, households can establish tenure over a lot of land, but they cannot own it (ownership remains with the clan). Thus in the Iron Age houses might be built to serve the needs of each generation of household, with the remains of older generations (and houses) being removed and interred in large communal cemeteries. In this system, it is kinship ties that allow individuals to acquire land, organise labour and build houses, but they have no rights to pass their tenure onto their children. This levelling principle may also help to prevent the construction of larger houses or the intensification of the land (see Chapter Five). With the introduction of new building techniques, there is much lower emphasis upon kinship ties for the construction of a house. Instead, materials and specialist labour might to some extent need to be bought and transported to the construction site. More time and materials are required for these structures, but once built they can potentially last centuries. There is thus a durable house that can be passed onto later generations, and the difficulty of securing the resources to construct a new dwelling may encourage investment in existing buildings with extensions, renovations and the like. The final part of this transition occurs when houses start outliving not just individual generations but entire households. Although there may be no heirs to a house, it still stands and is habitable, another household may thus choose to acquire or buy the house and, by extension, its land. This thus marks the creation of estates in which households can acquire not one but several houses. Of course, houses are only one trajectory in which this Iron Age to Roman transition will be apparent. Subsequent chapters will develop this argument in relation to other forms of evidence.
Chapter Five: Occupation and the use of the Land

5.1 Introduction

The previous chapter on houses highlighted that close examination of the excavated evidence can produce new and unexpected interpretations of the manner in which people lived: the structures, the arrangement of spaces and the resources, both material and social, needed to produce these ways of living. However, excavated evidence can only go so far, particularly in a country where excavations are normally of limited size and focussed almost entirely on the grandest structures and cemeteries (see further, Chapter Six). It was recognised that an inability to analyse field-systems, animal enclosures, track-ways and other essential elements of the countryside limited the visibility and interpretation of how people interacted with their environment and each other. It was not possible to assess from a particular house from where the inhabitants derived their food, where their neighbours lived, or what activities they might have participated in beyond the house. This chapter will attempt to explore such gaps using the data from field-walking surveys, specifically the Potenza, Sangro and Iuvanum survey projects discussed in Chapter Three.

Before outlining the methods of analysis it is valid to discuss the main ways in which landscape and field-survey evidence has been and could be utilised. Approaches can largely be placed into two interrelated areas:

1. Demography – in terms of estimating the number of individuals from site numbers and assessing changes in the social make-up of the rural population, in particular the expansion and/or decline of the peasantry;
2. Economy – important both in attempts to model the productive capacity of the ancient environment, and in analysing patterns of demand through the ceramic evidence.

In the Mediterranean these areas are generally rooted in historical, instead of archaeological, models of ancient society and economy. Thus, there are considerations of such things as the ratio of small farms to Roman villas found by field surveys (since this is suggested as a means for tracking the decline of the free peasantry), or assessing the character or hierachisation of landscape usage. More successful, are studies by Mattingly (1988; 1993) and Foxhall (1997), who have drawn links between
the density of productive facilities recorded by field survey, and the agricultural potential of the land, although only Goodchild (2007) has tried a method along these lines on Italian material. However, neither approach has engaged successfully with making use of the majority (at least in spatial terms) of surveyed land for which sites were not classified (but see Given’s attempts to consider the materiality of manuring – Given et al. 2007; cf. Given 2004b). Thus, the third part of this review on archaeological approaches to landuse will consider the possibilities of charting episodes of expansion, intensification, specialisation, abatement (i.e. taking areas out of agricultural production for decades or longer, ‘a kind of large-scale fallow’ – Horden and Purcell 2000: 264).

5.2.1 Demography

It should not be controversial to suggest that between the end of the second millennium BC and the end of the first millennium BC the population of central Adriatic Italy – and the Mediterranean more generally – increased substantially. Survey evidence has frequently been used to show the expansion of settlement to new areas and a general increase in sites – for example, the BVS recorded an increase of almost 50% in the number of find-spots in the Iron Age compared to the preceding Bronze Age (Barker and Suano 1995: 160). The later first millennium BC was a period also characterised by profound population movements with the creation of colonies (Wilson 2006), migration to emerging towns and cities, enslavement and forced displacement due to war or the activities of states (Patterson 2006; Scheidel 2004). Others still, have chosen to focus on the expansion of central hilltop sites, such as in Etruria, for stimulating social stratification and growth (see, for example, Terrenato 2007). However, these justifications, although they might feel a good fit, are somewhat problematic for drawing conclusions of changing populations. Scheidel (2006: 42) proposes that between the twelfth century BC and the second century AD the population of Europe quadrupled, based on an assumption of a long-term annual growth rate of around 0.1% (cf. McEvedy and Jones 1978; Randsborg 1991). Whilst we might believe in growth there have been few attempts to rigorously analyse how much and in what form this took; rather, there is more of a common-sense projection back, from the Roman period to the Prehistoric. So much so, in fact, that McEvedy and Jones appear to have arrived at their estimates by doubling the population over every chronological period (0.5 million for the Neolithic, 1 million for the Bronze Age, and so on – ibid. 106). Fundamentally, the suggestion is that Rome and its precursors,
with the power of the state, power over people and new technology, must have increased fertility and life expectancy in a manner akin to the stimulus associated with the Industrial Revolution. Whilst changes in social organisation and technologies can undoubtedly have a demographic effect, the opposite is also true – changes in demography can have an effect on social organisation and technology. This then presents a conundrum: we cannot ignore the effect of changing population, but we lack evidence bar some census figures from the late third century BC (see Brunt 1971; but these are far from unproblematic) or crude assumptions drawn from changing settlement patterns (for which the evidence is perhaps even more problematic, as discussed below).

Scheidel (2006), taking a neo-Malthusian view (cf. Chamberlain 2006: 4-5), suggests one possible avenue, arguing that the production of people is a function of the production of goods, meaning that therefore we can potentially say something about changing demography from total output. That is, in a society that is largely subsistent, the land used for production can give an indication of the economic output of an area and therefore an estimate of its area (as there is unlikely to be much overproduction). As new technologies or market forces were gradually introduced these served to lift demographic pressure and encourage population growth. However, Boserup (1965) offers an alternative: that societal change (specifically related to agricultural regimes) is primarily a consequence of population growth – a view which was widely taken up by New Archaeology (Chamberlain 2006: 5) and which continues to be highly influential in the field of survey archaeology. Thus we see the use of survey as a means to track demography, both implicitly and explicitly in the work of Witcher (2005; 2008), Fentress (2009) and Wilson (2008). These approaches take as their starting point site numbers arranged by period to estimate population densities, whereby, for example, a farm might represent 5-15 people with an average of 8 people (Witcher 2005; cf. Mattingly 2009 who comments how little excavation data there are to base these estimates on). Fentress adds the requirements that the survey must be of significant size and that it should allow extrapolation by sampling all forms of land (favouring transect surveys like her own Albegna and Jerba projects). Wilson tackles the problem of recovery rates by using the simple truism that a greater percentage of larger sites will be recovered than smaller sites. Witcher approaches this same problem in his most recent work (2008) in which he seeks to test proposed populations for Roman Italy derived from literary sources (the so-called high counts of Lo Cascio 1994; 1999 and the low counts of Morley 1996: 46-50 and Scheidel 2004:

Scheidel (2006), taking a neo-Malthusian view (cf. Chamberlain 2006: 4-5), suggests one possible avenue, arguing that the production of people is a function of the production of goods, meaning that therefore we can potentially say something about changing demography from total output. That is, in a society that is largely subsistent, the land used for production can give an indication of the economic output of an area and therefore an estimate of its area (as there is unlikely to be much overproduction). As new technologies or market forces were gradually introduced these served to lift demographic pressure and encourage population growth. However, Boserup (1965) offers an alternative: that societal change (specifically related to agricultural regimes) is primarily a consequence of population growth – a view which was widely taken up by New Archaeology (Chamberlain 2006: 5) and which continues to be highly influential in the field of survey archaeology. Thus we see the use of survey as a means to track demography, both implicitly and explicitly in the work of Witcher (2005; 2008), Fentress (2009) and Wilson (2008). These approaches take as their starting point site numbers arranged by period to estimate population densities, whereby, for example, a farm might represent 5-15 people with an average of 8 people (Witcher 2005; cf. Mattingly 2009 who comments how little excavation data there are to base these estimates on). Fentress adds the requirements that the survey must be of significant size and that it should allow extrapolation by sampling all forms of land (favouring transect surveys like her own Albegna and Jerba projects). Wilson tackles the problem of recovery rates by using the simple truism that a greater percentage of larger sites will be recovered than smaller sites. Witcher approaches this same problem in his most recent work (2008) in which he seeks to test proposed populations for Roman Italy derived from literary sources (the so-called high counts of Lo Cascio 1994; 1999 and the low counts of Morley 1996: 46-50 and Scheidel 2004:

Scheidel (2006), taking a neo-Malthusian view (cf. Chamberlain 2006: 4-5), suggests one possible avenue, arguing that the production of people is a function of the production of goods, meaning that therefore we can potentially say something about changing demography from total output. That is, in a society that is largely subsistent, the land used for production can give an indication of the economic output of an area and therefore an estimate of its area (as there is unlikely to be much overproduction). As new technologies or market forces were gradually introduced these served to lift demographic pressure and encourage population growth. However, Boserup (1965) offers an alternative: that societal change (specifically related to agricultural regimes) is primarily a consequence of population growth – a view which was widely taken up by New Archaeology (Chamberlain 2006: 5) and which continues to be highly influential in the field of survey archaeology. Thus we see the use of survey as a means to track demography, both implicitly and explicitly in the work of Witcher (2005; 2008), Fentress (2009) and Wilson (2008). These approaches take as their starting point site numbers arranged by period to estimate population densities, whereby, for example, a farm might represent 5-15 people with an average of 8 people (Witcher 2005; cf. Mattingly 2009 who comments how little excavation data there are to base these estimates on). Fentress adds the requirements that the survey must be of significant size and that it should allow extrapolation by sampling all forms of land (favouring transect surveys like her own Albegna and Jerba projects). Wilson tackles the problem of recovery rates by using the simple truism that a greater percentage of larger sites will be recovered than smaller sites. Witcher approaches this same problem in his most recent work (2008) in which he seeks to test proposed populations for Roman Italy derived from literary sources (the so-called high counts of Lo Cascio 1994; 1999 and the low counts of Morley 1996: 46-50 and Scheidel 2004:
2-7). Given this new direction it is necessary to posit some problems of using these data for this purpose:

1. What is actually being counted? Surveys publish maps of postulated farms, villas and villages, but this is not what they recover! Ceramics are collected from the surface of a field, and generally an interpretation is made in the field as to whether this classifies as a site, at which point more ceramics are collected (reaffirming the earlier interpretation). Collection methodology has long been recognised as problematic (see, for example, papers in Francovich and Patterson 2000), but it is enough for now to suggest that different conditions, from how the field was ploughed to what the weather was like when the field was surveyed, can have an important impact if not mitigated in some form. Next the site will be defined on the basis of its overall area, its finds density, and the quality of the finds (e.g. the presence of fine wares, imports or marble). This is necessarily subjective and rarely tested (at least in print, we do not see more than one possible site hierarchy make it into the final publications, nor often the required information for readers to make their own interpretations) – the earliest interpretation of a site during the fieldwork remains the most important part of the process. The first issue therefore is that survey methodologies will skew the data both at the point of collection and during its processing.

2. What is the basis for defining site hierarchies? Is a farm always a farm, does it matter where or when it was? It has been demonstrated in Chapter Four that if we can take anything from those excavated houses and settlements it is the extreme variability in form, size and duration. In the Republican and Imperial periods and, to a lesser extent, in the Iron Age, site hierarchies draw heavily on the classical sources, thus the category of village is never seen as problematic despite a general dearth of excavated evidence and a possibility (as discussed in the preceding chapter) that they never actually existed. Indeed, the recent discussions of Bispham (2007b) and especially Stek (2008) have demonstrated that the categories of pagus, municipium, vicus and, I would add, villa and villa rustica are first and foremost definitions for the governance and administration of different localities that may have only a tangential relation to the form or number of people resident in a single place. Certainly, the intense regionality and variability emphasised by Horden and Purcell (2000, esp. 33-
122) as a defining character of the Mediterranean is lessened by the use of these catch-all terms.

3. What are the use-lives of sites? Wilson (2008: 245) has noted that there is an assumption that all sites will be simultaneously active within a period, but this can be expanded upon in that there is an assumption that all parts of any one site will be simultaneously active within a period, something which rules out any sort of creeping settlement (as suggested at Matelica), the re-use of sites, such as villas as burial areas in the Late Roman period.

4. Any kind of site that does not produce characteristic datable material (e.g. Black Gloss, Italian terra sigillata, or African Red Slip ware) is often not included in the analysis. Nor can this be easily allowed for as there is a lack of excavation of non-villa sites that prevent us from saying what, for example, one of the Biferno Valley Survey's 'domestic sites' actually looked like.

5. Data from field-units not classified as sites are generally discarded as not relevant. Yet this is a sure fallacy, since buildings do not produce pottery (although tiles could perhaps be thought of as an exception in some circumstances), but it is the activity of people that produces and then deposits or discards the ceramics which might then be collected in field survey. These practices will be different over time and between different groups of people. In effect, what we may often be tracking are not changes in settlement structures, but changes in manuring practices or other activities. Remote sensing and large scale excavations in temperate Europe and Africa have demonstrated that in the past as in the present, human landscapes are contiguous and that different techniques will recover different parts from each period. Fieldwalking will only recover certain aspects of, for example, the Iron Age, Late Iron Age and Republican periods and these may not correspond with each other (see Given 2004b).

5.2.2 Ancient Agriculture and Economy

Studies of ancient agriculture in Italy have taken place at a range of scales although most are concerned with the mid-Republic onwards when classical sources first appear. The work of Barker (1981; 1985) is key for discussions of prehistory: taking an explicitly landscape approach he argues that although the crops of polyculture – wheat, vines and olives – and the sheep and goats of large-scale transhumance were present throughout later prehistory, the economy was essentially static and based
upon self-sufficiency until the Classical period (ibid. 83). Barker emphasises the importance of a more complex society and economy tied into increasingly large networks for stimulating widespread specialisation in farming techniques (moving to the polyculture of the eastern Mediterranean) and expansion onto the heavier soils of the alluvial valley fields (1981: 213-214). Other approaches are more site-based (although complementary) with arguments for the spread of small farms in the fifth to third centuries BC (Terrenato 2007), sometimes seen as a consequence of early Roman expansion (Potter 1979) and, later, the decline of small farms (and by implication the rural peasantry) at the expense of large slave-run plantation villas (Hopkins 1978; Carandini 1988; Carandini and Ricci 1985). Depending on the scholar these have been more or less led by survey archaeology and various readings of events such as the ‘Gracchan crisis’ or the growing importance of cash crops. In interpreting the evidence from individual sites sources are largely restricted to the Roman agronomists, the principal works being Cato’s *De Agri Cultura* (c. 160 BC), Varro’s *De Re Rustica* (37 BC) and Columella’s *De Re Rustica* (mid-first century AD). These are already much discussed in Classical scholarship and in reality they are useful here only in the most general sense: they are not ethnographic, they do not cover the study area and they cover only the very end of the study period. There is a well-recognised danger that their overuse will serve only to perpetuate a myth of a standardised farm or villa (something that some survey site hierarchies have surely fallen foul of).

Similarly, many rural sites from Le Marche to Molise (e.g. Mercando 1979; Ceglia 2008) are interpreted through explicit reference to the site of Settefinestre (Carandini and Ricci 1985) despite their wide variability (Dyson 2003: 30-31; see also the examples from Chapter Four). In general, current models of Iron Age to Roman agriculture lack regionality and specificity to the diverse regions of Italy and their archaeological basis is often poor, limited to a few well known sites – there is no synthesis of all the rural sites for Italy such as that produced by Taylor for Britain (2007).

Agriculture has often been studied with an artefact-based approach through the analysis of faunal assemblages and ecofacts. These are not well represented in the archaeological record of central Adriatic Italy, largely due to excavation strategies rather than preservation issues. Yet, their evidence is worth discussing in detail and can be divided into the management of plants and animals (although the two would always have been connected in the same agricultural system).
From my review in Chapter Four, sieving for botanical remains has been carried out at only three Iron Age sites: at Santa Margherita and Arcora, both in Molise, there was evidence of emmer wheat and barley, supplemented by legumes, especially beans (Barker and Suano 1995: 168-169), whilst Aquachiara produced abundant evidence of the growth of bitter vetch – a fodder or famine crop – emmer wheat, barley and other legumes, such as lentils, but not beans (Shelton 2006: 31). Fragments of grape seeds were found, but are problematic in that they are just as likely evidence of fruit consumption as viticulture (ibid.). Considering the end of the study period, wheat and legumes formed the basis of the assemblage from the Matrice Roman villa (Lloyd 1991). Olive and vine cultivation probably developed sometime during the first half of the first millennium BC (Barker and Suano 1995: 169-170), but probably only on a small scale for domestic consumption. The evidence of treading floors and presses from several sites from the second century BC onwards is perhaps evidence of specialisation. Examples are known in Molise at Canneto and San Giacomo (Lloyd 1995b: 242-243), Fianella and Loreto Aprutino in Abruzzo (Staffa 2003) and at least 18 examples from Le Marche (Verdonck and Vermeulen 2004: 175-177). However, whilst these types of facilities allow more intensive processing they are not a prerequisite for the production of oil or wine. That some later production was intended for export is certain from the excavation of the late second century BC – early second century AD amphorae production site at Ponti di Recanti near the mouth of the Potenza (Monsieur, in Vermeulen et al. 2009). There is less evidence from southern Abruzzo, although the Sangro and Iuvanum Survey Projects identified some production of amphorae in local fabrics.

While there may be very little botanical evidence from central Italy, increasing numbers of faunal assemblages do exist from which are particularly suited to understanding the production end of animal husbandry (Clark 1989; MacKinnon 2004). In the early Iron Age the picture seems to be one of mixed animal husbandry – all faunal assemblages comprise significant quantities of cattle, sheep and pigs – which would have allowed the production of meat, dairy products and wool. However, the picture is somewhat more complex than this. Although all species were well represented, differently oriented strategies were preferred as suggested by widely varying percentages of species. There were evidently different husbandry practices: at Madonna degli Angeli a large number of ovicaprids were kept into their sixth year, hinting at a greater specialisation in wool production, but at the other Iron Age sites sheep were mainly slaughtered at 6-12 months, presumably to produce the most
favoured cuts of meat (MacKinnon 2004: 132-33). Alternatively, for example, the lack of very young lambs could be taken as indicative of birthing occurring elsewhere, hinting at transhumance between the summer pastures of inland Abruzzo and the winter pastures of the south (ibid. 126-128). Trying to prove or disprove transhumance from such limited data is not a worthwhile exercise. Although Barker has placed great weight on the creation in later prehistory of seasonal camps in the uplands of Abruzzo and Le Marche, surveyors in the Cicolano Mountains concluded that a range of activities – pastoralism, but also hunting, gathering, charcoal-burning, etc. – might be attested. Seasonal pastoralism is suggested only through a lack of artefacts associated with winter-based activities like wool processing (Barker and Grant 1991: 84) and cannot therefore be firmly attested. Of other animals, sites in Le Marche generally have a higher percentage of equines (Wilkins and Delussu 2003), especially in the area coinciding with the sixth century BC chariot burials of the province of Macerata. Finally, hunting played a small but significant role, typically comprising 2-5 percent of assemblages, with larger mammals such as deer and wild boar well represented. If this follows the figures for the Republican period of central Italy this could translate to as much as 18 percent of the meat weight consumed (MacKinnon 2004: 190-191).

In the later Iron Age to Roman period, we have comparatively little evidence from Abruzzo or Le Marche. Fortunately, Molise, further south, provides some useful parallels: generally, in this area, there is an increasing preference for ovicaprids and pig, at the expense of cattle, but all three major animal groups continue to be represented. This would fit with arguments (e.g. Barker and Suano 1995: 171) that ovicaprid secondary products were becoming increasingly important. Loom weights and spindle whorls are common finds in field survey and excavations from the study area and De Benedittis (1991) argues that pottery strainers excavated at the hillfort of Monte Vairano were for cheese production (Barker and Grant 1991: 71 suggest these would be some of the most visible archaeological indicators of pre-Roman pastoralism). However, the increase in ovicaprids may also reflect different excavation methods (such as greater levels of sieving) or cultural and taphonomic factors (changing forms or places of deposition, or the possible greater survivability of ox bones in an open ditch) that favour the recovery of sheep/goat remains from Roman sites. Herds of pigs were certainly kept in some areas and were becoming more popular towards the end of the first century BC and the Imperial period, probably as a result of urban, rather than rural, patterns of consumption (MacKinnon 2004: 154-
The herds kept at large farms such as Matrice might thus be seen as an economic specialisation. There are a number of assemblages from sanctuary sites and these broadly follow the pattern of the assemblages from domestic sites although often with some selectivity of the animals or cuts of meat deposited (e.g. pigs at Schiavi d'Abruzzo and Campochiaro, bullocks at Pietrabondante, sheep fore-legs at Colle Sparanise; Barker and Clark 1995; De Grossi Mazzorin 1997). In general, the data are sufficient to demonstrate a great range of husbandry practices, but the necessary number of samples is lacking to draw any conclusions about what was favoured in different locales, and how, if at all, management and production changed between the Iron Age and Roman periods.

There is little from the discussed evidence to support the arguments of economic historians of Roman Italy (e.g. Hopkins 1978; Carandini 1988) for large-scale production or cash cropping. Production seems to have been diverse and, more often than not, arranged around the choices of the household reflecting aspects of their circumstances and aspirations. There certainly are observable similarities and differences between excavated sites that can likely be linked, particularly diachronically, to changing practices, but the broad brush discussions of evolution, modes of production or romanisation are not helpful at explaining this detail. However, the excavated evidence is of little more than anecdotal use if it cannot be applied more widely. Accordingly, the faunal and botanical remains must be derived from areas beyond the site and, in central Italy; field walking survey is the only means we have of studying the wider area. Commonly, however, discussions on the numbers, organisation and hierarchy of sites recovered from field survey are so abstracted that they rarely contribute to discussion of how people used the land around them (Bell et al. 2002 can be considered a notable exception).

5.2.3 Intensification Theory and Land-Use Strategies

The previous two sections highlighted two main points when utilising field survey data to consider agriculture and demography:

1. Site counting-based approaches to field survey are problematic and make no use of much of the recovered data;
2. There is no useful framework which can link the data from archaeological excavations to field walking survey.
Nonetheless, it can be seen that in all approaches that there is a link to the overall productive potential of the land, whether to support a burgeoning population or to support increasing economic growth, but these do not directly engage with the properties of the land itself. I argue that field survey data can be used in conjunction with GIS-models of surveyed areas to explore changing patterns of land-use. However, before exploring the methods I shall outline some of the key concepts that can help to interpret the meaning of changing use, of which the dominant paradigm is Boserup’s (1965) intensification theory.

Intensification theory has been greatly critiqued and expanded upon since its conception to incorporate a range of different strategies available to farmers trying to increase their overall production. In archaeology, Van der Veen and O’Connor (1998) have outlined several strategies available to farmers trying to increase their overall production (Table 5.1).

### Table 5.1. Strategies for increasing agricultural production

<table>
<thead>
<tr>
<th>Strategy</th>
<th>Definition</th>
<th>Method</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Expansion</strong></td>
<td>The bringing of new areas into pasture/cultivation (van der Veen and O’Connor, 1998: 129)</td>
<td>Achieved by new people and productive facilities</td>
<td>Building new farms, keeping livestock in new areas</td>
</tr>
<tr>
<td><strong>Intensification</strong></td>
<td>The increase in output per unit area by increasing the amount of labour spent on each unit of land or herd of livestock, changing crops, changing technologies and/or management regime (ibid. 127)</td>
<td>Achieved through increasing manuring, increased weeding, new types of plough, larger animal breeds, increasing the size of herds (without increasing the available grazing area), growing fodder crops, reduction of the percentage of land under fallow and the length of fallow periods</td>
<td></td>
</tr>
<tr>
<td><strong>Extensification</strong></td>
<td>The increase of output per capita by increasing the area under cultivation without an associated increase in labour or the ratio of animal to crop</td>
<td>Achieved through changing management regime, to varieties requiring less labour – allowing animals</td>
<td>Bringing low quality land into production, changing crops/animal husbandry</td>
</tr>
</tbody>
</table>
The question of why agricultural practices change is much debated (and given the available evidence it is change in *methods* rather than the *strategies* themselves that we are more likely to observe). It has already been observed that, generally, innovations (both technological and social) are implicitly linked to population increase either in the manner suggested by Malthus of population filling out excess capacity (Malthus 1976) or that of Boserup (1965) that population (in the form of increased labour) provides the main stimulus for change and innovation. Subsequent revisions to Boserup’s thesis have produced a range of possible reasons for modifying the method of agriculture (Wickstead 2008: 73):

- Increasing production to support a growing population (Boserup 1965).
- Changing production to reflect social preferences and concerns (Brookfield 1972) (it has already been noted that sanctuary sites often produce large concentrations of particular animals or plants).
- Switching production to support growing markets (Netting 1993) (in the Italian context this is likely to be a combination of urban centres, extra-regional areas, or simply increasing levels of consumption. State-backed expeditions – such as to create colonies, raids and invasions – will also have created a market).
- Manipulating production to create solidarity among larger communities who could protect claimed lands (Adler 1996) (a good modern example of this can
be seen in the planting of olive trees in Palestine to protect the land from Israeli settlers – http://www.opendemocracy.net/conflict-politicsverticality/issue.jsp) or indeed to dissolve these ties (as we might expect in areas of Ager Romanus).

Further, the idea that agricultural labour can be conceptually separated from other forms of production has been much critiqued in the social sciences (see further Wickstead 2008). The net effect is that there can be no direct correspondence between evidence for changing agricultural practice and population growth. This may provide the final nail in the coffin for the utilisation of site numbers for demographic reconstructions if, as I would argue, changing ceramic distributions are more indicative of how the land was used rather than how the population was distributed.

Any analysis of land-use must also be sensitive to the various conditions that allow its change (van der Veen and O’Connor, 1998: 128). The availability of resources is an obvious starting point, particularly land and labour, but also seed and animals – available capital for investing in improvement and change is therefore often important. To secure the change there must be accessible destinations, such as suitable markets. These factors are more social than environmental and the list can be further expanded to include land ownership, personal wealth, size of farm, networks of cooperation and interdependence between farms and control over decision-making processes. The readiness to change will also be based on a wealth of individual – age, education, social standing and integration and ‘business’ attitude – and communal factors – social norms, management systems. As these are difficult to isolate or nullify, the kind of hypothesis-testing analyses characteristic of much of New Archaeology are thereby unlikely to be successful. Instead this chapter utilises exploratory and open-ended techniques that can be used to reflect upon the assumptions and arguments outlined above of increasing population, intensification and movement to a market economy.

5.3 Methods

I have suggested above that it is possible to derive information on changes in ancient land-use through the pottery scatters of field survey. Yet, comparing between different periods is highly problematic, requiring a large number of assumptions and the assimilation of widely different datasets. The simplest method would be to reduce the data down to just presence and absence of activity, effectively reclassifying the
familiar chloropleth maps of fieldsurvey to use and absence of use for each period considered (although this would of course omit the likely use of areas for pasture, or their exploitation for natural resources). However, this approach would severely limit the interpretative potential of the data for considering land-use, not to mention disposing of the vast majority of collected material. Instead, Lock and Daly’s ‘thresholding’ method provides a useful manner through which relative ceramic counts by field might be utilised and compared with one another (1999). ‘Thresholding’ means no more than creating bins or classes to which different units (in this analysis – fields) can be assigned. It is an exploratory form in the sense that the classes are determined by the analyst and are easily modifiable to examine different aspects of the data. The result is to highlight areas of note, i.e. change, rather than provide definitive evidence of a particular type of land-use, although they may be interpreted as such. Change can be characterised in several ways. Lock (2008: 38-43) has proposed three forms – absolute, relative and qualitative – which, when displayed spatially, allow the visualisation of change and continuity between time periods in different ways. The chloropleth maps of these changes can then be compared against other spatial layers (for this project – elevation, slope, aspect, distance to springs, distance to major rivers, distance to streams, soil classification (available only for Abruzzo), and distance to archaeological sites – but these layers could be almost anything) to help identify patterns through association.

5.3.1 The Ceramic Data

The ceramic classes chosen by the different pottery specialists of each field survey present the first and most important constraint on the applicability of this method. In order to have enough data to use analysis is restricted to the broad categories of Impasto wares (IMP), Black Gloss wares (BG), coarse wares (CW), buff wares (BW) and Italian Terra Sigillata (ITS) (N.B. the PVS used the labels ‘vernice nera’, ‘Roman acroma greza (coarse)’, and ‘Roman acroma depurata (plain)’ for BG, CW and BF respectively). Further, in order to reduce the effects of Given’s factors (discussed in section 5.3.4) like should be compared with like as much as possible; I have therefore chosen to compare IMP to CW and BW as they appear to have been the most ubiquitous fabrics and were used for a similar wide range of domestic activities – cooking, storage, etc. The wide chronological periods of these different ceramics largely constrain discussion to drawing out the differences between two periods – 1000-300 BC (IMP from now on referred to as TLA) and 300 BC – AD 400 (CW and
The regional finewares allow for some tighter chronological inference (300 - 50 BC for BG, 50 BC - AD 100 for ITS), but it is less likely that they will have been treated and disposed of in the same manner as the more everyday forms of pottery.

5.3.2 Preparation of the Data

To allow for the different methodologies of each survey their datasets will be kept separate in the generation of the different change layers. This creates five study areas - the Upper Potenza, the Middle Potenza, the Lower Potenza, the Iuvanum Plateau and the middle Sangro. Additionally, four different collection strategies were utilised by the three surveys which are weighted by dividing by their percentage coverage – 10m walking interval (20% coverage), 5m interval (40% coverage), perpendicular 5m interval (64% coverage) and total collection (100% coverage).

To create my dataset I have calculated the density of each ceramic class by field and then expressed these densities as a ratio using the calculations:

\[
F_d^a = \frac{\sum c_a^1 + c_a^2 + \ldots + c_a^x}{\text{Area of field } a}
\]

\[
T_1^a = \frac{F_d^a}{\sum F_d^a + F_d^a + \ldots + F_d^a}
\]

\[c_a^x = \text{ceramic count of ware } a \text{ for field } a\]

\[F_d^a = \text{density of field } a\]

\[T_1^a = \text{field index for time period } 1 \text{ for field } a\]

These field indexes then provide a scale from which thresholds can be derived. Lock suggests three ways of considering change between periods: absolute, relative and quantitative. The first two are quite simple:

**Absolute change for field** \(a\) = \(T_2^a - T_1^a\)

Assuming the distribution of values is normal around a mean of 0, thresholds for significant change can be derived ideographically – e.g. standard deviations and percentages (Lock 2008: 38-39; Millett 1991).

**Relative change for field** \(a\) = \(\frac{T_2^a}{T_1^a}\)
The resulting values will not produce a symmetric nor a linear distribution (Eastman et al. 1995: 11) and therefore a logarithmic transformation is required to produce a normal distribution (Lock 2008: 40).

Qualitative change requires the ranking of the field indices for $T_1$ and $T_2$ and then the creation of a contingency table based on these categories. After visually evaluating the range of field indices I have chosen the arbitrary divisions of 'no pottery', '1 to 90% by area of the remaining distribution' and 'the top 10% by area of the remaining distribution' which creates the contingency Table 5.2:

**Table 5.2. Qualitative change contingency table**

<table>
<thead>
<tr>
<th>$T_1$</th>
<th>$T_2$</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>No pottery</td>
<td>No pottery</td>
<td>No pottery</td>
</tr>
<tr>
<td>1 to 90%</td>
<td>No pottery</td>
<td>Mid-TIA to no TRoman</td>
</tr>
<tr>
<td>Top 10%</td>
<td>No pottery</td>
<td>High TIA to no TRoman</td>
</tr>
<tr>
<td>Top 10%</td>
<td>1 to 90%</td>
<td>High TIA to mid-TRoman</td>
</tr>
<tr>
<td>1 to 90%</td>
<td>Top 10%</td>
<td>Mid-TIA to high-TRoman</td>
</tr>
<tr>
<td>Top 10%</td>
<td>Top 10%</td>
<td>High TIA to high-TRoman</td>
</tr>
<tr>
<td>No pottery</td>
<td>1 to 90%</td>
<td>No TIA to mid-TRoman</td>
</tr>
<tr>
<td>No pottery</td>
<td>Top 10%</td>
<td>No TIA to high-TRoman</td>
</tr>
</tbody>
</table>

### 5.3.3 Comparative Layers

Robust DEMs matching the survey areas are essential for generating the data on altitude, slope and aspect (although the ISP and SVS recorded slope qualitatively, there is no way of evaluating the accuracy of these data). For the ISP the 10m contours from an IGM 1:10,000 map, kindly provided by Dr. Bradley (Cardiff University), were digitised and geo-referenced in the UTM WGS84 32N projection (a projected coordinate system) to create the layers contours.shp (line) and springs.shp (point). These elevation and hydrological data were then processed by the TOPOGRID algorithm (a well-established and robust method – Conolly and Lake 2006: 110-111), run through ArcGIS 9.2 to create a 10x10m resolution DEM which ensures the hydrogeomorphic properties are hydrologically correct, important given the numerous drainage basins and steeply sided valleys of the central Apennines. For the SVS, a
DEM of similar resolution, contributed by Prof. Lock (University of Oxford) was used. Unfortunately this did not include the surveyed fields around Fara which are omitted from this part of the analysis. Stream networks were created from these DEMs using the hydrologic toolset (specifically the algorithms FILL, FLOWDIRECTION, FLOWACCUMULATION, and a conditional GRID statement: STREAMNET = CON(FLOWACC > 500, 1) in ArcGIS and then visually compared and edited with reference to the IGM data. For the PVS, digitised contours and hydrological data from the Ufficio Cartografia e I.T. – Regione Marche were kindly made available by Prof. Vermeulen (Universiteit Gent). These data were used with the same routine to create three 10x10m DEMs that match the survey blocks of the PVS (upper, middle and lower valley).

There are inaccuracies in the digitising process and ways to minimise these:

- The Root-mean-square error (RMSE) of the four georeferenced coordinates of each map sheet was kept below 3.3m – i.e. below 1:3,000 as recommended by Conolly and Lake (2006: 83). Further, when digitising, contours can be taken to be within 10m (1mm at 1:10,000) at all times. This increases the RMSE to 10.5m and 14.5m when the survey fields are utilised as well. This level of error was deemed acceptable given the average field area was 0.89ha (around 89 pixels in the created DEMs). This does affect very steep slopes where horizontal error will cause a greater vertical error, but as these are generally not suitable for agriculture there is a minimal effect on the analyses (although these slopes could have been used for goat or sheep grazing this could only have been through an extensive regime due to the lack of soil depth and thereby significant vegetation).

- The TOPOGRID algorithm will tend to create some plateaus (Conolly and Lake 2006: 111), although adding spot heights between lobed contours would reduce this problem, the density of contours makes this unnecessary for this project.

A major problem of modelling the ancient topography using modern cartographic layers is the extent to which the land has changed. The Apennines and Abruzzo in particular are marked by high tectonic activity (as demonstrated by the April 6th, 2009 tragic 6.3 magnitude earthquake centred on Paganica near L’Aquila, http://www.timesonline.co.uk/tol/news/world/europe/article6042619.ece); one result of this can be frequent small-scale landslides (as evidenced at the sanctuary site of Loreto Aprutino – Staffa, 2002: 352-357). High levels of erosion and alluviation...
(attested via a number of highly destructive floods from recent history – Barker 1995b, p.25) also impact on what can be regarded as a highly unstable environment. Although scholars such as Ayala and French (2003) have begun to suggest ways in which this might be modelled through application of the Universal Soil Loss Equation (Wischmeier and Smith 1978), this goes beyond the scope of this thesis. Instead these factors will be taken into account during interpretation of the results.

As well as providing data on elevation, slope and aspect raster layers can be derived from these DEMs using the named tools in ArcGIS’s Spatial Analyst.

For the areas of the ISP and SVP a soil-type vector layer was created from the Carta dei Suoli e dei Paesaggi d’Abruzzo which has a scale of 1:250,000. The RMSE of this layer can be considered to be 83.3m (83.9m when compared against the survey fields). This information was not available for Le Marche.

The raster layers ‘Distance to all water sources’, ‘distance to springs’ and ‘distance to all sites’ were calculated using a Euclidean Distance function on the hydrology.shp, springs.shp, ISPsites.shp, SVPsites.shp and PVsites.shp files.

Although weather plays an important role in the agricultural use of the land and there are likely to be differences across the surveyed areas in rainfall, temperature, etc., sufficient data were not available at a high enough resolution to create appropriate layers for the GIS.

5.3.4 Assumptions

Given (2004) in his review of quantitative methods and problems of comparing field surveys has proposed 23 factors that create surface artefact density figures that are divided into three groups: ‘Cultural’, ‘Post-depositional’ and ‘Methodological’. These are worth examining in detail so as to be clear about what assumptions have been made in the collection, processing and analysis of the data and to account for them in any interpretations.

Cultural factors (after Given, 2004, p.19) comprise:

1. Rate of artefact production
2. Rate of artefact disposal
3. Duration of artefact production
4. Duration of artefact deposition
5. Manner of deposition: abandoned settlement, burial, dumping, manuring, etc.

Rates of production and disposal are relatively easy to account for between different periods as the normalising of the data outlined above demonstrates. More problematic are changes in the rates within periods; for this reason as noted above I have eliminated potentially problematic artefact types, particularly imported wares and focussed on broadly comparable domestic wares. Nevertheless, it is necessary to assume that artefacts were produced and disposed of at the same rate within defined periods (i.e. TIA and TRoman) and within my defined study areas (see above). Evidence from excavation to support or counter this assumption is lacking due to too few excavated and published assemblages and a restricted selection of sites. Duration of artefact production can be taken into account by the broad definition of the periods and the selection of corresponding ceramic types. However, change should be seen as long-term (potentially taking centuries) and certainly without an abrupt switch at 300 BC. The related factors of duration and manner of deposition are the chief concern of the analyses.

Post-depositional factors (after Given 2004b: 19) comprise:

6. Build-up of incoming sediment over artefacts, covering and hiding them
7. Build-up of incoming sediment containing new artefacts from elsewhere
8. Erosion of existing sediment, removing artefacts with it
9. Stripping of existing sediment, exposing buried artefacts
10. Deflation of sediment leaving artefacts in place, causing greater surface densities
11. Movement because of recent anthropogenic disturbance (ploughing, dumping, bulldozing, re-landscapeing, building, etc.)
12. Differential sherd survival
13. Sebakh: the spreading of soil and sherds from ancient sites as agricultural fertiliser

As already mentioned, the build-up and stripping of sediment through natural processes are too complex to model within this thesis, and so it must be considered that the effect is negligible except at a fine resolution. Therefore, interpretative weight should not be placed on any individual field. The impact of later use of the land is necessarily complicated; although later land-use might obscure use – a negative correlation, it is likely to follow earlier patterns – a positive correlation. The different
forms of change may provide some means of looking at these factors, but as they are related, a formal statistical test, to assess the correlation, is meaningless. The differential sherd survival should be controlled by the internal weighting of the pottery indices. It is not expected that Sebakh would be a factor as the spreading and use of ‘dark earth’ from Iron Age and Roman sites is not recorded in this part of Italy.

Methodological factors (after Given 2004b: 19) comprise:

14. Ground visibility, and varying ways of estimating and compensating for it
15. Background confusion, and varying ways of estimating and compensating for it
16. Effects of sunlight, weather and soil moisture
17. Intensity of recording (how much of their strip do the fieldwalkers actually examine?)
18. Varying abilities of fieldwalkers to identify artefacts; fieldwalkers’ state of mind and health
19. Definition of artefact
20. Collection policy – relationship between sherds counted and sherds collected
21. Identification and grouping of fixed chronological periods
22. Data entry, processing and analytical methods (mistakes in entering information, estimation of weights and numbers, choice of formulae for calculating densities, etc.)
23. Presentation – choice of symbols, data ranges and scales

Ground visibility is a significant factor as fieldwalking, in the study areas, took place on ploughed land, amongst tree crops and on areas of pasture (although this last category was somewhat limited except in the Middle Sangro). This is accounted for in two ways, firstly through comparison of the results with the land-use at the time the field was walked, and secondly through the field-by-field comparison of the relative change analysis. Within each study area the weather, sunlight, moisture, time of year and background confusion are assumed to be comparable – this seems reasonable as the largest study area is no more than 100km², although the transects across valleys may cause visible trends from the base of the valley to its ridges. All fieldwalkers were at least archaeologists (whether students or higher) and thereby their competency puts some control on the definition of artefacts and the collection policy. Additionally, the methodologies of the SVP and ISP incorporated total collection and analysis by dedicated ceramicists (Lloyd et al. 1997: 12), which further helps to standardise the datasets. By utilising raw data there is far greater flexibility in identifying periods,
checking original records and the presentation of the data, ensuring consistency of method, so I do not consider these to be limiting factors.

5.4 Results

In the previous section a clear series of analytical methods were outlined designed to explore the issues set out in the introduction. This section will present the results of these analyses to the collected data of the Potenza Valley Survey, the Iuvanum Survey Project and the Sangro Valley Survey (introduced in Chapter One). The structure of this section will be to first introduce the collected statistics of the analyses across all 5 survey areas and then to interrogate the fields of each individual area in turn. At each stage observations of the data are offered, but full interpretation is saved until the end of this section where I shall consider in turn evidence for changing patterns of land-use as outlined above.

The raw counts of TIA and TRoman are as follows (Fig. 5.1):

<table>
<thead>
<tr>
<th>Survey Area</th>
<th>No TIA</th>
<th>Mid-TIA</th>
<th>High TIA</th>
<th>No TRoman</th>
<th>Mid-TRoman</th>
<th>High TRoman</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lower Potenza</td>
<td>274.06</td>
<td>85.54</td>
<td>9.78</td>
<td>81.46</td>
<td>258.44</td>
<td>29.48</td>
</tr>
<tr>
<td>Middle Potenza</td>
<td>169.04</td>
<td>161.88</td>
<td>20.04</td>
<td>35.96</td>
<td>281.49</td>
<td>33.51</td>
</tr>
<tr>
<td>Upper Potenza</td>
<td>165.08</td>
<td>130.53</td>
<td>18.28</td>
<td>21.47</td>
<td>264.25</td>
<td>28.17</td>
</tr>
<tr>
<td>Iuvanum Plateau</td>
<td>323.53</td>
<td>121.74</td>
<td>19.67</td>
<td>186.81</td>
<td>249.36</td>
<td>28.77</td>
</tr>
<tr>
<td>Middle Sangro</td>
<td>325.4</td>
<td>160.62</td>
<td>20.29</td>
<td>186.17</td>
<td>276.52</td>
<td>43.62</td>
</tr>
</tbody>
</table>

Figure 5.1. Ceramic presence by hectares for individual survey blocks

Or, as percentages (Fig. 5.2):
These can be described as three blocks:

(i) The Lower Potenza, in which only around a quarter of the surveyed land produced Iron Age ceramics, increasing by around 300% into the Roman period.

(ii) The Middle and Upper Potenza which have very similar profiles, changing from around 50% coverage in the Iron Age to 90-95% coverage in the Roman period.

(iii) Finally, the Iuvanum Plateau and Middle Sangro that, despite their very different topographies and resources, have very similar profiles, changing from 30-35% coverage in the Iron Age to around 60-65% in the Roman period.

The qualitative breakdown of the change from TIA to TRoman is as follows (Fig. 5.3):
Figure 5.3. Hectares of qualitative change by survey block

And by percentage (Fig. 5.4):

Figure 5.4. Percentage of qualitative change by survey block
In general most areas are dominated by the percentages for 'Mid-TIA to Mid-TRoman' and 'No TIA to Mid-TRoman'. When the percentages for these are lower (as in the Lower Potenza, Iuvanum Plateau and Middle Sangro), the category 'No Pottery' is much higher (up to 36.85% for the Iuvanum Plateau compared to just 6.33% for the similarly upland Upper Potenza). Areas of decreased use account for 10-20% of the total TIA areas (Fig. 5.5), with the Middle, Upper Potenza and Middle Sangro at 10-11%, Lower Potenza at about 15% and almost 20% of the areas on the Iuvanum Plateau in use during the Iron Age showing reduced or no activity in the Roman period. Areas of new or increased use account for 50-75% of the total TRoman areas, with the Lower Potenza standing out at 74% and the Iuvanum Plateau also high at 59%. A similar, but inverse, pattern is found for areas with equivalent presence as a percentage of total TRoman areas – the Lower Potenza and Iuvanum Plateau are again both low in comparison to the other survey zones.

![Figure 5.5. Change in use of TIA areas](image)

**Figure 5.5. Change in use of TIA areas**

From the above, two initial interpretations can be offered:

1. In the Roman period, land-use in the Potenza Valley was almost equivalent to modern land-use (if we assume that the surveyed fields are a representative sample of modern agricultural activity – the PVS stated that they attempted to survey all ploughed fields in their study zones) and in all areas this represented a significant change and likely expansion and/or intensification in some zones to the preceding Iron Age.

133
2. The turnover of land (abandonment, abatement and expansion) from Iron Age to Roman is present in all areas, but is notably higher in the Lower Potenza and Iuvanum Plateau – the two survey blocks containing towns in the Roman period.

However, this does not show any of the characteristics of the land which was dropping out of use, continuing in use or being brought into use. A more detailed study of each survey area can help elucidate these matters, as set out next.

5.4.1 Change by Survey Block

For each survey block three chloropleth maps are displayed showing the qualitative, absolute and relative change from TIA to TRoman generated using the methodology described above. For the maps of qualitative change the colours can be read as follows (Table 5.3).

Table 5.3. Key for qualitative change chloropleth maps

<table>
<thead>
<tr>
<th>Colour</th>
<th>Qualitative Change</th>
<th>Potentially indicating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blues</td>
<td>TIA, but no TRoman</td>
<td>Abatement/abandonment</td>
</tr>
<tr>
<td>Greens</td>
<td>TIA and TRoman in equivalent amounts</td>
<td>Continuity of use</td>
</tr>
<tr>
<td>Reds</td>
<td>No TIA, but TRoman</td>
<td>Expansion/Intensification</td>
</tr>
<tr>
<td>Purple</td>
<td>TIA with less TRoman</td>
<td>Extensification</td>
</tr>
<tr>
<td>Orange</td>
<td>TIA with more TRoman</td>
<td>Intensification</td>
</tr>
</tbody>
</table>

These indicators must be read in conjunction with the degree of clustering of particular colours and in conjunction of how the change is represented by other categories of change. For the diverging data of the absolute change and relative change, thresholds are set at ±10 and ±20 intervals around a notional mean of 0, decreases in activity from TIA to TRoman are shown in blues, increases are shown in oranges and white are areas without significant change (blank areas are areas of no pottery or for the relative change areas with pottery from one or no T-categories).

In addition to the chloropleth maps a selection of graphs are presented displaying the characteristics of the surveyed land divided by each T-category and each qualitative class. The majority of the graphs are box plots (showing the range, inter-quartile range and median), with a radar graph to show the area of land (by T-category and qualitative class) for each aspect class (divided by 8 cardinal directions N, NE, E, etc.).
5.4.3 The Lower Potenza

Figure 5.6. Qualitative change in the Lower Potenza
Figure 5.7. Absolute change in the Lower Potenza
Figure 5.8. Relative change in the Lower Potenza
Figure 5.9. Elevation by T-category in the Lower Potenza

Figure 5.10. Slope by T-category in the Lower Potenza

Figure 5.11. Aspect by T-category in the Lower Potenza

Figure 5.12. Distance from springs by T-category in the Lower Potenza
In the area of the Lower Potenza the varied analysis types enable us to recognise notable differences between the Iron Age and Roman periods (Figs. 5.6 to 5.24):

- Areas with Roman presence are on average lower and shallower slopes than those with an Iron Age presence (Fig. 5.25) and they are sometimes on west-facing slopes that were apparently little used prior to the Roman period (Fig. 5.19). This difference is more pronounced in areas in which only Iron Age or only Roman material is present and can be linked to suggestions that the floodplain was well-drained by the Imperial period (Vermeulen et al. 2005: 381).

![Graph showing elevation vs. slope by the mean of each T-category](image)

**Figure 5.25. Elevation vs. Slope by the mean of each T-category**

- Areas of 'High TIA' and 'High TRoman' tend to be located much closer to the current (and probably ancient) course of the River Potenza (Fig. 5.14), but at higher elevations (Fig. 5.8). In these places they would be close enough to exploit the river as a source of communication and resources without the risk of flooding from lower elevations.

- Areas of 'Mid-TIA to No TRoman' and 'High TIA to No Roman' are further from all water sources (springs, the River Potenza and streams) than all other areas (Figs. 5.19, 5.23 and 5.23). However, this is likely a result of the sample size and limited hectares in these classes (6.3ha less than 2% of the total surveyed area).
5.4.4 The Middle Potenza

Figure 5.26. Qualitative change in the Middle Potenza
Figure 5.27. Absolute change in the Middle Potenza
Figure 5.28. Relative change in the Middle Potenza
Figure 5.37. Elevation by qualitative class in the Middle Potenza

Figure 5.38. Slope by qualitative class in the Middle Potenza

Figure 5.39. Aspect by qualitative class in the Middle Potenza

Figure 5.40. Distance from springs by qualitative class in the Middle Potenza
Figure 5.41. Distance from Iron Age sites by qualitative class in the Middle Potenza

Figure 5.42. Distance from Roman sites by qualitative class in the Middle Potenza

Figure 5.43. Distance from the River Potenza by qualitative class in the Middle Potenza

Figure 5.44. Distance from streams by qualitative class in the Middle Potenza
The above maps, graphs and plots (Figs. 5.26 to 5.44) enable the following observations to be made for the survey data from the Middle Potenza:

- Areas of high presence in both the Iron Age and Roman periods are closer to the River Potenza and further from the stream network than other areas. In the Iron Age these areas of high presence are at higher elevations than those of low presence; in the Roman period the opposite is true.
- In general, the Iron Age pattern is similar to the Roman in terms of altitude, slope, aspect, distance from springs, and distance from streams.
- Areas with Iron Age, but no or declining Roman, presence occupy slightly higher, shallower areas that are more distant from the River Potenza, but these represent no more than 6% of the total surveyed area.
- As in the Lower Potenza, areas with Roman, but no Iron Age, presence make far greater use of west-facing slopes.
5.4.5 The Upper Potenza

Figure 5.45. Qualitative change in the Upper Potenza
Figure 5.46. Absolute change in the Upper Potenza
Figure 5.47. Relative change in the Upper Potenza
Figure 5.48. Elevation by T-category in the Upper Potenza

Figure 5.49. Slope by T-category in the Upper Potenza

Figure 5.50. Aspect by T-category in the Upper Potenza

Figure 5.51. Distance from springs by T-category in the Upper Potenza
From the above plots and analysis (Figs. 5.45 to 5.63), data for the Upper Potenza demonstrate the following characteristics:

- Areas of Roman presence have a very similar character to areas of Iron Age presence although they do use more east-facing, steeper slopes.
- Areas with only a Roman presence are predominantly on east-facing slopes (unlike in the Lower and Middle Potenza).
- Areas with presence in both the Iron Age and Roman periods are on shallower slopes and lie closer to springs than other area classes.
5.4.6 The Iuvanum Plateau

Figure 5.64. Qualitative change on the Iuvanum Plateau
Figure 5.65. Absolute Change on the Iuvanum Plateau
Figure 5.66. Relative change on the Iuvanum Plateau
Figure 5.67. Elevation by T-category for the Iuvanum plateau

Figure 5.68. Slope by T-category for the Iuvanum plateau

Figure 5.69. Aspect by T-category for the Iuvanum plateau

Figure 5.70. Soil-type by T-category for the Iuvanum plateau
Figure 5.71. Distance from sites by T-category for the Iuvanum plateau

Figure 5.72. Distance from springs by T-category for the Iuvanum plateau

Figure 5.73. Distance from streams by T-category for the Iuvanum plateau
Figure 5.74. Elevation by qualitative class for the Iuvanum plateau

Figure 5.75. Slope by qualitative class for the Iuvanum plateau

Figure 5.76. Aspect by qualitative class for the Iuvanum plateau

Figure 5.77. Soil-type by qualitative class for the Iuvanum plateau
Figure 5.78. Distance from sites by qualitative class for the Iuwanum plateau

Figure 5.79. Distance from springs by qualitative class for the Iuwanum plateau

Figure 5.80. Distance from streams by qualitative class for the Iuwanum plateau
On the Iuvanum Plateau two main trends emerge from the above analyses (Figs. 5.64 to 5.80):

- The Iron Age and Roman presences are broadly equivalent in terms of altitude, slope, soil type and distance from springs and streams; however, there is a greater activity on west-facing slopes in the Roman period (in line with the Lower and Middle Potenza data).
- Areas with only Roman presence lie on slightly more clayey soils and are more often on west- or north-facing slopes.
### 5.4.7 The Middle Sangro

![Map of the Middle Sangro showing various changes](image)

**Figure 5.81.** Qualitative change in the Middle Sangro

- **Springs**
- **DEM Generated Streams**
- **Qualified Change**:
  - No Pottery
  - Mid-TIA to No TRoman
  - High TIA to No TRoman
  - High TIA to Mid-TRoman
  - Mid-TIA to Mid-TRoman
  - High-TIA to High TRoman
  - Mid-TIA to High TRoman
  - No TIA to Mid-TRoman
  - No TIA to High TRoman
Figure 5.82. Absolute change in the Middle Sangro
Figure 5.83. Relative change in the Middle Sangro
Figure 5.88. Distance from the River Sangro by T-category in the Middle Sangro

Figure 5.89. Distance from streams by T-category in the Middle Sangro

Figure 5.90. Elevation by qualitative class in the Middle Sangro

Figure 5.91. Slope by qualitative class in the Middle Sangro
Figure 5.92. Aspect by qualitative class in the Middle Sangro

Figure 5.93. Distance from springs by qualitative class in the Middle Sangro

Figure 5.94. Distance from the River Sangro by qualitative class in the Middle Sangro

Figure 5.95. Distance from streams by qualitative class in the Middle Sangro
The observations to be drawn for the Middle Sangro (Figs. 5.81 to 5.95) are:

- The areas with an Iron Age presence are slightly lower, shallower and closer to the River Sangro than those with a Roman presence.
- Conversely, the Roman areas are closer to springs and more often are set on east-facing slopes.
- Areas that have presence in only one period (Iron Age or Roman) are higher and closer to streams.
- Areas with a presence in both periods tend to match those areas used in the modern period.

5.5 Interpretation

Having made observations of the different survey-specific analyses I will now consider in turn how they might be seen as evidence for the major changes in agricultural regime discussed in the opening sections of this chapter. Interpretation is orientated around the themes, as outlined in the introduction to this chapter, of expansion, intensification, extensification, specialisation and indeed continuity.

5.5.1 Expansion

Areas with Roman but lacking an Iron Age presence might be seen as evidence of expansion, especially if they are distant from those previously in use. 40-54% of the three sectors of the Potenza Valley Survey were of this type. The Lower Potenza might reasonably be expected to have seen a sizeable amount of expansion in the Roman period around the colony of Potentia founded in 184 BC. Areas with Roman, but no Iron Age, material are no further from Iron Age sites than those which have material from both periods, which would suggest that they were not in new, previously unexploited, locations. Further, neither the absolute nor the quantified change from TIA to TRoman show any evidence that might be associated with new farms, although this could be due to the weighting effect of having a very large Iron Age site (Montarice) and the Roman colony within the survey area. However, expansion can still be reasonably suggested due to the clustering nature of the fields qualified as 'No TIA to Mid' or 'High TRoman' with very few nearby fields producing Iron Age ceramics, particularly apparent in the south-east of the survey area. Comparing the qualified change with the distribution of diagnostic Black Gloss and Italian Terra
Sigillata (although there are admittedly relatively few sherds with which to make this comparison) it can be seen that the areas of ‘No TIA to Mid-TRoman’ are strongly associated with ceramics dating no earlier than the second half of the first century BC. This is mirrored by the excavation of several villa sites along the Adriatic coastline whose initial construction dates 50 BC onwards (see Chapter Four).

A similar argument can be made for the Iuvanum plateau. Only 33% of the survey was made up of areas with only Roman presence, yet this was a 59.4% increase on what was a relatively small Iron Age occupation. These new areas form broadly contiguous bands that are clustered around the municipium of Iuvanum and, as I have explored elsewhere (Sterry 2008 and see further Chapter Eight) they can be associated with the distribution of Italian Terra Sigillata as well as other imported ceramics from the first centuries BC/AD (Fig. 5.96). The high density clustering of these areas to the north of the municipium raises questions as to what extent these were the result of rural, rather than quasi-suburban, activities, but they do seem to demonstrate the use of land that was previously little used.
Figure 5.96. Possible expansion in the Lower Potenza, note the clustering on newly occupied areas (in red) overlaid by the presence of ITS (yellow dots)

5.5.2 Intensification

Evidence for agricultural intensification from field survey might come from observing an increasing ceramic presence on the assumption that the material is largely a by-product of manuring or accidental breakage in the countryside and that therefore more time is being spent per unit of land-used for arable or pastoral purposes. To consider the phenomenon between the Iron Age and Roman periods this must take into account the apparent increased circulation and consumption of pottery in the
5.5.3 Extensification

Evidence for extensification should show as blocks of new land (but not necessarily connected as with expansion) coming into use whilst adjacent land shows a reduced absolute or relative change in activity as the same effort is spread over a larger area. The Middle Sangro is the survey block with the strongest evidence for this land-use regime. Here there are large contiguous areas which show a relative decrease in the ceramic presence between the Iron Age and Roman periods, particularly around Acquachiara and the area abutting the River Sangro. Further, around Acquachiara although many areas show a declining presence many of the blank spots in the Iron Age are 'filled in' during the Roman period. Acquachiara is one of the few locations from central Adriatic Italy where archaeobotanical samples have been analysed, suggesting cereal and legume cultivation of several different varieties (Shelton 2006). As yet, however, there is insufficient evidence to describe the nature of the changing land-use from Iron Age to Roman periods.

Less convincingly, extensification might be suggested for the Middle and Upper Potenza in which there is a filling in of the landscape to the extent that the Roman presence seems almost to mirror the modern land-use. In the both survey blocks there was a relative decrease of more than 10 between TIA and TRoman in a few fields, but to distinguish this from the natural movement of the population utilising new areas as replacement for (temporarily) exhausted land is not possible unless the new areas...
under cultivation were of lower quality (and hence there was a change in the agricultural system to a more extensive form of farming). The quality of the land is somewhat difficult to assess, but the new areas brought into use are further from possible water sources, on higher, steeper slopes and further from the course of the River Potenza, these factors would all indicate these areas were less desirable than those used during the Iron Age. Finally, also, given that of the modern fields surveyed 90% of the Middle Potenza and 93% of the Upper Potenza produced Roman pottery the ancient land-use might have followed similar systems to those of the present extensive regimes.

5.5.4 Specialisation

The final form of land-use change to assess is the movement from mixed forms of farming to the production of marketable products beyond risk-buffering needs. This can classically be seen in the construction of productive facilities and infrastructure. The survey block of the Lower Potenza provides the only viable location to consider this given the evidence of infrastructure – construction of a town, a port and an associated road network – and productive facilities – the amphora workshop site in Potenza Picena (Monsieur in Vermeulen et al. 2009; Mercando 1979), active from at least the first century BC. The Roman period shows evidence for the utilisation of well-watered, low-lying shallow sloped areas not previously used in the Iron Age. Essentially this is the rich alluvial belt of the River Potenza that, assuming there was sufficient drainage, could be highly productive for cereal cultivation. Substantial investment would have been required to bring this area into production, both to initially improve the soil, and to buffer against the increased risk of flooding and crop destruction. This area thus has the hallmarks of expansion and possibly specialised cereal cultivation. It must be stated though that the alluvial nature of this land could mask the Iron Age presence entirely below the depth of the ploughsoil – this may therefore be a false image of change when none in fact occurred. Elsewhere in the Middle Potenza the Roman and Iron Age presences occur on broadly comparable types of land which is not suggestive of increased production for markets (although this does not rule it out).
5.5.5 Continuity

So far, I have suggested that there is possible evidence for expansion and specialisation in the Lower Potenza, expansion on the Iuvanum Plateau and extensification in the Middle Sangro and to a lesser extent in the Middle and Upper Potenza. It should be kept in mind that change in the agricultural system probably did not occur in all areas. Indeed, the classical authors such as Livy portrayed the Samnites of central southern Italy as a rugged, backward people who were largely conservative (although Barker 1995a, in particular, has correctly argued against this mountain stereotype). The relative and absolute change measured in the Middle and Upper Potenza is largely unremarkable with the resultant chloropleth maps dominated by the white of no change greater than 10. This is not to say that these areas were static, far from it, but that they were areas of natural growth and turnover of land with agricultural systems that perhaps, remarkably, stayed relatively undisturbed into the Roman period (and perhaps indeed into the modern period, at least in terms of the land they were using).

5.6 Conclusions

Although I have attempted to find evidence of changing forms of land-use and agricultural practice over the long timespan of the Iron Age and Roman periods, the strength of these interpretations must be qualified.

1. The methods used to analyse the survey data are fundamentally exploratory in nature, and although they will not fabricate changes there is a risk of emphasising an aspect (such as altitude, slope, aspect, etc.) that is more easily qualified, but was potentially of relatively little importance in the past. In part this is due to the implicit assumption that during each period people were relatively free to choose which areas of land to cultivate. This cannot be true as it does not take into account the social factors of tenure and territory nor the environmental factors of access and fertility that played an important role in determining both where and how they settled the land.

2. Further, the analyses treat the people involved as a monolithic group rather than the complex mixture of communities and identities that I have argued (Chapter 2) should have existed in the past. No one strategy can have characterised the changing land-use in any of the survey blocks.
Finally, the means by which the data are derived favour discussion of crop production over animal husbandry. This should not be seen as a negligible factor given the largely upland and 'marginal' nature of the study area and all four strategies of increasing production can be applied to livestock (see introduction to this chapter). However, pasture is not suitable for fieldwalking, nor is it likely to have left a signature detectable by such archaeological methods.

Despite these reservations the analyses are not invalidated. The change from Iron Age to Roman was not uniform with gross differences between survey blocks and between individual fields. I have argued that the construction of towns whether by colonists or local residents had a profound effect on their immediate environs, stimulating agricultural expansion. The character of this change was different in the Lower Potenza where a new agricultural system may have been established by incoming colonists to the Iuvanum plateau where it seems more likely that the existing system was expanded and shifted around a new centre. Evidence for the kind of intensification argued by advocates of the ‘slave-mode of production’ is simply not present in the areas of the Middle and Upper Potenza and the Middle Sangro. If anything these saw an increase in extensive forms of production characterised by the bringing of areas of low quality land into production, although this could equally be due to socio-economic stability and growth (and thereby the system of agriculture remaining roughly the same). Notable differences can be drawn between the Potenza Valley (Lower, Middle and Upper) and the Sangro Valley (Middle and Iuvanum), with the latter showing more empty areas across all periods. In part this may be due to different field methodologies, particularly in the choice of fields walked, but it also seems likely that the Roman agricultural system in the Potenza Valley was much closer to the modern system than is the case in the Sangro Valley. Indeed, inland Abruzzo is an area well known for a large, but rapidly declining sheep industry, and this is apparent around Iuvanum where large areas of upland pastures have been converted to crop production only in the last 50 years. A concluding point is that changing forms of land-use were both local and complex, subject to myriad social, environmental and cultural factors. Noticeably, the results do not fit well with blanket economic arguments of rapidly increasing populations or switching completely from household to market production.
Chapter Six: Cemeteries and the Funerary Record

6.1 Introduction

The funerary record is generally considered the main archaeological source for the period from the end of the Bronze Age through to Roman hegemony in the first century BC (Isayev 2007b: 7), and certainly cemeteries are the most investigated and most published type of site (fig. 6.1). The second largest group of excavated and published sites, at least for the Abruzzo region, are the sites of ritual deposition, most notably monumental sanctuaries, that date primarily to the last three centuries BC. This chapter will consider some of the ritual aspects of central Adriatic life through the synthesis of these two bodies of evidence to consider changes in the makeup and expression of household and community ideals. With a focus on the activities of the living I will consider first the funerary evidence, then the sanctuary evidence before concluding with discussion drawing together the different strands of ritual and religious activity. Burial terminology is vast in scope, even just considering English definitions (see Sprague 2005 for full discussion) and so for the sake of clarity and readability I have chosen to use the terms cemetery, necropolis, burial ground and graveyard interchangeably to refer to any group of two or more burials.

6.2 Cemeteries

The ninth and eighth centuries BC saw the creation and development of several large cemeteries across the study region. This has been taken to imply an increasing hierarchisation of Italian societies (Barker and Suano 1995) and is suggestive of a change in organisation to higher levels of organisation, nucleation and communal activity. In the north of the study zone excavations at Novilara uncovered 300 tombs dating from the eighth to sixth centuries. The bodies were inhumed and crouched and some of the earliest dating graves were marked by a stone stele or cippus (Riva 2007: 84). There are some suggestions of familial groups in the layout of the skeletons and Bergonzi has interpreted the graves as a clan community with an oligarchic social structure (Bergonzi 1992, cited in Riva 2007: 84). In addition, four inscribed stelai of comparable form were recovered from the immediate region dating to the sixth century, although only one was from the Novilara cemetery. All these indicate
considerable investment of time, space, ritual and community and the putting down of roots.

Figure 6.1. Location map of sites discussed

In upland parts of Abruzzo there is plentiful evidence of large cemeteries at Campovalano where 612 graves have been excavated in a sequence that stretches from
the Final Bronze Age to the second century BC (Chiaramonte Trerè and D’Ercole 2003) and where tumuli of up to 25m diameter are recorded. At Fossa, 551 burials have been excavated, the earliest of which are radiocarbon dated to the tenth century. Nearby Bazzano has more than 2200 tombs that date from the ninth century to the second century AD. To these can be added the less well known Caporciano and Forca Caruso cemeteries. These cemeteries all preserve tumuli in some form, whether through the presence of a cairn, a ring ditch or commonly a ring of stones. The tumuli have been considered as both demonstration of elite status (the bigger, the better) and familial foci. Certainly they seem to appear from the very instigation of the cemetery and provide a fixed and visible locus around which the cemeteries can develop.

These rich and evocative cemeteries have long been the central focus of Italian Iron Age archaeology from the necropolises of Etruria to the ‘Samnite’ tombs of Pontecagnano, and the central Adriatic region is no different. Cemeteries and, perhaps to a greater degree, the objects from them dominate recent publications of conference proceedings (e.g. 26 of the 35 articles in the volume *I Piceni e l’Italia medio-adriatica*) and museum exhibitions: the 2008 exhibition *Potere e Splendore* in Matelica described cemeteries as having ‘the most important data’ (www.poteresplendore.it) for understanding Picene culture, despite the unprecedented remains of houses from the area (as discussed in Chapter Three). As Bispham pithily observes, ‘[Adriatic] mortuary archaeology is sexy’ (2007: 187). It is thus surprising that there are few detailed analytical and synthetic studies (Copersino and D’Ercole 2003 being an important exception), especially for the period from the fifth to first centuries BC. Generally, scholars have sought to interpret the burial evidence in the light of two research tropes: 1. The ethnogenesis of central Adriatic tribes and the migration of the ‘Celtic’ Senones (present in the work of D’Ercole and Landolfi especially); 2. The increasing spread of Romanisation (particularly driven by the typologies of Morel and the work of scholars at the University of Pisa – Pasquinucci, Ciucarelli and Mencelli). Arguments are discussed in terms of the recovered grave goods, the former making use of changes in style – particularly metalwork – the latter focussing upon the increasingly universal adoption and use of Tyrrhenian Black Gloss pottery. Hence studies have largely focused on regional distributions of artefacts, that reaffirm the complex ethnic make-up of central Adriatic Italy portrayed in the classical sources (examples include: defensive weapons – Tagliamonte 2003; and Attic pottery – Shefton 2003). Peculiarly, therefore, despite the wealth of large and impressive sites,
the cemeteries and the burials within them are almost entirely neglected as a research topic in their own right.

6.3 Current Interpretations of Burial Evidence

When burial evidence has been studied in Iron Age to Roman Italy it has usually been in one of two ways:

1. To define territories of Iron Age hilltop communities and, in later periods, larger ethnic groupings – through analysis of material culture and its regional comparanda.
2. To recreate societal structures – again via perceived status in material culture and tomb types.

The work on Etruscan society and settlement by scholars such as di Gennaro and Zifferero is highly influential and their methods have been adopted uncritically throughout Adriatic Italy. Heavily influenced by the work of Renfrew (1975), di Gennaro (1982) proposed a model of Etruscan city state territories derived from Thiessen polygons. Zifferero (1991; 1995) modified this basic model to take into account natural features, the area of hilltop sites and the classification of some borders as major or minor. He then suggested through association with these spatially-derived boundaries that groups of tumuli could be seen as an attempt to claim ownership of land by the aristocracy, whilst sanctuaries were placed at pivotal points to act as markers of the edges of nascent city-states (this model clearly draws on the similar work of Francois di Polignac in Greece, 1995). The necropoleis are seen to ring competing hilltop centres demonstrating the power of the elites and their ownership of the land between the late eighth and early sixth centuries. In the subsequent period there is an increase in rural settlements, but a decrease in hilltop centres and their dependent burial grounds as a few centres are seen to attain regional dominance (such as at Tarquinia – Torelli 2000: 193-194). The territorial limits of these city-states are then formalised through the construction of sanctuaries that, unlike the earlier, exclusive cemeteries, may have acted as neutral meeting grounds.

D’Ercole (D’Ercole et al. 2002a; D’Ercole et al. 2002b; cf. Copersino and D’Ercole 2005) has been the greatest advocate of applying this same system to the area of Abruzzo. In addition to emphasising the relationship between hilltop centres and burial grounds, he argues that cemeteries hold an important role in marking the
territories of large ethnic or tribal groups in the Iron Age and Hellenistic period. The
evidence for this is drawn from the location of several necropoleis along rivers such as
the Raiale, the Vomano and the Foro that have gained significance through the
ancient sources. As with discussions of Etruria, in the sixth to fourth centuries
D’Ercole et al. see a reduction in the number of hilltop centres from almost 200 to
little more than 20 as fluvial terraces are occupied with a series of farms (2002a: 120,
despite evidence to the contrary in both Oakley 1995 and Barker 1995a). However, as
seen in Chapter Four, the evidence of farms can hardly be taken to support this
interpretation.

As well as territorial associations, burials have, as is common elsewhere in Later
Prehistoric Europe, been used to reconstruct social structures. Morris (1992: 24-29)
suggests five axes around which patterns might be sought: typologies of burial, time
(especially precise chronologies); contexts of deposition (e.g. what other forms of
deposition occur contemporaneously); space (from intra- to inter-site and landscape
scales) and demography. Of these, with respect to central Adriatic Italy, typologies and
demography have been especially pursued, but the other axes are less finely detailed.
Typologies of grave assemblages and burial structures have been considered evidence
of social stratification sometimes in a quite literal fashion (Barker and Suano 1995:
176-177). For instance, the chariot burials of Le Marche and Abruzzo are often referred
to as ‘princely’ whilst Suano has commented that the lack of such ‘rich’ graves may be
due to a lack of ‘princes’ in southern Abruzzo (1991). Such interpretations although
strong in the Italian literature have come under sustained critique elsewhere in
Europe (Parker Pearson 1999; Thurston 2009: 370) and new lines of research
emphasise, instead, issues of group identity, gender roles, agency, consumption and
the passing of time (see, for example, the work of Babić in the Balkans – 2002; cf.

A major research question arising from Italian burial data (from most regions) is why
widespread changes in burial practices occur at the end of the sixth century? Namely,
there is a reduction in the number, or visibility, of burials and/or the richness of goods
placed in the graves. Most have interpreted this as evidence of a major shift in the
social system from chiefdom to state. La Regina argued that the lack of investment in
burial rites was due to a less rigid regional social structure that did not require such
affirmations of identity (1986: 7). Similarly, Lomas interprets the funerary record
from the Veneto as evidence of a change from a clan-based society to one based on
elite households that control urban and proto-urban states (2007: 32). Both scholars link their arguments to the adoption of epigraphy and its particular uses: La Regina, for example, draws attention to the identification of *toutai* – translated as state – linked to ethnic groups such as the *pupun* – Piceni, and *marouc* – Marrucini. However, these kinds of approach, based upon categorising individual burials, are not so much interested in the reconstruction of social structures as they are in determining the role of elites. There remains much scope to explore Morris’ axes of enquiry if a fuller consideration of society and the use of cemeteries is sought.

Instead of further repeating or contesting these ongoing debates I wish therefore to take a practice-based approach as defined in Chapter Two. In this chapter I consider how people were using the cemeteries and the role they constituted in society. As will become clear through an overview of burial practices, followed by a series of four key case studies, the burial record is highly variegated between individual cemeteries and important differences emerge across the timespan of the Iron Age to Roman transition. Diversity is, as already emphasised in previous chapters, the key finding.

### 6.4 Types of Tombs

Before discussing the cemeteries, their forms and characteristics, we need first outline the different funerary rites attested. Bar a few scattered cremations from the first century BC and the Urnfield/Villanovan cremation graves from Pianello di Genga, Numana, Novilara, Moie di Pollenza in Le Marche that date no later than the eighth century BC (Sabbatini 2008a: 52), the dead were always inhumed in the study zones. Further, all human remains come from what appear to be dedicated cemeteries; to my knowledge there is no evidence for the deposition of human remains in other contexts as has been noted at ritual sites and the ditches of hillforts in Europe and Britain during the Iron Age, nor were burials made within habitations as occurred in the Italian Neolithic (nonetheless, as will be discussed below, often there was an important link between settlement and cemetery). Cemeteries, uncommonly, included the remains of domesticates, specifically horses as known from Matelica (De Marinis and Silvestrini 2005; Silvestrini and Sabbatini 2008) and Moie di Pollenza (De Marinis and Percossi Serenelli 2005), and in one case a pair of dogs from the tomb of ‘il principe’ (t.182) at Crocifisso, Matelica (Sabbatini 2008a: 199). Such sacrifices were always associated with human burials.

Three main types of grave can be identified (Fig. 62):
1. Cut Burials (Italian: *tomba a fossa*)
2. Chamber Tombs (Italian: *tomba a camera*)
3. Tumulus Tombs (Italian: *tomba a tumulo*)

Figure 6.2. Location of different burial types
6.4.1 Cut Burials

By far the simplest and most common burial rite is the ‘cut burial’ found throughout the study area and time period, but along the coastal strip this is almost the only practice. This involved cutting a rectangular or sub-rectangular trench (of equal width at the head and foot) into the soil or bedrock in which the body could be laid out supine, invariably with funerary offerings (Fig. 63). There is no reference to stone pillows or the like, but photographs and plans often suggest that large stones were incorporated into the base or sides of graves, especially around the head-end. Sometimes the trench might involve the use of a cist (Fig. 6.4) or a wooden coffin as is supposed from nails found in southern Abruzzo (Faustoferri 2003). Coverings are not regularly discussed, but seem to have incorporated a range of practices: at Campovalano it is argued on the basis of dark traces in the soil that graves were closed with a wooden covering (Guidobaldi 2002: 385), whilst at Alfedena t.93 a cist was overlain with a small pile of stones. Extra accommodation for the burial gifts could be made by cutting a particularly large trench (up to 3m in length is not uncommon and larger ones are known for the inclusion of particularly large items like chariots) or digging the grave with a niche (Italian: tomba a ripostiglio, as registered at Moie di Pollenza and Alfedena). As the most common type of grave they are found in both large and small cemeteries, and come in a range of arrangements from individual burials, to loose clusters, rings and rectilinear alignments. A coastal variant is the fossa con gradini with steps built into the trench such that on the surface the tomb would appear to be much larger than it was in reality; this type is best known from Ancona (Colivicchi 2002) and is occasionally found along the Abruzzese coastline (at Campovalano, Montebello di Bertona and Villalfonsina), but nowhere is it known further inland (D’Ercole and Copersino 2003: 378. See also the cemeteries).
6.4.2 Chamber Tombs

Towards the end of the third century BC chamber tombs (tombe a camera) came into use almost exclusively in the mountainous central and western parts of Abruzzo. There are several variants, but they all consist of a purpose-built room (the camera) which could be reopened after the initial burial to add further inhumations (Fig. 6.5); up to five burials are known from those in the cemetery of Fossa (D'Ercole and Copersino 2003). Built of stone, brick or carved from the bedrock, the chamber could be built into a hill or slope (tomba a grotticella), into an existing tumulus or could be semi- or completely subterreanean (tomba a camera ipogeica). Sometimes, a corridor (or dromos) led to the chamber, which may include a ramp or flight of stairs e.g. the chambered tombs at Bazzano (D'Ercole et al. 2003). One or more doors or barriers sealed the tomb, most commonly stone, but the nails from decayed wooden panels are also known at Bazzano (ibid.; see Fig. 6.5 below). This funerary type is similar to those
found in Etruria and Lazio that can date as early as the eighth century BC, but it is unclear why it was adopted in central Adriatic Italy during the third century BC.

Figure 6.5. Example of a chambered tomb from Bazzano (D'Ercole et al. 2003: Fig 1 – No scale or N point on original)

6.4.3 Tumuli

Perhaps the most striking feature of many (but by no means all) cemeteries is the presence of tumuli ranging in size from a few metres in diameter to the 40m wide ditch at Sirolo, Numana (Landolfi 1992). Delineated by a wide ditch, or a ring of stones, it is often unclear how large or high the mounds were, or, in many cases, if they existed at all as elevated units. Certainly there was always a wide amount of variation even within the same cemetery (as the four different versions at Fossa attests – Cosentino et al. 2001, Fig. 6.6). This is perhaps not that surprising given the infrequency with which these must have been built. It suggests that uniformity was not necessary or desired and that the ‘architects’ and builders of these monuments
approached each in a slightly different way based on a combination of experience, tradition and the properties of the immediate environs.

Figure 6.6. Tumuli from Fossa (Cosentino et al. 2001: Fig 5)

Burial within a tumulus varied. Primary burials (made immediately prior to or in direct association with the construction of the tumulus) are found under most tumuli and could be lain directly onto the ground surface (as with t.182 at Crocifisso, Matelica, see above), or placed into a chamber directly under where the tumulus was to be built. Invariably this primary inhumation would be central, but not always. Secondary burials fall into two types: intrusive (cut into the monument) or associative (clustering around the monument). Both types can be found together in the same cemeteries and both could accumulate rapidly or after substantial lapses of time, often centuries. Secondary burials usually respected the initial burial, although, when there was a disjuncture between the building of the tumulus and the secondary burial, as with the re-use of tumuli at Fossa, the primary burial might be disturbed, and the
remains relocated. One feature of the associative burials is that even when we have no extant evidence of a tumulus there are signs that some might have existed (or some other central focus) on the basis of the grouping of shaft graves into circular groups, most notably at Val Fondillo (Fig. 6.7) and Alfedena in the upper Sangro Valley.

Figure 6.7. Grave circles at Val Fondillo (Faustoferri 2007: Figure 3)

6.4.4 Markers

Apart from tumuli, tombs could be marked in a number of ways: stone stelai or menhirs were in use in the cemeteries of northern Abruzzo and these famously include a handful of lifesize anthropomorphic statues, the furthest south of which is found at Acquachiara (although the cemetery it is assumed to relate to has not been located). At Alfedena there is a suggestion that jars were placed with their heads sticking out from the ground, presumably so that offerings or libations could be made. A similar tradition is well attested in Le Marche during the Roman period when amphorae were modified for exactly this purpose. Some cut-graves may have been topped with a small mound or layer of cobbles (as attested at Alfedena) and at Filottrano there are reports of a layer of sand flecked with charcoal (although reports of these excavations are
notoriously problematic — Baumgartel 1937). Finally, there are very few instances of intercutting graves which, despite the sprawling evidence of many of the cemeteries, suggests that the precise location of graves was marked at least for a few generations. This probably has another implication that the cemetery was maintained and used at times apart from burial ceremonies else the undergrowth that grows rampantly in the summer months of Italy would have made distinguishing the exact location of graves problematic.

### 6.5 The Size and Age of Cemeteries

Due in part to the early excavation date of many of the cemeteries data are often lacking regarding: the number of graves excavated the graves’ positions within cemeteries and the percentage of the total cemetery these excavations represent (only sections of the larger burial grounds have been uncovered). Of the tumuli necropoleis (dating primarily to the eighth to fifth centuries BC), the largest recorded is Forca Caruso where as many as 300 tumuli are visible on the surface, although the the 50 or more from Fossa appear to be only part of a much larger cemetery. In Le Marche, there were several hundred tumuli located around Matelica. The total numbers of individuals buried are difficult to ascertain (due to a combination of preservation and publication), but the proportions in the area of Crocifisso seem typical with 178 burials in and around the 53 tumuli. Elsewhere in Le Marche, cemeteries appear to have been much smaller, in many cases only one (as at Monte Pitino) or a few tumuli (e.g. Moie di Pollenza) were present. Dating to the same period, Alfedena in the south of Abruzzo consists almost entirely of cut burials — some 1500 are excavated here (Mariani 1901; Parise-Badoni and Ruggeri Giove 1986) and estimates range as high as 12,600 for the entire cemetery (Mariani 1901). For the period from the fifth to the first centuries BC cemeteries seem to be much smaller in size. The only cemeteries to receive burials in their hundreds — Vasto (Staffa 2000), Fossa (D’Ercole and Copersino 2003), Bazzano (Check Ref), Alfedena (Mariani 1901; Parise-Badoni and Ruggeri Giove 1980), Campovalano (Chiaramonte Trere 1996; 2003) and Ancona (Colivicchi 2002; 2008) — are all located either along the coast or within the intermontane basins of northern Abruzzo (the area around modern L’Aquila). All of these very large cemeteries were in use prior to this period and some such as Fossa and Bazzano date as far back as the ninth and tenth centuries BC — Cosentino et al. 2001). Most strikingly, in all cemeteries across the study area the rates of burial (i.e. mean
burials per year) drop after 500 BC. For those which there is detailed data, they seem to have averaged less than one burial a year by century.

The changes apparent after 500 BC are also apparent in the size of the cemeteries. Of the 54 cemeteries founded during the fifth to first centuries BC, most contained less than 10 individuals (Fig. 6.8), and the largest cemetery, Montefortino di Arcevia, numbered only 66 burials. However, it should be noted that there are more burials in cemeteries that were already existent before this period (those noted above). There are several implications of these trends:

1. The size of the group that was being buried was very small, perhaps on the level of a household, or else (less plausibly) a distinct class in society — drawing inspiration from Roman society we might think of landownership, local leaders and priesthods. It is difficult to tell from the available evidence how the community was being segmented, but certainly some parts are absent or underrepresented, notably children (van Rossenberg 2008:166-168).

2. Most cemeteries were only in use for a very short period of time — a few generations at most — and within the larger cemeteries different parts of the cemetery came and went out of use. This raises questions as to the role these sites took apart from their use for burying the dead. The abandonment of the tumulus tradition and erection of stone statues in the late sixth century marks the end of constructing lasting markers to the dead (Bispham 2007 —who notes the lack of tombstones prior to the Augustan period). However, the presence of chambered tombs dug into tumuli at Fossa and Capestrano demonstrates that the mounds continued in prominence as funerary monuments (at least in the region around L'Aquila).

3. Some people were buried individually, rather than in cemeteries. This burial tradition is almost entirely known through chance, often antiquarian, discovery, and is therefore poorly understood. To the best of my knowledge all 17 known examples were male inhumations with weapons and other grave goods. The tradition’s presence in a society where burial in cemeteries was the norm suggests that individuals buried in this fashion were commemorated outside of the community. Whether this was as a form of exclusion, for allowing social forgetting or of signifying some other status is unclear. It is conceivable that these individuals were in some ways aliens in their locales that lacked proper group or household affiliation. Indeed, often they have been
identified (on the basis of their associated material culture) with invading Gauls (an incursion from northern Italy is mentioned in the classical sources), but there is no need to make such a specific, historically-laden interpretation.

![Figure 6.8. Number of burials in cemeteries founded in the 5th-1st centuries.](image)

### 6.6 Placement of Cemeteries

In general it is not possible to locate most cemeteries securely in the landscape and in relation to possible settlement sites. Those excavated in the nineteenth century were generally only recorded in notes, with details only of the *località* or nearest village and without any kind of plan or location map. Bombings during the Second World War also destroyed many important archives leaving confused collections of artefacts in some museums (especially those of the *Museo Nazionale di Ancona* that serves the whole regione). In fact it is only in recent publications that archaeological data beyond the finds themselves, such as plans and descriptions of the contexts, have been presented (see e.g. papers in *I Piceni e l'Italia Medio-Adriatica* 2003; D'Ercole *et al.* 2003; Cosentino 2003; Silvestrini and Sabbatini 2008).

Where adequate data can be gathered, we can draw some general observations:
1. Cemeteries do not occupy prominent locations on hilltops; rather, the vast majority lie on arable below 1000m. However, most cemeteries were discovered through agricultural work or in advance of large-scale industrial or infrastructure projects all of which tends to avoid the less accessible and less productive slopes and mountains. The trend may not be entirely an artefact of limited archaeological investigation because tumuli cemeteries should be detectable by remote sensing, but they can only be traced at high altitudes in the passes between the Fucine and Sulmona basins (this despite the recent propagation of high-definition satellite and aerial imagery available through maps.google.com, maps.bing.com and visual.paginegialle.it as well as the aerial photograph repository at cartanet.regione.abruzzo.it).

2. A number of cemeteries are found at the crossing points of rivers – as at Fossa, Alfedena, Matelica, Fabriano, Moie di Pollenza – or along ancient routeways – e.g. Ancona, Vasto, Teramo-La Cona, Campovalano. Alfedena is particularly notable here as being at the start of a major Apennine pass and the crossing of the Sangro by two large (medieval) droveways (tratturi). The cemeteries mentioned are all large with biographies that date back at least to the sixth century BC and, apart from Vasto, they all contain tumuli (although none of these constructions post date 500 BC).

3. Several smaller burial groups can be associated with roads in terms of their alignment, although it is by no means clear where these routes lead. This might best be thought of as links with a more local communications network. A prominent example is Corfinio (Fig. 6.9).

4. There is in fact a strong link between cemeteries and hilltop sites, but sometimes this has been overplayed so that cemeteries are too frequently taken as a proxy for quasi-urban hilltop sites. Nevertheless there are good examples of hills such as and Numana (Landolfi 1992) where several cemeteries have been found in a ring around a hill that has produced sporadic Iron Age to Roman material.

5. Comparatively underplayed is the link of cemeteries to ‘religious’ sites, there are several examples of burials within a few hundred metres of votive deposits – such as at Montefortino di Arcevia (Brizio 1899), Monte Giove di Penna Sant’Andrea (D’Ercole 1986) and Serra San Quirico (Annibaldi 1956; Landolfi 1986) – and temple sanctuaries – Schiavi d’Abruzzo (Riccitelli 2001), Teramo-La Cona (Savini and Torrieri 2003) and between Fonte Amore and the
sanctuary of Ercole Curino, especially at the site Sant’Ippolito (Van Wontergehm 1984; Campanelli et al. 1997).

6. In Le Marche the eighth to fifth century cemeteries of Matelica, Fabriano and Moie di Pollenza were built directly on top of the remains of post-built houses. The ceramic evidence from Matelica would suggest that this was almost immediately after the houses had gone out of use (Gobbi and Biocco 2003). No such cases occur outside the province of Macerata and the end of the practice seems to coincide with the construction of houses with stone foundations and tiled roofs as well as the end of tumuli construction.

Figure 6.9. Burial ground of Corfinio aligned along a minor road (D’Ercole and Copersino 2004: Fig 13. No scale on original)

Cemeteries have often been considered a form of territory marking (e.g. Parker Pearson 1999). I consider such models below, yet the above points defy such an encompassing and simplistic interpretation. There are examples of cemeteries associated with almost every type of site or communication route, whilst others do not seem obviously associated with any significant landscape feature. Similarly, cemeteries range from the highly prominent tumuli in use for centuries to simple shaft-grave cemeteries used only for a generation or two. I do not favour trying to create a structural hierarchy of cemeteries, but would rather emphasise the variability and complexity of these sites which refer to different elements of the past – the local,
the regional and the interregional. We should expect a variety of settlement types in the landscape and a comparable variety of burial expressions.

6.7 Internal Structure of Cemeteries

Although some cemeteries are considered in more detail in the following sections, first I outline some characteristics of the general structure of cemeteries, in the various zones:

6.7.1 Le Marche

Plans of the eighth to fifth century necropoleis of central Le Marche, although not well-phased, are testament to the large areas and sprawling nature of these sites. At Monte Penna di Pitino (Fig. 6.10; Silvestrini 2008), Recanati (Percossi Serenelli 2003) and Moie di Pollenza (De Marinis and Percossi Serenelli 2005), areas of several hectares (e.g. at Monte Penna di Pitino only 27 graves are known dispersed over an area of about 2ha) contain a range of small clusters and individual graves that seem to have little alignment, if perhaps with some focus on tumuli in groups of one to three. The cemeteries around Matelica (Silvestrini and Sabbatini 2008a) are equally large but these are instead characterised by an interconnecting series of tumuli or ring ditches of varying sizes. Other cemeteries such as Numana-Sivolo (Landolfi 1992) lack fully published plans or are known only from small-scale excavations which makes it difficult to compare them.
Figure 6.10. Plan of Monta Penna di Pitino (Naso 2000: Fig. 9)

The fourth to first centuries are particularly underrepresented in Le Marche and we are most reliant on the cemeteries of Montefortino di Arcevia (Fig. 6.11; Brizio 1899) and Ancona (Figs. 6.12 and 6.13; recently synthesised by Lucentini 2002). Both seem to be characterised by a string of clusters that has some common east-west orientation, although we should hesitate to place much weight on this observation. Other contemporary cemeteries are poorly recorded. For example, Baumgartel (1937) attempted to piece together Dall’Osso’s notes of the excavation of Filottrano, but could determine that the items held in the museum in Ancona derived from the cemetery, the exact number of graves excavated (around 30), or the extent of the excavations. Assessment of the Ancona museum holdings suggested that other sites had been recognised and their artefacts (but probably not all) moved, without proper record, to the museum, or that they stemmed from private collectors (ibid. 266-267, 271). Finally, the necropolis outside the walls of the Roman colony of Potentia extends over nearly a hectare along the road to Ancona; this was active from the second century BC (Mercando et al. 1974).
Figure 6.11. Plan of Montefortino di Arcevia (Brizio 1899: Tavola 1)

Figure 6.12. Cemetery from Ancona (Colivicchi 2002: Fig.)
For the other cemeteries of Le Marche we are sadly lacking in useable plans; in general they appear small and consist of clusters of no more than ten inhumations.

**6.7.2 Coastal Abruzzo**

Similar trends to Le Marche can be observed in the lowland areas of Abruzzo: tumuli are again relatively few, appearing only in small clusters at Teramo-La Cona (Savini and Torrieri 2003) and Campovalano-Campli (Chiaramonte Trere 1996), and the most common site organisation comprises small groups of tombs without strong lines of orientation, dispersed over areas of several hectares such as at the ex-Gesuiti di Pescara (Fig. 6.14) and Loreto Aprutino (Fig. 6.15). From the fourth century, alignments with routeways seem to become important in several cemeteries particularly Vasto (Staffa 2000), Teramo-La Cona and, most spectacularly, Campovalano-Campli. In the latter two sites new graves were not dug further along the routeway, instead they commonly were placed between earlier tumuli and burials creating an ever denser cemetery structure.
6.7.3 Mountainous Abruzzo

As with Matelica the inland parts of Abruzzo are characterised by dense clusters of tumuli. At Fossa the close dating of the tumuli suggests a gradual filling in of spaces between tumuli rather than outward expansion over time. From the fifth century new elements of organisation emerge at sites such as Alfedena, Bazzano (Fig. 6.16), Cinturelli a Caporciano (Fig. 6.17) with shaft graves in dense blocks on a common
alignment (perhaps there is a tendency towards northwest/southeast but there is a lack of data to confirm that this alignment has special significance).

Figure 6.16. Plan of a part of necropolis of Bazzano (D’Ercole and Martellone 2007: Figure 7)
Two important sites fall between these categories. Schiavi d’Abruzzo, despite its upland siting, seems more akin to the coastal group with dispersed scatters of burials. Conversely, the dense cluster of tumuli from Comino-Guardiagrele looks more like the burial grounds/necropoleis of the inland uplands.

In the later centuries, especially the second to first centuries BC, we see increasingly divergent processes. In the large cemeteries around L’Aquila the tumuli see a renewed use with the implantation of chambered tombs in and around them at Capestrano (Fig. 6.18), Bazzano and Fossa (see below). At cemeteries the tumuli or indeed the whole cemetery appear to have become redundant. A different practice is apparent around the towns of Alba Fucens (a colony founded in 303 BC) and Corfinio (capital of the Socii during the Social War) where there are a number of small necropoleis, containing chambered tombs that are arranged in long lines, presumably along roads. The primary burial type during this period remains the cut burial and the evidence points to these being commonly arranged in small clusters.
6.8 Activity within cemeteries

Several activities can be envisaged as occurring at these burial grounds. Some might be regular – e.g. grave visitation, making offerings and maintaining the cemetery (weeding, repairing damage to funerary monuments, boundary maintenance) – others would be less regular – most obviously the burying of the dead. In order to better explore this three sites can be detailed to consider their chronology, their inclusivity (i.e. what parts of society used the necropolis), the construction of tombs and their placement:

6.8.1 Case Study 1: Matelica, Macerata

The excavations around the town of Matelica, as well as uncovering the remains of a large number of domestic structures (Chapter Four) have also revealed evidence of several large and important burial grounds. The aforementioned exhibition *(Potere e Splendore, 2008)* focussed largely on the most lavish of these burials, the so-called princely tombs. Important as these are, this emphasis perhaps loses sight that the cemeteries in four localities represent the largest areas of cemetery recovered by modern methods in Le Marche. Three main sites are known:

1. Brecce (ninth to fourth century BC) – a necropolis of over 50 tumuli within which an older section containing 28 burials has been identified (Fig. 6.19).
2. Cavalieri (seventh-fifth century BC) – a series of burial areas lie in association with near contemporary settlement areas across 35 ha (Figs. 4.9-4.11; not completely excavated, see discussion of the houses in Chapter Four).

3. Crocifisso (eighth to sixth century BC) – at which 178 tombs and 53 tumuli were examined in a two-phased necropolis overlying a group of post-built houses (Fig. 4.3).

There are also several minor sites in and around modern Matelica which, together, suggest the widespread use of the fluvial terraces of the Esino from the ninth to fifth century, notably, San Domenico which has produced artefacts from the fifth/fourth centuries along with sixth-century ring ditches and a single grave. Further, investigations over a 40ha area at Pian dell’Incrocca (test-pits and aerial photography) have revealed two (possibly connected) burial areas with tumuli. Probably in total there would have been hundreds of tumuli and thousands of tombs. Although these numbers sound large they match estimates for Alfedena and need not represent a very large population.

All the burials in these cemeteries are of the cut-type, and contain a wide range of burial goods. Some are surrounded by circular ditches up to 30m or more in diameter and it is presumed that such tombs were covered by a tumulus, although the reduced
stratigraphy from centuries of ploughing has removed all evidence of this. Some of these circles contain no primary burial, but instead a ring of tombs akin to those excavated in the southern Abruzzo at Alfedena and Val Fondillo. Other circles are empty. It is unclear if there are planned but never utilised structures or a result of preservation factors. The cut-burials range from dispersed individual graves to groups of up to 20 (although around five is more common). Orientation in these graves in these is varied; it is possible that some were aligned with the rings of the tumuli.

Although the lack of dating material apart from the grave goods limits the extent to which a fine chronology can be drawn, there is no doubt that these burial areas were in use contemporaneously. In most of the necropoleis only a handful of burials were dug in the cemeteries in the ninth to mid-seventh centuries BC. The greatest peak in use was between 650 and 550 BC after which burial ceased at most cemeteries and burial rates dropped to only very occasional use, as at San Domenico and Brecce where there are a few inhumations that date to the fifth or fourth centuries. Brecce has probably the clearest chronology (Sabbatini 2008a, esp. 51-56). In the earliest phase (ninth to eighth centuries) burials were gathered in five groups, two enclosed by ring-ditches 10-12m in diameter, in the south-eastern section of the necropolis. In the second phase (seventh century BC) the necropolis sprawled north over several hectares with more than 60 tumuli in total. Noticeably, the earlier tumulus around group C was itself encircled by a large ditch perhaps 30m in diameter (although only half of this later feature was excavated). This phase of the cemetery can be roughly divided into a zone of tumulus burial to the north-west and a zone of cut-burials that encircles the noted large circular ditch. Very little material from Brecce was found dating to the sixth century and the cemetery can be considered to have fallen out of use as an active burial ground. However, a third and final phase saw 24 new burials, all associated with pre-existing tumuli. A lack of data prevents further speculation over this later practice, but it seems somewhat distinct from the second phase both in terms of the reduced level of activity and the visibility of these additions (perhaps suggesting a smaller section of society using this area for funerary rites).

The sequences at Cavalieri and Crocifisso are somewhat different. At Cavalieri, the burials are more dispersed amongst several smaller areas, each with cut-burials and tumuli or ring-ditches. These groups mirror areas of settlement and in fact extend over former structures. The same pattern occurs at Crocifisso and there are suggestions that similar practices occurred at Fabriano (Sabbatini 2008b) and Moie di
Pollenza (De Marinis and Percossi 2005). As the ceramic chronologies suggest that the houses and burials are from the same period, it must be concluded that this was deliberate. The necropolis redefines an area of habitation into an area for the dead and the prominence of the tumuli must have made visible in the landscape the different areas that had previously been inhabited. This fits well with Horden and Purcell’s argument (2000: 264-266) that Mediterranean agricultural regimes should be characterised by cycles of use and abatement. However, this argument cannot be applied wholesale to the region, since some cemeteries have very long chronologies of use.

The construction of the tumuli, especially the larger examples, would have been quite labour intensive. A convenient order of magnitude might be derived from Baudou’s (1968: 156, cited in Goldhahn 2007: 58) suggestion (based upon an analysis of coastal cairns in central Sweden) that every cubic metre of a finished burial monument is equivalent to around a full working day for an adult. Although no mounds are preserved, as a minimum, the ditch around a 10m diameter tumulus (assuming a depth and width of 1m) would require 15 working days, whilst that of a 30m diameter tumulus (2m wide, 1m deep), would take more than 90 working days. Thus, these could be undertaken by either a very large household or a small number of households, but more likely given the communal nature of the cemetery, were activities in which the most or the entirety of the local community was involved. This is made all the more compelling when it is considered that many tumuli lack a central burial or any burial at all. It is unclear to what extent this is due to preservation conditions – for instance at Brecce only four inhumations from tumuli are in exceptional condition (Sabbatini 2008a: 56) – but many tumuli were probably built either with the intention of adding to them at a later stage or simply as a marker (as with a cenotaph). The tumuli can, perhaps, thus be seen to play a role that is separate from the burial – the former drawing together households during its construction and later designating the necropolis as a ‘place’ for the community, whilst the latter is a more private expression of the individual and household. Also, the visual prominence of the tumuli and their link to the river basin appears significant: it has long been recognised that Matelica lies on an important N-S route that connects two of the main passes across the Apennines and lies at the end of two river valleys from the Adriatic coast – the Potenza and Esino. The tumuli cemeteries may thus have had a territorial aspect that was not held by the more transient forms of settlement, but this could
equally relate to a need to place the dead near to the river (as a link to the underworld or for the use of water in making offerings to the dead).

It should finally be observed that these cemeteries do show strong elements of clustering whether with groups of tumuli, groups of cut-burials, or mixed groups, especially cut-burials that are associated with or secondary to the tumuli. Further, in cemeteries like those of Cavalieri there can be drawn a second, higher, order of clustering in which there are large spaces several hundred metres across between different burial area. It is tempting to try and link these two levels of clustering to household and community structures, but without clearer publication of the data detailing the sequence and fine dating of burials and providing biological data of the individuals inhumed this remains speculative (Parker Pearson 1999: 114).

6.8.2 Case Study 2: Ancona

For the fourth to first centuries BC, the best preserved and published cemeteries are those at Ancona (see Figs. 6.12 and 6.13, and especially Colivicchi 2002; this section draws heavily upon his synthesis). Although earlier graves are known in the locality, indeed as far back as the ninth century, these do not seem to be directly linked to the later burial areas.

The earliest graves of the main period date to the second half of the fourth century: from then to the third century they show no major variation. They were basic cut burials with limited grave goods of vessels in local ‘alto Adriatico’ red figured pottery and black-gloss wares (Colivicchi 2008: 35-36). Some objects such as a terracotta figurine appear to be of Greek origin, but the rite can be most closely related to burials at Spina and other sites in the northern Adriatic coastal area (ibid.). Poculi, a type of small lug-handled impasto pots, are a particularly common grave good throughout the cemeteries’ period of use. Despite the introduction of pottery workshops and the availability of wheel-made ceramics, the handmade impasto form of the poculus can be linked to ceramic technologies common to the Iron Age, (see Chapter Eight for discussion of ceramic production). The third to second centuries witness burials in stone sarcophagi and an increased number of eastern Mediterranean objects. By the second to first centuries imports include, in particular, Rhodian amphorae despite the use of locally produced amphorae (and wine) in settlement contexts, implying these imported items are viewed differently and mark identity in death. Other imports include stone alabasta, faience, glass and silver vessels and gold jewellery. This period
also sees gravemarkers with Greek inscriptions that seem to mix traditions from both Greek and Roman worlds whilst being produced in the local limestone.

Colivicchi (2002) puts particular emphasis on the use of some funerary items in the burial rite. He argues that the *poculi* are retained because their specific role could not be replaced by a later design – suggesting significance for the funerary rite. He also sees the Rhodian amphorae as a means of emphasising a ‘Greek’ identity amongst the community, distinguishing them from surrounding populations. However, the rite remains recognisably Italian: the amphorae are perhaps evidence of a funerary meal as they do not seem to have entered the ground with their contents intact (sometimes there are even other pots inside them) and the stoppers could be found outside of the grave. Funerary meals are attested in Abruzzo by plant remains in grave vessels, these hint towards shared ideas of funerary rites throughout Adriatic Italy, albeit with many different local variations.

Although cut burials were the most common burial type, there are frequent attestations of *fosse con gradini*. Also well known are cist tombs, dated from the first half of the second century BC to the mid-first century. Generally these had a beaten (packed) earth floor stone sides and a double sloping roof; they were 2-3m in length. In eight first century examples, bricks were used in the construction instead of stone, but the construction technique stayed essentially the same; four of these were also equipped with funerary beds. A final burial rite at Ancona dating from the last decades of the first century and continuing into the imperial period comprises cremation burial in funerary urns.

The cemeteries at Ancona are somewhat scattered and tombs occur in groups of no more than a few dozen – potentially due to the fragmentary nature of archaeological explorations under the modern city (heavily bombed during the Second World War). However, the site of Ex Caserma Villarey shows clear grouping and multiple phases of use that is comparable with other cemeteries from across the study area. Particularly intriguing in this cemetery was the discovery of an adjoining well, securely dated to the second half of the second century BC, which Colivicchi (2008) connects to a probable ritual use within the cemetery. Although it is not possible to speculate what this might be we can draw links with the importance of river crossings and alluvial terraces already noted at many of the Iron Age cemeteries (see also a similar find in the cemetery of Taranto – Lippolis 1994: 56).
In total eight chambered tombs are known from Fossa that date from the first half of the second century BC to the end of the first. On the basis of the burial goods estimates can be made as to how many of these were active at any one time and how many burials were made within them in any 50 year period (Table 6.1).

<table>
<thead>
<tr>
<th>Period (BC)</th>
<th>Number of chambered tombs in use</th>
<th>Number of burials</th>
</tr>
</thead>
<tbody>
<tr>
<td>Early 2nd century</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Late 2nd century</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>Early 1st century</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>Late 1st century</td>
<td>3</td>
<td>6</td>
</tr>
</tbody>
</table>

Of the eight tombs, none was used for more than five burials and no more than four were 'active' in any 50 year period. This broadly fits with the spatial distribution of these graves into three rough groups (northern, western and southern). Within each group the tombs were constructed and used sequentially with a new tomb probably built only when the previous tomb had been 'filled'. Hypothetically, the tombs were in use by three different groups, presumably families, with the westernmost perhaps identifiable through inscribed ceramics with a certain T(ertius) Pom(onius) Pom(ponius) (Letta in Copersino and D'Ercole 2003).

Analysis of the 18 skeletons showed all were adults, equally divided between the sexes; there are no apparent designations of male or female tombs (Copersino and RIzzitelli 2003). The youngest inhumed individual was in their late teens and the oldest was probably in their 60s. Burials were made perhaps every 10 years (using the modal average); split between the three groups, this suggests an inhumation/family once every generation. If it is correct that there were three families making use of this area then there are not enough burials for all members of the family to have been buried in these tombs. Several possibilities present themselves: (i) the tombs belong to just one family group; (ii) the other tombs from this phase of the cemetery (a further 28 shaft graves) relate to other family members; or (iii) some family members were buried elsewhere. I am inclined to accept all these hypotheses together. Marriage and adoption between families, which is well documented in Republican Rome, would blur...
the distinction between family groups, allowing both a narrow and a wide definition of kin. Despite this, there seem barely enough burials for one family group for two centuries even if the shaft burials are included (although the cemetery has not been fully excavated). Equally, it is almost inconceivable that over two centuries all members of a family died close enough to Fossa to be buried there. Political involvement, trade, estate management and war (both foreign and civil) were activities pursued by wealthy individuals from Italy and would have required hazardous journeys away from the area.

The tombs themselves preserve evidence of their construction. The stone lined chambers would have required both labour and skill to construct and their complexity suggests that they were constructed prior to the death of the first occupant (although it is not inconceivable that the body was stored elsewhere such as another tomb and then moved at a later date). Their uniformity and the skill involved suggest that specialist builders may have been hired (although using the same techniques as those used to make housing). The placement of items such as funerary beds within the tombs, resplendent with ivory carvings, is further testament to the level of investment in death.

The placement of the chambered tombs is notable (Fig. 6.20). The tumuli that dated as far back as the ninth century BC were evidently still visible and the earliest chambered tomb (t.63) was dug into the centre of the oldest and, perhaps more importantly, largest tumulus yet known at Fossa. More strikingly, in the two centuries preceding the construction of t.63 as many as 21 other tombs, half of the known tombs from this period, were arranged around the same tumulus (300). Chambered tombs were built into tumuli in perhaps three other locations – t.430, t.1 and t.330 – although by the first century a clear north-south alignment had developed suggesting that the visibility along a road was of greater importance than drawing on specific monuments within the cemetery. These placements show that the distant past was still very important here and that the groups being buried wanted to show their lineage. The re-use of t.300 in particular perhaps indicates an attempt to not only show the age of the group but its pre-eminence. The treatment of earlier disturbed remains within the chambered tombs is also instructive, as instead of being disposed or moved to another part of the cemetery the remains were collected and carefully deposited within the same chamber, normally in a new grave-cut (Copersino and Rizzitelli 2003). The later use on the outskirts of the cemetery is more reflective of the
use of the cemetery as a whole, rather than specific parts within it. The chambered tombs might therefore have been considered, through association, the descendents of the tumuli.

Figure 6.20. Plan of 2nd-1st century tombs (shaded grey) at Fossa, L'Aquila (D'Ereole and Cosentino 2003: Tav. 1)

These different uses have importance considering the role of these cemeteries in society. The declining number of burials per year, combined with the growing complexity of tomb construction and range of burial goods seems to indicate greater exclusivity within the large archaic cemeteries. The chambered tombs suggest that even within a family there was selection as to who would be interred within them and who was buried in a cut grave. It might be that these were the family heads, although the wide range of ages and the equal representation of both sexes argue against any definite rules for this form of burial. Looking beyond the Fossa necropolis we must consider how those members of society, that were not part of the group or groups
buried here, used this cemetery. At its onset, the cemetery was started with ‘closed’ tumuli that served to commemorate the memory of the community over that of specific individuals. But by the second and first centuries this distinction may have been subtly subverted to rank individuals within the cemetery (and exclude others altogether). Fossa had become an ‘elite’ necropolis, with the chambered tombs reserved for individuals at the top of the hierarchy who could afford the lavish luxuries and exotics found within them.

6.9 Trends in Burial Patterns

Overwhelmingly, the burial practices outlined highlight the role of small groups. This is visible in the small size of most cemeteries, and in the dispersed nuclei of the larger and older cemeteries. Furthermore, it seems likely that the cemeteries are not representative of the whole population: children are particularly underrepresented as, in some cases, are women (particularly with regard to lone burials). If the small clusters can be interpreted as representative of household groups then there are simply not enough burials (either in terms of frequency or numbers), implying the existence of a value system that determined the mode of death rite. A further division presents itself in the use of cemeteries. The tumuli cemeteries of Bazzano, Fossa and Capestrano, which would have been easily identifiable as ancient in antiquity, were choice sites for chambered tombs with the chambers sometimes cut into or surrounding the tumuli (Teramo La Cona, with funerary monuments placed in front of tumuli, might also be added to this group – Savini and Torrieri 2003). Given the high volume of material culture, much of it imported and/or the work of expert artisans (most notably the elaborate funerary beds), it seems difficult to deny that these tombs were a form of architecture created by a wealthy social class (although it is perhaps not particularly meaningful to describe them as elite). This class was also able to control rights of burial in these cemeteries, evident in the lack of burials and their clustering with respect to the chambered tombs. Other burial areas used between the sixth and first centuries had chronologies of active burial of around a century or less. For instance, in the cemeteries around Ancona the evidence suggests that it was the cosmopolitan nature or even ‘Greekness’ of the burying community rather than ties to the past that was the defining feature of the burial rites. For the majority of groups in central Adriatic Italy burial becomes almost invisible, with nothing but occasional small, short-lived cemeteries.
Chapter Seven: Religious and Ritual Practices

7.1 Introduction

In areas of Italy without the early evidence of urbanism of Etruria, Latium and Campania, it is argued that 'cult centres provided a gathering place...and a focus for community investment, which could take the form of monumental structures, votives or sacrificial obligations.' (Isayev 2007a: 16; cf. Isayev 2007b; Bispham 2007).

The Abruzzo regione is well known for a large number of rural sanctuaries that were monumentalised with modest temples from the third, but especially the late second and first centuries BC. These often developed into large spectacular complexes like that of Ercole Curino dramatically set at the base of a large cliff (see below). However, to consider only the temples -- as has often been the case -- is to ignore the wider evidence for sanctuaries and ritual more generally, particularly in Le Marche where temples were not built with anything like the same frequency (see the distribution of sites in Figs. 7.1; 7.2 and 7.3); this lack of evidence can hardly be used to suggest less religion.

It is well appreciated that religion is embedded in daily activities (e.g. Insoll 2004; Fogelin 2008; Bourdieu 1977). It constitutes not just the metaphysical (although elements of this will always exist - Insoll 2004: 150), but also the things people do -- performing funerals (Chapter Six), building shrines, dedicating gifts, following certain routes (or avoiding others) and even the manner in which a field is ploughed and harvested (see examples in Bourdieu 1977; Forbes 2007). Thus whilst we might identify material culture linked to religion -- votives, sacrifices, sanctuaries, and certain architectural forms -- we must also at least consider the evidence from other contexts -- particularly burials, the domestic (cf. Bradley, R. 2005), and material that does not strike us as religious in nature -- e.g. the common house pot.

The following section will evaluate the archaeological evidence from deposition and sanctuary sites as well as other contexts of religion to analyse suggestions that sanctuaries acted as economic, political and religious centres and to consider the variations in the material manifestation of religion in people's lives. For this it is key to move beyond unwieldy concepts of ethnic groups, phases of acculturation and elites in favour of context-led discussions. Taking a landscape approach I consider first deliberate deposition at sites without human remains and then, the chronologically
later evidence of specialist architecture. The chapter will then conclude with a discussion of the roles and places of religion in the lives and landscapes of central Adriatic inhabitants in the sixth to first centuries BC.

7.2 Forms of deposition

Material forms regarded as religious are highly conspicuous throughout peninsular Italy and indeed the central and eastern Mediterranean. Following what is essentially an art-historical tradition (see Izzet’s 2007 critique of the origins of Etruscan archaeology which is equally relevant to research interests elsewhere in Italy), all religious material is generally seen as votive in nature and therefore not requiring further interpretation or explanation. Thus, though we have publications like the Corpus delle Stipi Votive (‘The Corpus of Votive Deposits/Hoards’), the material is not normally rigorously catalogued and the context badly recorded, and attention is instead focussed upon describing the material commonly seen as most interesting – classical statuary. Comella (1981) classified votives into three main groups that were based solely on style and took no account of context: an Italic group; a Magna Graecian and Sicilian group; and an Etrusco-Latial-Campanian group. The Magna Graecian group does not apply to the study area and will not be discussed further. The Italic group consists largely of bronze figurines generally considered to be representations of gods. The final group (the Etrusco-Latial-Campanian) instead utilises terracotta in representations of anatomy, such as heads, legs, eyes, uteri, etc., as statuettes of donors and as models of animals (Glinister 2006: 14-15). The presence of this ‘classically’ votive material is enough to classify a deposit as a stipe votivo and by inference prompts the argument that all other associated objects are also votive and hence religious in nature (as well as indicating the presence of a sanctuary).

Clearly, this approach raises problems in categorising objects as religious or non-religious irrespective of the exact context or solely because of it, and raising religious and ritual vs domestic and functional dichotomies. Loomweights offer a good example: at sanctuaries they are votive, at home domestic refuse, but is it valid to make such a clear distinction? If religion is in the practice, rather than the object, our loomweight could be used for weaving at the sanctuary, but deliberately deposited as part of a religious activity within the house. Alternatively, a host of other interpretations are possible, the point being that is not enough to just identify objects, it is the activities which led to the creation of the archaeological record that are the
subject of enquiry. A more serious problem is the lack of regionality or time-depth to discussions of deposition: the material may change, but the practices of making votive offerings are considered by too many scholars as just a form of ancient Mediterranean cult practice (e.g. Barker and Rasmussen 1998: 224-227). Osborne (2004) has observed that Classical archaeologists must move past their reliance on texts for understanding religion and material culture as these mask variation (in time and place) and are always partial (both in the preservation of the text and in their observations). As Richard Bradley has noted with relation to prehistoric deposition in Europe, meanings and attitudes can and will change – ‘what started as an informal transaction between the living and the gods was transformed into one of central political activities in prehistoric society’ (1990: 202). It is important then to explore the changing nature of deposition and its landscape roles. To analyse these changes I wish to consider two related questions which I shall return to in the discussion at the end of this section:

1. To what extent were votive practices separated from other material practices?
2. How visible and how delineated were the places of this activity?

However, before these can be considered it is necessary to go into detail about four classes of material culture:

The following (Tables 7.1-7.3) give the composition of all deposits for which I was able to find sufficient data, but it should not by any means be taken as a complete catalogue. Finds of bronze and terracotta statues as well as other terracotta *ex votos* (see below) are known from several other sites, but due to the nature of the discovery or the lack of publication they have relatively little detail of either composition or context I have chosen to omit them from my discussion.
### Table 7.1. Votive Deposits from Le Marche

<table>
<thead>
<tr>
<th></th>
<th>Isola di Fano</th>
<th>San Vittore in Cingoli</th>
<th>Montefortino di Arcevia</th>
<th>Lucus Pisaurensis</th>
<th>Monte Primo</th>
<th>Cupra Marittima, loc. Sant’Andrea</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Date</strong></td>
<td>6th – 2nd centuries</td>
<td>6th century - Roman</td>
<td>5th – 4th centuries 3rd-4th centuries</td>
<td>3rd century? - Roman</td>
<td>12th-10th century</td>
<td>8th/9th-end of 6th century</td>
</tr>
<tr>
<td><strong>Bronze</strong></td>
<td>Small statues</td>
<td>Statue of a worshipper</td>
<td>7 laminated figures 1 fibula</td>
<td>None</td>
<td>3 figurines 4 fibulas 3 vases - 1 bucket 1 cauldron 1 cup 2 knives 43 axe heads (complete and fragments) 4 spear heads, 2 small</td>
<td>None</td>
</tr>
<tr>
<td><strong>Terracotta</strong></td>
<td>Small statues</td>
<td>2 busts Female statues</td>
<td>4 heads, 1 hand, 1 bovine head, Other anatomical votives, figurines</td>
<td>13 bovines 8 hooves of sheep and oxen</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td><strong>Ceramics</strong></td>
<td>None</td>
<td>Black Gloss, Altoadriatica and coarsewares Predominantly cups and plates 3 loom weights</td>
<td>Impasto Miniature vessels inc.: 3 lids 2 vases 1 jar 1 crater</td>
<td>Black Gloss vessels</td>
<td>Impasto ceramics 7 miniature biconic vases, 14 miniature 2 handled globular jars, 4 miniature jars, 40 miniature beakers, 23 miniature bowls, 14 miniature tazze, 14 miniature two handled tazze, 1 miniature skyphos, 2 miniature cups, 10 miniature lids, 4 miniature fornelli, 1 miniature tavolino, 4 miniature cucchia o palette</td>
<td>Unguentari</td>
</tr>
<tr>
<td><strong>Iron</strong></td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td><strong>Coinage</strong></td>
<td>Roman and Magna Graecia</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td><strong>Other</strong></td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>16 miniature mestoli, 4 grani forati, 8 pendants, 3 miniature taralli, 13 disks, forati, 8 cippetti</td>
</tr>
<tr>
<td></td>
<td>Cansano</td>
<td>Corfinio – Fonte San Ippolito</td>
<td>Lanciano</td>
<td>Lanciano – S. Buono</td>
<td>Iuvanum</td>
<td>Chieti</td>
</tr>
<tr>
<td>----------------</td>
<td>----------------</td>
<td>--------------------------------</td>
<td>----------</td>
<td>--------------------</td>
<td>---------</td>
<td>--------</td>
</tr>
<tr>
<td><strong>Date</strong></td>
<td>2nd century BC – 1st century AD</td>
<td>3rd century BC – 1st century AD</td>
<td>4th – 2nd/1st century</td>
<td>2nd – 1st century</td>
<td>3rd to 2nd centuries?</td>
<td>3rd to 2nd centuries</td>
</tr>
<tr>
<td><strong>Bronze</strong></td>
<td>1 dog</td>
<td>1 bucket</td>
<td>1 bronze</td>
<td>3 statues</td>
<td>22 Hercules, figurines, 1 male figurine, 1 female figurine, 3 sitting worshippers, 3 miniature chairs</td>
<td>1 sistro</td>
</tr>
<tr>
<td><strong>Terracotta</strong></td>
<td>54 bovines</td>
<td>2 feet</td>
<td>1 hand</td>
<td>1 breast</td>
<td>1 phallus, 2 cows, 2 masks</td>
<td>1 fragment of a male statue, 1 sitting female statue, 1 head of a female divinity</td>
</tr>
<tr>
<td></td>
<td>2 horses</td>
<td>1 breast</td>
<td>1 phallus</td>
<td>2 cows</td>
<td>1 mask</td>
<td>1 fragment of a male statue, 1 sitting female statue, 1 head of a female divinity</td>
</tr>
<tr>
<td></td>
<td>2 doves</td>
<td>1 phallus</td>
<td>2 cows</td>
<td>2 masks</td>
<td>1 mask</td>
<td>1 fragment of a male statue, 1 sitting female statue, 1 head of a female divinity</td>
</tr>
<tr>
<td></td>
<td>1 goose</td>
<td>1 breast</td>
<td>1 phallus</td>
<td>2 cows</td>
<td>1 mask</td>
<td>1 fragment of a male statue, 1 sitting female statue, 1 head of a female divinity</td>
</tr>
<tr>
<td></td>
<td>1 cockerel</td>
<td>1 breast</td>
<td>1 pinnax,</td>
<td>1 clava, 4 heads, 1 female statue</td>
<td>1 boar</td>
<td>1 fragment of a male statue, 1 sitting female statue, 1 head of a female divinity</td>
</tr>
<tr>
<td></td>
<td>13 medium-sized statues</td>
<td>1 breast</td>
<td>1 pinnax,</td>
<td>1 clava, 4 heads, 1 female statue</td>
<td>1 boar</td>
<td>1 fragment of a male statue, 1 sitting female statue, 1 head of a female divinity</td>
</tr>
<tr>
<td></td>
<td>47 small statues</td>
<td>1 breast</td>
<td>1 pinnax,</td>
<td>1 clava, 4 heads, 1 female statue</td>
<td>1 boar</td>
<td>1 fragment of a male statue, 1 sitting female statue, 1 head of a female divinity</td>
</tr>
<tr>
<td></td>
<td>4 arms</td>
<td>1 breast</td>
<td>1 pinnax,</td>
<td>1 clava, 4 heads, 1 female statue</td>
<td>1 boar</td>
<td>1 fragment of a male statue, 1 sitting female statue, 1 head of a female divinity</td>
</tr>
<tr>
<td></td>
<td>3 phalli</td>
<td>1 breast</td>
<td>1 pinnax,</td>
<td>1 clava, 4 heads, 1 female statue</td>
<td>1 boar</td>
<td>1 fragment of a male statue, 1 sitting female statue, 1 head of a female divinity</td>
</tr>
<tr>
<td></td>
<td>4 uteri</td>
<td>1 breast</td>
<td>1 pinnax,</td>
<td>1 clava, 4 heads, 1 female statue</td>
<td>1 boar</td>
<td>1 fragment of a male statue, 1 sitting female statue, 1 head of a female divinity</td>
</tr>
<tr>
<td></td>
<td>6 hands</td>
<td>1 breast</td>
<td>1 pinnax,</td>
<td>1 clava, 4 heads, 1 female statue</td>
<td>1 boar</td>
<td>1 fragment of a male statue, 1 sitting female statue, 1 head of a female divinity</td>
</tr>
<tr>
<td></td>
<td>17 feet</td>
<td>1 breast</td>
<td>1 pinnax,</td>
<td>1 clava, 4 heads, 1 female statue</td>
<td>1 boar</td>
<td>1 fragment of a male statue, 1 sitting female statue, 1 head of a female divinity</td>
</tr>
<tr>
<td></td>
<td>1 knee</td>
<td>1 breast</td>
<td>1 pinnax,</td>
<td>1 clava, 4 heads, 1 female statue</td>
<td>1 boar</td>
<td>1 fragment of a male statue, 1 sitting female statue, 1 head of a female divinity</td>
</tr>
<tr>
<td></td>
<td>4 masks</td>
<td>1 breast</td>
<td>1 pinnax,</td>
<td>1 clava, 4 heads, 1 female statue</td>
<td>1 boar</td>
<td>1 fragment of a male statue, 1 sitting female statue, 1 head of a female divinity</td>
</tr>
<tr>
<td><strong>Ceramics</strong></td>
<td>None</td>
<td>2 Black Gloss</td>
<td>None?</td>
<td>Miniature</td>
<td>? In Black</td>
<td>41 vessels of</td>
</tr>
<tr>
<td>Cansano</td>
<td>Corfinio – Fonte San Ippolito</td>
<td>Lanciano</td>
<td>Lanciano – S. Buono</td>
<td>Iuvanum</td>
<td>Chieti</td>
<td>Vacri</td>
</tr>
<tr>
<td>---------</td>
<td>-------------------------------</td>
<td>----------</td>
<td>---------------------</td>
<td>---------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>cups/goblets</td>
<td>cups and plates</td>
<td>Impasto jars</td>
<td>pottery</td>
<td>Gloss:</td>
<td>argilla depurata,</td>
<td>2 jars</td>
</tr>
<tr>
<td>1 lid</td>
<td>1 lamp</td>
<td>2 kraiteri</td>
<td>14 of argilla semidepurata and 5 of impasto</td>
<td>12 jug, 2 broche,</td>
<td>5 skyphoi, 5 carenated cups, 4 cups, 3 plates, 2 small cups, 1 jar, 1 lagynos, trypsis, 1 handled jug, 1 oikos, 1 versario, 16 miniature vessels, 5 unguentari, 1 baking dish, 1 lid</td>
<td></td>
</tr>
<tr>
<td>1 lamp</td>
<td>1 lamp</td>
<td>2 kraiteri</td>
<td>14 of argilla semidepurata and 5 of impasto</td>
<td>12 jug, 2 broche,</td>
<td>5 skyphoi, 5 carenated cups, 4 cups, 3 plates, 2 small cups, 1 jar, 1 lagynos, trypsis, 1 handled jug, 1 oikos, 1 versario, 16 miniature vessels, 5 unguentari, 1 baking dish, 1 lid</td>
<td></td>
</tr>
<tr>
<td>Iron</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>None</td>
<td>1 javelin</td>
<td>1 javelin head, 4 knives, 1 spit, 1 spatula, 1 palette, 1 pair of pincers, 1 saw</td>
<td>1 javelin head</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Coinage</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>Roman 215-212 BC</td>
</tr>
<tr>
<td>14 loom weights</td>
<td>3 stone cippi</td>
<td>None</td>
<td>None</td>
<td>1 lead shell</td>
<td>3 loom weights</td>
<td>3 gold leaves</td>
</tr>
<tr>
<td>2 bone pins</td>
<td>3 stone cippi</td>
<td>None</td>
<td>None</td>
<td>1 lead shell</td>
<td>3 loom weights</td>
<td>3 gold leaves</td>
</tr>
<tr>
<td>3 bone combs</td>
<td>1 stone head of an erma di Dionysus (marmo giallo)</td>
<td>None</td>
<td>None</td>
<td>1 lead shell</td>
<td>3 loom weights</td>
<td>3 gold leaves</td>
</tr>
<tr>
<td>1 alabastron</td>
<td></td>
<td>None</td>
<td>None</td>
<td>1 lead shell</td>
<td>3 loom weights</td>
<td>3 gold leaves</td>
</tr>
<tr>
<td>9 astragali</td>
<td></td>
<td>None</td>
<td>None</td>
<td>1 lead shell</td>
<td>3 loom weights</td>
<td>3 gold leaves</td>
</tr>
</tbody>
</table>
### Table 7.3. Votive deposits from caves

<table>
<thead>
<tr>
<th></th>
<th>Grotta del Colle di Rapino</th>
<th>Grotta delle Marmite di Ofena</th>
<th>Grotta di Cicco Felice</th>
<th>Grotta Maritza, Ortucchio</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Date</strong></td>
<td>Iron Age – Imperial Period (mainly 3rd-1st centuries)</td>
<td>4th-1st centuries</td>
<td>7th-1st centuries</td>
<td>4th – 1st centuries</td>
</tr>
<tr>
<td><strong>Bronze</strong></td>
<td>1 torque</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>1 cauldron</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 fibule</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 inscription</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 pins</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Terracotta</strong></td>
<td>1 statue</td>
<td>1 female head</td>
<td>Statues muliebri and togati</td>
<td>10 male statues</td>
</tr>
<tr>
<td></td>
<td>48 small figurines</td>
<td>Other heads</td>
<td>2 masks</td>
<td>2 female heads</td>
</tr>
<tr>
<td></td>
<td>13 heads</td>
<td>Genitalia of both sexes</td>
<td>Fragment of a child’s face</td>
<td>1 male head</td>
</tr>
<tr>
<td></td>
<td>7 hands</td>
<td>1 leg</td>
<td>Head of a bovine</td>
<td>1 mask</td>
</tr>
<tr>
<td></td>
<td>12 feet</td>
<td>Hands</td>
<td>Eyes</td>
<td>10 childrens’ faces</td>
</tr>
<tr>
<td></td>
<td>3 uteri</td>
<td>Feet</td>
<td>Hands</td>
<td>1 hand</td>
</tr>
<tr>
<td></td>
<td>16 phalli</td>
<td>Eyes</td>
<td>Feet</td>
<td>1 foot</td>
</tr>
<tr>
<td></td>
<td>2 breasts</td>
<td></td>
<td>Male and female genitalia</td>
<td>1 leg</td>
</tr>
<tr>
<td><strong>Ceramics</strong></td>
<td>Impasto pottery</td>
<td>Black Gloss (Campana B)</td>
<td>Black Gloss (Campana B) kylikes and skyphoi</td>
<td>Impasto and Black Gloss</td>
</tr>
<tr>
<td></td>
<td>1 alto Adriatica plate</td>
<td></td>
<td>Vases, jars and amphorae.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 unguentari in ceramicia comune</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>27 other Black Gloss sherds</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- mainly miniature cups and plates</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Iron</strong></td>
<td>1 pendant</td>
<td></td>
<td></td>
<td>None</td>
</tr>
<tr>
<td><strong>Coinage</strong></td>
<td>3 Roman coins late 3rd to mid 2nd century</td>
<td></td>
<td></td>
<td>None</td>
</tr>
<tr>
<td><strong>Other</strong></td>
<td>1 gemmed ring</td>
<td>1 ring</td>
<td>6 blocks of stone</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 stone sculpture</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 lamp</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
7.2.1 Statues

In Abruzzo and Le Marche there are hundreds of anthropomorphic bronze statues dated ( stylistically) from the sixth century onwards. This phenomenon ( like most aspects of religion) is generally attributed to the spread of Hellenistic and/or Etruscan practices from the south and central Italy. However, stone statues are famously found within cemeteries of the sixth century ( e.g. Capestrano and Numana) and forms of figurative art are displayed on ceramics, weaponry, armour and stele from the area that have as much in common with depictions of the human form in central Europe and ‘ Hallstatt’- culture ( Rebay- Salisbury, pers. comm. ) as they do the Greek Kourai and Kouroi. The rigid art- historical focus on a class of material has prevented wider contextualisation. The range of statues follows a repertoire including identifiable gods, especially Hercules, worshippers - robed or naked, warriors and schematic bodies. Different materials were utilised - initially bronze, but from the fourth century increasingly terracotta, as well as stone and marble; we might also hypothesise the use of perishable materials, notably wood, although it should be noted that there are no known or recovered instances in iron, bone or ivory - materials otherwise expected to survive. The bronze statues were cast bronze, or occasionally laminated, while the terracottas could be produced from moulds, moulded by hand or even produced on a wheel ( Morelli 1997 ). The ‘ quality’ of these items varied from little more than stick figures or barely recognisable blobs, up to the famous statue of Hercules from Sulmona which is attributed as a first century BC copy of a work by the Greek sculptor Lissipus, produced and purchased in Greece and donated to the sanctuary of Ercole Curino ( La Torre 1989 ). A range of production contexts are therefore imaginable, going from that of the individual making use of local resources, to part- and full- time artisans ( perhaps based at sanctuaries), to specialists. The variability of types might also suggest that individuality was important and that in some contexts these were being manufactured to order. Finally, we might also consider that these artefacts had their own life- histories or biographies ( Gosden and Marshall 1999 ): some seem to have served as cult statues, whilst others were votives which were apparently displayed, perhaps for centuries before their deposition in temples, treasuries or outside ( although I am not aware of any weathering on any of the excavated examples).

The places of deposition of these statues have conventionally been seen as sanctuaries, and there is certainly a strong correlation between statues and the traditional
Mediterranean cult sites – springs (e.g. Fonte San Nicola), caves (e.g. Grotta del Colle di Rapino) and peaks (the three bronzes from Monte Nerone apparently came from around 1525m asl – Frapiccini 2000). However, some caution is also necessary, many of these objects were recovered in the eighteenth or nineteenth century and they have only a very loose provenance, perhaps only to the nearest village or farm. Isola di Fano is a case in point in which excavations have certainly recovered some statues linked to the confluence of the Metauro and Tarugo rivers, but, many other statues from the area are also attributed to this site when they could equally have had a more diffuse distribution. A key indicator that their use was more complicated then we currently assume is the numbers in which they are found: most commonly individually, but occasionally in deposits containing up to 30 figurines. These larger deposits always seem to be associated with other features characteristic of sanctuaries, but we should perhaps be wary as these ‘sanctuary sites’ are also usually the only possible sacred places that are systematically excavated.

Taking into account only bronze statues (which are most likely to be discovered incidently) then studies that record the different types of deposition (e.g. Naso 2000: 234-50) suggest around half of all finds are completely isolated from other bronzes, votive material, buildings, or other religious material. The relatively high frequency in comparison to coinage, bronze vessels or bronze armaments of the same period would suggest that this is a real pattern and that the deposition was either deliberate or there were very high numbers of these artefacts moving around in the ancient world. Their portability (easily held within the palm of the hand), isolation and frequency may indicate that a common form of religion was personal, private and perhaps could be carried with the individual until a suitable time and place where they could be deposited into the ground, which was then not visited again. Edlund-Berry (2006) is of the opinion that deposition sites were always sacred, whilst Betts (2003a) is more cautious and she considers the possibility of accidental loss or other reasons for disposal. Regardless, the lack of other material and the small size of the figurines suggests that sacred sites would be difficult to identify to those without very local knowledge also the material remains would rapidly disappear if not maintained through natural erosion; soil accumulation and growing plants. As with houses of the same early period use may have been short ranging from momentary to that of no more than a generation, much like the lifespan of houses. This also evokes the similarly small scale and transient nature of the majority of cemeteries discussed in the previous section.
7.2.2 Ex votos

Statues are not the only form of material culture associated with ritual; models of body parts and animal figurines – often referred to together as *ex votos* – miniature pottery vessels and animal bones are all characteristic forms of votive material. *Ex votos* are unknown from central Adriatic Italy before the fourth century and are only common from the third onwards. In the case of animal figurines these are often thought of as representative of the sacrifice of an animal that allows the dedicatee to retain their valuable livestock and this explains the most common form of an ox (although this does not explain the presence of doves or other birds in several assemblages). Comella (1981) and others argued that anatomical *ex votos* were associated with Tyrrhenian-style healing sanctuaries to Asclepius (themselves seen as Italian versions of Greek examples) thereby making them proxies of a form of religious acculturation spread by Roman (or more often Latin) colonies (what Bradley, G. 2007: 300, describes as the triumph of Hellenisation through the perspective of Romanisation). This general thesis has come under increasing criticism both for the links to Asclepius (many of the sanctuaries appear to be dedicated to other deities including Hercules, Mars and Giove) and healing in general (Glinister 2006; cf. Edlund-Berry 2006) and indeed for the role of Roman colonisation in driving the process (Glinister 2006). Whilst their appearance certainly coincides with that of the first temple buildings they are also found in other contexts such as the Grotta del Colle di Rapino (D’Ercole et al. 1997a) and like the statues we see a range of local and imported forms (Glinister 2006), zoomorphic figurines are also (rarely) known from the Bronze Age in le Marche (Betts 2003a). More confusingly in the area of the Ager Gallicus – Roman territory from 268 BC – these offerings are limited only to the complex of Monterinaldo and Montefortino di Arcevia in spite of the number of suggested ‘healing’ sanctuaries at San Vittore di Cingoli, Cupra Maritima and Isola di Fano. There is certainly no correlation between the sites of colonies and deposits containing anatomical *ex votos* (Fig. 7.1). At the very least this suggests that this new form of material culture, with an apparently very specific use, was not interpreted or adopted in a homogenous fashion.
Figure 7.1. Map showing the location of colonies (red dots) and the location of anatomical ex-votos (yellow dots)

### 7.2.3 Ceramics

Due to their unremarkable nature the ceramic assemblages from sanctuary sites are often glossed over, but they evidently did play an important role. Impasto is often the earliest indicator of activity on a sanctuary site (as at Iuwanum and Ercole Curino) and this has important implications for our understanding of Iron Age religion. Firstly, we cannot be sure that the material is related to the sites later more recognisable use, although this does not seem an unreasonable proposal. Secondly, if the material
presence at the earliest sites was only a few pots without any architecture then as with the deposition of single statues it would have been far harder to recognise a place as sacred without special knowledge of the fact. Sites could easily drop in and out of use as they were forgotten (deliberately or accidently). As I have previously emphasised, in this early period there is a transitory nature to forms of ritual activity that can be paralleled with the houses that were occupied for no more than a generation. This is in contrast to the clearly defined permanent sanctuary areas characteristic of later periods (see below).

Miniature forms of ceramics, a range of pottery that does not appear in domestic assemblages (but does in burial contexts), have some antiquity in use, turning up in ritual contexts from at least the sixth century (though there are examples of miniature forms from as early as the Neolithic). By far the most common forms are those associated with liquids and together with the frequent association of cult sites to water (Edlund-Berry 2006). This has been taken to be possible evidence of activities such as drinking, pouring libations, purification or other rituals (Betts 2003a: 40; 2003b: 115-116). In the earlier period these vessels are typically found in discrete deposits like that of Sant’Andrea, Cupra Marittima where several hundred impasto vessels were found in a stone-lined channel (Baldelli 1997). Later miniature Black Gloss forms were a common feature of sanctuary sites from the third to first centuries.

7.2.4 Faunal Remains

Despite lengthy treatment of the importance of sacrifice in textbooks on Roman and Italian religion (e.g. Scheid 2003: 79-110) there are no fully published reports and almost no mentions of faunal remains from central Adriatic sanctuary sites or ritual deposits. From Schiavi d’Abruzzo, the remains of 15 pig mandibles or sets of teeth, representing both sexes and wild and domestic varieties were recovered from the third century BC – second century AD votive deposit, but it is somewhat unclear what other remains, if any, were present (De Grossi Mazzorin 1997). At Monte Pallano around a dozen identifiable remains from the Samnites period (fourth/third-second centuries BC?) could be divided between pigs, cattle and ovicaprids with pigs the most common species (Bispham 2007: 206-7). Finally, the late Bronze Age/Early Iron Age site of Monte Primo (Vermeulen et al. 2006a: 105-107) from Le Marche (cattle, pig and caprid remains were observed but lack of excavation and the damage caused by clandestini has seemingly prevented formal analysis of these remains). In order to
discuss this important feature of religious life at all I will delve into the somewhat unique report from the Biferno Valley Survey (Barker and Clark 1995). At Campochiaro (ibid. 145) between the two terraced precincts trenches were cut in midden deposits recovering 5,500 fragments, pig dominated (72% by identifiable fragments, 64% by minimum number of individuals). Whilst ovicaprids made up about a third of the assemblage, cattle were represented by just one fragment. Importantly, most of the animals were slaughtered in their prime during their first year (although the ox was somewhat older) and cranial elements were abnormally high indicating some factor must be at work, Barker and Grant attribute this to mass organised butchery (ibid. 146). At the vast complex of Pietrabbondante (ibid.) a midden deposit between the terrace of the main temple and the theatre was sampled, producing 400 fragments which included cattle (this time in significant quantities), ovicaprids and pigs. Cattle and pigs were generally slaughtered in the first two years of life, but sheep and goats were more mature. At Colle Sparanise (ibid.) most fragments were unidentifiable (as at Monte Pallano), but ovicaprids (mainly mature), pig (mostly juvenile) and cattle (mature) were most common. Particularly characteristic were the large number of ovicaprid shaft fragments of the main meat-bearing bones (scapula, humerus, radius, tibia), perhaps indicating prepared joints brought to the sanctuary and the dominance of cranial elements among the pig bones. Other species from these deposits present in smaller quantities included: marine fish (Campochiaro and Pietrabbondante), domestic fowl (Pietrabbondante), marine shells (Pietrabbondante), dog (Colle Sparanise) and roe deer (Colle Sparanise) (ibid.). A further site with published remains is that of sanctuary of S. Angelo di Civitella di NESCE (Pescorocchiano) where ovicaprids dominated, but pig cranial elements were once again abnormally high (55% of all elements) (De Grossi Mazzorin 1997: 127). There are some trends that we might draw from this evidence:

1. There was deliberate selection of animals both in terms of type and age for use at a sanctuary site, with each site having its own specific characteristics.
2. Almost all animals were domesticates, thus we might consider production of the animals for the very purpose of sacrifice.
3. Not all animals were killed at the sanctuary as evidenced by the shaft elements from Colle Sparanise and the marine fish, presumably from the Adriatic.
4. Pigs were treated differently to other animals. It is unclear to what extent they made it to the sanctuary intact, but there are far too many heads (notably the most inedible part of a pig) in proportion to other body parts whether
compared with other animals or faunal assemblages from other types of site. Did people bring pigs’ heads to the sanctuaries? Were pigs used in feasts or other activities, whilst other animals were more commonly sacrificed? Were pigs’ crania used as objects (cf. Hambleton 2008)?

### 7.2.5 Metalwork

Important as a material for figurines there are hints that bronze was a feature of earlier ritual deposits such as the axes and other bronze items found at Monte Primo and sporadic finds from other deposits (particularly those with a longer range of use such as Grotta del Colle di Rapino and Fonte San Nicola, see below). Unlike in cemeteries, iron does not seem to have been widely deposited although occasionally it is noted that weapons characteristic of graves (and interpreted as evidence of such) were found close to sanctuary sites (possible associations between sanctuary sites and the dead are discussed below). The example of Vacri which preserved a wide range of iron objects might cause us to question these assumptions; similarly the site of Pietrabonbondante just to the south of Abruzzo is noted for the hoards of weapons excavated in the nineteenth century (Bispham 2007: 212). We should also consider that one reason for the predominance of ceramics and terracottas was that metal objects were recycled (or even looted).

The final item of deposition is coinage, which dates largely from the third century (this section relies heavily on the summary presented by Crawford 2003). Coins are found rather inconsistently in large quantities at sanctuary sites such that at Carsoli they are measured in kilograms (ibid. 72) and at San Buono a hoard was buried in a sealed coarse-ware pot and Crawford further argues this collective deposition was a feature of votive activity when it involved coinage (ibid. 73). Crawford (2003) points out that (i) Unlike many of the other forms of material culture already encountered they were not made in order to serve as votives (an argument might be made that even animals were produced for sacrifice); (ii) They may be of high value; (iii) They are reusable. He suggests three types of deliberate deposition in sanctuaries: as foundation deposits (although there are no known cases of this from the study area); as votives that once deposited were intended to be irretrievable; and thirdly and most intriguingly in designated treasuries or thesauri. These were made of a durable material like stone although wood is also likely and consisted of a box with a hole to deposit money into that could be opened (much like the modern money box). This is quite different to
votive deposition where the object passes out of use, the implication being that money deposited in this way was intended to be reused by the sanctuary or person(s) of authority as they saw fit (though one hopes with some restrictions). Crawford (ibid. 71) also suggests that other deposits may have acted in a similar manner giving the example of Narnia where an inscription (CIL, XI, 4123 = ILS 5446) records the retrieval of items from the Velino lake. Sadly, we lack evidence for the priests' green wellies suggested by Crawford (ibid.). This raises further questions as to what other goods might have been donated to the sanctuary for reuse rather than deposition – e.g. agricultural produce and metals (we have the striking iron artefacts from Vacri) – and forces us to consider the sanctuary as an institution as well as a place. Once again only greater publication and more extensive excavation will help to elucidate these matters.

7.2.6 Chronology of the deposits

It is notable that most of the deposits listed above date to the third-first centuries BC, several sites in Le Marche have a wider range – Isola di Fano, San Vittore in Cingoli and Montefortino di Arcevia – but these are not clearly defined deposits. Only the cave sites from Abruzzo preserve stratified evidence of repeated use, all having seen some activity from the Upper Palaeolithic (Miari 1997). The closeness in dates of the majority of deposits suggests three things:

1. That around the 3rd century BC new places for religion were defined
2. Similarly, new practices of religion, visible through their material remains were developed – the mass deposition of terracotta statues, anatomical votives, zoomorphic votives.
3. Practices known elsewhere were adapted to these new places – the use of miniature pottery, bronze figurines (which show a much greater tendency towards mass deposition in the later period) and animal sacrifice.

7.2.7 Context of Deposition

At least three distinct types of deposition site are identifiable (Fig. 7.2): watery locations (e.g. springs, and the sources and mouths of rivers), caves and sanctuary sites (i.e. with a defined precinct and/or monumental structures – see discussion below). However, a number of sites do not fit into this division either because they do not seem to have strong topographical characteristics or else the context of the deposit
is not well known. The individual nature of these sites can best be shown through description:

At Isola di Fano in the vicinity of Fossombrone where the torrente Tarugo meets the Metauro and where Vernarecci suggested there was a sulphurous basin (1903: 11 in Marchegiani et al. 2003) a flood in 1876 brought several pieces of votive material to light. Small-scale excavations followed producing at least 30 pieces that made their way into museums (much of it now in the Louvre), and further discoveries were made, the last of which in 1929 was an excavation by the Soprintendenza. The long and haphazard series of discoveries has failed to preserve information about the context of the finds, and there are problems of the provenance and authenticity of some of the items. However, it is possible to ascertain a basic chronology of the site. The earliest
evidence, from the sixth to fourth centuries, is of small statues predominantly in bronze, but also in terracotta (which on the whole seem to be of slightly later date) of 'worshippers' and gods, some of which have been attributed to production centres in northern Etruria, northern Umbria, the Padane plain and central Italy. There is also evidence of metalworking linked to this site by the presence of slag which it is implied is from bronze working (Marchegiani et al. 2003: 23). There is some later evidence of coinage from the same locale dating to the third and second centuries. This is mainly Roman in origin, but some seems to derive from the Greek cities of Puglia and southern Italy.

Located on a terrace adjacent to the Upper Musone, San Vittore in Cingoli (Landolfi and Baldelli 1997; Paci 1988) has long been regarded as a ritual site due to its therapeutic spring (Fonte del Bagno or di S. Giovanni). Discoveries from this area include a miniature black figure lekythos of the sixth century, two terracotta busts of a female deity similar to examples found at Ancona and Numana are apparently of fifth or fourth century BC date. Also from this area are a number of terracotta statues of women, a bronze worshipper and an Umbrian inscription that are all considered to date to the third-second century BC. Ceramics from San Vittore include Black Gloss, altoadriatica and wheel thrown plates and cups, but these cannot be firmly linked to a sanctuary per se. In the imperial period epigraphy suggests this site was a baths sanctuary and excavations in 1845 and 1846 uncovered a bath complex resplendent with mosaics and statuary from this period.

Montefortino di Arcevia in the province of Ancona, located on a saddle between the Misa and Cesano rivers was excavated by Brizio in 1893 and produced a small votive deposit with miniature jars and cups and seven laminated bronze figures which date from the fifth to fourth centuries and are of a type found from Latium to the Po Plain (Brizio 1899; Landolfi 1997). The site is also notable for the necropolis of 50 tombs of around the same period (see discussion earlier). A similar deposit might be observed from Cupra Maritima where a large deposit of miniature votive jars seems to underlie a later necropolis.

The natural Grotta del Colle di Rapino (D’Ercole et al. 1997a; 1997b) is a cave 15m long of a vaguely rectangular shape whose height ranges from 4 to 12 metres. In use from the Upper Paleolithic until the medieval period, it preserves a complex range of material from Neolithic burials, impasto pottery of the bronze and iron ages, a sixth-century bronze torque, an archaic period statue, a sixth-century bronze cauldron, an
iron pendent, two fifth-century fibule, to a votive deposit of 145 pieces from the third century BC to the third century AD.

The material from Lanciano gives insights into the processes of deposition at sanctuary sites (Staffa 2005). Here a rectangular building orientated northeast to southwest with stone walls was constructed in the second century BC. Within it were several deposition fills/build-up layers sealed by a context that contained much carbonised material and was interpreted by Staffa as a destruction layer. The lowest context contained ceramic material from the third-second century BC: Black Gloss cups and plates from the third-second century and impasto jars. Above this was a layer that contained numerous sherds of Black Gloss that ranged from the fourth century to the first century BC along with loose bricks, tiles, stones and a fragment of a terracotta robed statue. Finally, in the destruction layer were the remains of broken and burnt architectural fittings of terracotta and a second small terracotta votive statue. Both of the statues seemed to be of third-second century date with the destruction event (a fire) dated to the late second/early first century BC. Further activity is visible on the site with a new structure built on the same alignment, cocciopesto flooring and notable finds of terra sigillata and lamps that are similar to those found in the votive deposit of Schiavi. Nearby under the same church are remains of other structures from the second-first centuries and a cistern, but notably no temple building is yet apparent. The mixed nature of the deposits suggests that much of the material was on display or kept in storage for centuries before its deposition (although the circumstances of the ‘destruction’ deposit are far from clear). A similar interpretation can be made for the sanctuary sites at Cansano, Fonte San Nicola and Schiavi d’Abruzzo where the excavated evidence suggests that votives were originally displayed for a long period of time before being collected and deposited in a single or closely related series of acts in pits, some of which seem to have then been sealed with stone platforms.

7.2.8 Discussion

From the evidence outlined above it initially seems that votive practices were distinguished from other material practices. Certainly some types of material – statues, ex votos and miniature pottery - seem to only turn up in ritual circumstances. However, there is a great risk of circularity here as it is often the very presence of this material that leads to the interpretation of a site as a sanctuary. The lack of excavation
at, and perhaps more importantly, around settlement sites means that it cannot be
stated categorically that this material was not used in domestic contexts. Indeed, there
is little evidence for the production of this material alongside its places of deposition,
hence it seems reasonable that there is scope for greater study of the biographies of
the objects that are being dedicated – were they produced, acquired and moved solely
for deposition? Or was this only the last activity associated with these objects? Two
types of material culture can be traced at both these ritual sites and the domestic sites
discussed in Chapter Four – ceramics and animal bone. If we consider the possibility
that religious activity did not always involve the deposition of specially (and perhaps
expensively) produced statuary, then it is also possible that much of the religious
activity of the Iron Age to Roman period has been misinterpreted or missed
altogether.

With this in mind it is appropriate to consider how visible and delineated the places of
deposition were. At the sanctuary sites of the third century and beyond there appears
to have been clearly designated places and even specially constructed buildings in
which people’s offerings could be displayed alongside each other until such a time
when they could be buried in a single event. At sites such as the caves, and perhaps
some of the spring sites, material would have been left where it would be encountered
by other visitors. The setting and the material would thus combine to inform on the
importance and meaning of the site such that it could be used again. However, many
of the deposits consist only of one or two statues or as at San Vittore di Cingoli there is
a wide area to which objects are attributed but no known central site. In these contexts
deposition activity may have followed a set of social rules on how, where and when it
should be conducted that lead to a certain place being selected, but this place would
not be frequented regularly enough for a visible ‘site’ to be delineated. If this
transitory form of activity was more common in the Iron Age it may explain why there
are a large number of sanctuary sites known from the third and second century BC but
few before this.

7.3 Sanctuary Architecture

Next we discuss the structures and buildings that are deemed so characteristic of
central Italic sanctuaries – temples, altars, theatres, treasuries, colonnades and other
ancillary rooms (Fig. 7.3). When sanctuaries are discussed, it is striking that these
features are often the focus of attention - Adriatic Italy’s answer to the hilltop sites of
Etruria and Latium. However, they primarily date from the second to first centuries, although some sites have evidence of monuments from as early as the fourth century with the construction of large enclosures and terraces. It has become common to treat sites as functionally the same throughout their history (i.e. as a religious sanctuary). Hence the same sorts of activities are attributed to a site which has only an enclosure as one which has several temples, and a range of other structures.

Figure 7.3. Sanctuary sites with architecture in central Adriatic Italy
To demonstrate the dynamism of these sanctuary sites I present the sequence from Schiavi d'Abruzzo – the best published and best known sanctuary site. However, despite the publication of a recent edited volume (La Penna et al. 2001), there is no definitive excavation report and aspects such as the ceramics, faunal and botanic finds are particularly poorly discussed. The site sits on the south-west flank of Monte Pizzuto at a significant break of slope where the soil changes from a thin marly limestone to a peltic-flysch (that is perhaps better suited to cereal cultivation) and several streams rise in this area (although no spring or pool is directly connected with the sanctuary). Today the site lies on the boundary between fields of arable farmland and scrubland (higher up the mountain) and the same might have been true in antiquity. It is also suggested that this site was important in communication networks although its position on an ancient droveroad is largely supposition. The earliest evidence is of a cemetery to the south-east of the sanctuary proper dating from the eleventh to the sixth centuries BC. The later presence of a Roman cemetery in the same area and the relatively small area explored (0.5 ha) might suggest that the flank of the hill was used as a cemetery area continuously (although this is far from certain, see discussion in Chapter Six of cemetery practices). The earliest datable stratum from the sanctuary itself comes from underneath the main temple and contains much votive material dating no later than the third century, plus carbon and ash. There is no evidence of structures, pits or ditches that might delineate a religious space; rather, the material seems to be debris that had accumulated on site. This may in part be due to the subsequent phase of terracing which must have occurred around or before 200 BC as it is clear that the slope of the hill was substantially landscaped with several walls that created a definitive sanctuary precinct still visible today (Lapenna and Riccitelli 2008). It seems likely that the first temple (the 'tempio maggiore') was built as a part of the same episode as the terracing work along with some paving in clay bricks. At around the same time, c.120m to the south-west, at approximately the same altitude, a small two-roomed building was built which became a focus for animal sacrifice and votive deposition (Lapenna 1997c: 82). This second site is quite truncated, and was overlain by a layer of black soil 20cm thick with a high percentage of carbonised material. Finds here included Black Gloss pottery, a particularly high number of unguentari, and several hundred coins, the earliest dating to the fourth century, but with the majority from of the late third to early first century BC. The rooms are interpreted as a small shrine or sacellum, although there is no evidence of an altar and it is unclear how enclosed this area was (ibid.). Towards the end of the
second century a second temple and an altar aligned together were built alongside the first temple (Lapenna 1997c). This temple was smaller than the first and not elevated on a podium, but contained a mosaic notable for its inscription that records the construction by a certain G. Paapis Mitileis. Beneath the altar was an initial layer comprised of architectural terracottas, unguentari and evidence of burning. The altar itself was finished with a layer of red painted plaster. At a later date it was enclosed with a stone wall, which might have been roofed (*ibid.*).

### 7.3.1 Enclosures

Enclosures (sometimes termed *temenoi*) and terraces can be taken as the first form of construction on a sanctuary site (although activities related to deposition may have preceded them, see above), at least two main types can be identified. The first are hilltop enclosures or hillforts which contain deposits or structures that have been interpreted as sacred or ritual. Examples comprise: Colle di Vento, on the summit of which a megalithic wall of up to 5m in height enclosed an area of around 1 ha within which were found the remains of a two-roomed rectangular building of 8.5 x 4.5m containing a small mosaic interpreted as a temple-like structure (Franchi Dell’Orto and Staffa 1991); the site of La Giostra is of similar size and encloses two buildings and a cistern together with a votive deposit set directly in the centre of a small walled enclosure (Paoletti 1988). Other sites such as the much larger Monte Pallano (Kane 2008) and Alfedena (Mariani and De Amicis 1901: 446-451; La Regina 1976: 219-223) contain apparent sanctuary buildings that are linked to megalithic walls, but the exact relationships are unclear. As noted before, this walling is effectively undated although most scholars place it in the fourth century. Finally, Monte Primo is topped by concentric ditches that are related to deposits of animal bone and metalwork (see above), but there are no known structures from this site. Thus we can draw two points, firstly, that if, as seems likely, the megalithic walls predate sanctuary buildings, that the constructions were a form of refiguring the delineated space; and secondly, we can note that none of these structures resemble classic sanctuary architecture, i.e. colonnaded temples of the Italic style (see below). Instead we have a series of multiple-roomed buildings, cisterns and springs. More generally we might think of the numbers of relatively unexplored ‘hillforts’ of small size that are so often treated as settlement sites. Potentially there is a link between these and peak-type religious sites that could transform our understanding of religion in this area. Two interpretations present themselves – either the same groups that created hillforts also were
responsible for the designation of some as religious in function (cf. Bonomi Ponzi’s 1992 assessment of the Umbrian evidence), or these sites were recognised as suitable for reuse as sanctuary sites at a later date (although this does not explain why there is no temple architecture at these sites).

The second form of enclosure comprised a built terrace on top of which later buildings were constructed (Figs. 7.4-7.11). The date of these buildings would suggest that the terraces were built from the third century onwards. The shape and size of these terraces was quite variable; some are close fitting with structures centrally placed whilst others have a more ambiguous relationship to their contents. Most probably, their form was determined by local topography, space and needs, rather than a clearly prescribed format. This is further sustained by evidence of enlargement episodes at Schiavi d’Abruzzo (Lapenna and Riccitelli 2008) and in the complex terracing episodes at Monte Pallano (Kane 2008), with modifications to terraces as new buildings were constructed or existing ones modified (as is evident from the levelling layers containing tile and architectural terracottas). Terraces with shapes that are not well-fitted to their buildings are suggestive that some, but not all, terraces substantially pre-date the structures within them. The sense is that, as with enclosures (above), new forms of architecture refigured a form of place that had existed perhaps from the fourth century. There may also be terraced sites that saw religious use, but were never monumentalised with more classical structures, as for instance Monte Pitino which featured several ancient terraces of unexplained use (Sterry in Vermeulen et al. 2009).
All figures aligned with N at the top of the figure and to the same scale
To summarise, despite limited dating evidence it can be argued that forms of delineating space through enclosure and terracing were being developed from the fourth century BC, that is, around the same time that hilltop fortifications were constructed (although Monte Primo provides a very early eighth to sixth century BC exception) for functions unrelated to habitation. These were commonly constructed from polygonal dry-stone masonry which, crucially, does not require any more technologies than the construction of agricultural terraces. From the third century these sites began to see the construction of stone buildings initially of distinctly local designs (see below) and later of structures recognisable as temples or sanctuary architecture throughout Italy and the Mediterranean. A critical change by this point is that these later units obeyed certain architectural codes and would surely have required specialist craftsmen familiar with the laying out and manipulation of appropriate materials. This latter phase would also serve to separate temple sanctuaries into a clearly identifiable and discrete group. The lack of new sites from
the second century perhaps also shows that religious places had become strongly fixed by this point.

7.3.3 Temples and other buildings

From the third century there is evidence of buildings designed specifically for cult activity with a few definable temples and a range of multi-roomed buildings, notably found within hilltop fortifications (see above). The building boom at sanctuaries can be dated to the second century. Sometimes multiple temples were built in the same sanctuary – as seen at, the Civitella of Chieti where three temples were built on a single podium and the two conjoined temples at Vaezi – but, more modest single temple arrangements as at Atessa and Quadri were probably more common (our knowledge of sanctuaries is certainly skewed to the larger and perhaps more remote sites). Complexes of buildings are also well known. At Monterinaldo and Ercole Curino there was a dense arrangement of porticos and other buildings crammed into a tight space. Iuvanum famously preserves a theatre directly in front of its acropolis. Finally, there is the urban example of Alba Fucens where a sanctuary area was formally laid out and connected to the area that would later serve as the basilica. Building of traditional non-temple units still persisted, as at Civitella, Alfedena and La Giostra which confirms that a temple was not a requirement even if it was the norm. By the first century construction work was confined either to already established and monumentalised sanctuaries (although the poorly dated sequence from Ercole Curino perhaps provide a rare counter example of a sanctuary founded in the first century) as at Schiavi d'Abruzzo, Pescosansonesco and Iuvanum where additional temples were added to the complexes, or in the new urban colonies and municipia – Asculum, Alba Fucens and Corfinium – in which temples were an important and planned public building (these could be found anywhere within the town walls, but most commonly adjacent to the forum.

In total the known episodes of building at sanctuaries are:

Third century

Temple: Iuvanum; Schiavi d'Abruzzo; Alba Fucens; Pescosansonesco

Other buildings: Multi-roomed building at Fonte San Nicola; two-roomed building at Colle del Vento; multi-roomed building with two apses at Carsioli; sanctuaries and multi-roomed building
with Apse at Alfedena; podium at La Civita (late hellenistic in date, 3rd/2nd century?); multi-roomed structure at Pievebovigliana

Second century

Temples: Civitella of Chieti (x2); Vacri (x2); Atessa; Quadri; Cansano (x2); Teramo La Cona; Anxa; Potentia; Ancona; Monterinaldo; Pagliaroli; Alba Fucens (x2); Loreto Aprutino; Vittorito.

Other buildings: Sacellum at Cansano; three-roomed building at Anxa; portico and multi-roomed building at Monterinaldo; Sanctuary area at Alba Fucens; four-roomed building Civitalba (MC); sacellum and four-roomed building at La Giostra; 2 two-roomed buildings at Capo Pescara.

First century

Temples: Civita di Bagno; Corfinium; Ercole Curino; Montorio al Vomano; Schiavi d'Abruzzo; Corinthian and Doric temples at Asculum; Pescosansonesco

Other buildings: Heroon at Alba Fucens; second Forum-Basilica at Alba Fucens; 14-roomed building at Ercole Curino; theatre at Iuvanum; multi-roomed building at Monte Pallano.

From these data it can be seen that whilst buildings were constructed throughout the last three centuries BC, there was a spike in the second century (Table 7.4). During this century temple construction in sanctuaries was around twice that of all other buildings combined.

Table 7.4. Construction at sanctuaries by period.

<table>
<thead>
<tr>
<th>Period</th>
<th>Temples</th>
<th>Other Buildings</th>
</tr>
</thead>
<tbody>
<tr>
<td>3rd Century</td>
<td>4</td>
<td>7</td>
</tr>
<tr>
<td>2nd Century</td>
<td>19</td>
<td>10</td>
</tr>
<tr>
<td>1st Century</td>
<td>7</td>
<td>5</td>
</tr>
</tbody>
</table>

Monumental sanctuaries are assumed for sites that have produced distinctive architectural material such as architectural terracottas (antefixes, frieze decoration, etc.) or fragments of podiums. This fragment evidence makes it somewhat harder to identify their dating and the arrangement of temples or other types of building, yet it is useful to consider them with the excavated sites because it gives a sense of the sheer
density of clearly delineated religious sites throughout the study area (I have cautiously elected to omit epigraphic material, as dedications to gods cannot be taken as certain evidence of a sanctuary precinct, but this would only increase the density of sites).

7.3.2.1 Temple Forms

Amongst the temples there are at least four different types that can be identified:

1. The most basic consists of a single room or cella, presumably holding the cult statue of the god, and an antechamber or entrance. This form of temple can be identified at both the temples of Cansano, the two at Schiavi, at least one of the temples at Iuvanum, the temple of Vacri and one of the temples at Pescosansonesco (Figs. 7.12-7.17).

Type 1 Temples. All figures aligned with N at the top of the figure and to the same scale

2. A variant known only from the area of the Fucine basin had two cellae identifiable in the S.Pietro and Pettorino temples from Alba Fucens and two temples from Luco dei Marsi (Figs. 7.18-7.19).

Type 2 Temples. All figures aligned with N at the top of the figure and to the same scale
3. Temples with three *cellae* are known in two locations, Chieti and Pescosansonesco (Staffa 2003). Some treat these as *capitolia*, recalling the Capitolium temple of Rome that is commonly (and often erroneously) attributed to Republican colonies (Bispham 2006). Whilst this interpretation might be true for Chieti, a hilltop that has seemingly always been of importance, Pescosansonesco is essentially a rural site and it does not appear to have been a major centre at any point.

4. The final type is of a single *cella* within a larger room, as attested at Loreto Aprutino, Teramo, Alba Fucens, Anxa, Corfinium and Atessa (Figs. 7.20-7.25). It appears to be the only type that was not commonly built upon a stone or brick podium.

*Type 3 Temples. All figures aligned with N at the top of the figure and to the same scale*

The temples outline the individuality of design but within a quite closed template – a long rectangular building, probably set upon a podium with an antechamber, and a
strong frontal axis, such that they would be immediately recognisable and denote the area as a sanctuary to both inhabitants and strangers, even from areas outside of Italy.

7.3.3 Other structures

A large number of associated features are often found. Wells and, more commonly, cisterns are found within several enclosures, especially at hilltop sites, including La Giostra where the cistern was (re?)used as a votive deposit. In more lowland settings springs are regularly found in the vicinity of the sanctuary, although rarely are they actually formally integrated; for example, at Iuvanum the spring lies at the foot of the acropolis of the temples. Although this must relate to topographical constraints, to a large extent it suggests wider access to the springs that were important for the support of the population, their animals and their agriculture. Altars took several forms, from the small cippi that were individually dedicated to the massive stone altar of Schiavi d’Abruzzo, and sometimes they were enclosed in a sacellum. Known altars are relatively sparse in comparison to the number of temples (as indeed are faunal remains, related to sacrifice or otherwise – only those from Schiavi d’Abruzzo are published), and it is possible that this element of Roman religion was absent in many cases, but the poor state of excavation and the likelihood of altars being reused or destroyed in antiquity prevents further speculation.

Izzet (2007), has proposed that the emergence of terraced, or walled, areas for religious purposes – sanctuaries – created a formal distinction between sacred places and secular environs, in sixth century Etruria. The construction of structures clearly definable as temples – buildings not found in other contexts that were elevated on podiums with access restricted to the front, altars, cisterns, wells, springs, pools, areas of votive display and areas of votive deposition (visible or simply known) within this type of place further served to delineate the practices of the divine and mundane. The parallels with the study area of central Adriatic Italy are clear, although the change takes place around three centuries later in the third century BC. This idea is complicated by the clear use of hilltop enclosures from the fourth century (probably with a particular concentration in the third century) which seem to contain all the elements of a sanctuary except for the characteristic Italic temple. Further down the hierarchy of religious sites, we must surely be more careful of assuming that the multitude of springs, caves and peaks with votive depositions (discussed above) but little else can be described as sanctuaries. Undoubtedly they were important places.
with religious aspects, but was this less formalised and open to greater variation, and were a greater range of activities permitted at these?

7.4 Locations

There are three common themes in discussions of sanctuary locations. The first, regarding the general area, follows the work made initially by de Polignac (1995), but now followed by many others that rural sanctuaries were located at the interstitial places between states. The second, concerning the exact positioning, is inspired by the words of classical authors such as Seneca (*Letters to Lucilius* no.41.3) and Servius (*On the Aeneid* 7.42), that distinctive natural places – springs, caves, peaks, groves, etc. – were sacred and dictated the positioning of sanctuaries. Finally, there is the suggestion that sanctuaries were placed at nodal parts of the communication networks – mountain passes, river crossings and important harbours.

D’Ercole and others (D’Ercole *et al.* 1997c) have followed trends in Etruscan archaeology – initially derived from the work of De Polignac’s highly influential *La naissance de la cité grecque: Cultes, espace et société VIIe-VIe siècles* (1985) to consider rural sanctuaries as territorial markers of Italic groups, states or oppida. For example, D’Ercole *et al.* (1997) states how ‘Anazlizando la distribuzione ... sembra di notare come alcuni di essi si collocino lungo le fasce di confine di specifiche etnie e di singole “città”’ (*Analysis of the distribution indicates how some of them are placed on the borders of specific ethnic groups or single “cities”*). The work of De Polignac is based largely on the political make-up of archaic Greece and is explicitly concerned with early *polis* formation. He considers rural sanctuaries to have a ‘general mediating role’ (1994: 7), whereby festivals gathered people and provided an arena for ritualised social competition for power and authority. As one group became pre-eminent, De Polignac argues, the sanctuary became a site of appropriation, initially symbolically and later through the formation of a power centre and nascent state – the *polis* – whilst other more distant sanctuaries created a territorial buffer between them. Although this may or may not fit well with the evidence from Etruria, it cannot fit for central Adriatic Italy where there were no city-states. However, rather than trying to move the sanctuaries back to the archaic period, more success might be gained from looking forward to the role of sanctuaries after their major phase of monumentalisation in the second century. Moscatelli (1985) was the first to observe that the earliest evidence from many *municipia* was a sanctuary complex (*Iuvanum is
the outstanding example but also consider Chieti, Lanciano, Sulmona, Corfinium and even Ancona). This is further supported by the, epigraphically attested, smaller settlements around sanctuaries such as that at Vittorito and Basciano. It seems likely that in many cases either the sanctuary or the same factors that led to the placement of the sanctuary encouraged the growth of nucleated settlement. Much fuller excavation around sanctuaries is required to better understand the contexts in which they were implanted and how they developed.

The presence of items for storing and using liquids at almost all sanctuary sites, the common association with springs, pools and rivers, and the presence of large cisterns at some sites (notably La Giostra) provide compelling evidence that water was a fundamental part of religious activity and veneration. This is well known both historically and archaeologically and I have little new to add to the subject. Other natural features (we have already seen the example of caves, above) are well-attested and could also have played an important role in determining the location of a sanctuary. A notable example is the heavily monumentalised site of Ercole Curino which seems to lie directly on top of a geological fault recorded as making groaning noises in the medieval period (De Vito et al. 2004: 1383-1384). Yet, there are far more of these 'natural places' than there is evidence for sanctuaries; should we take Servius at his word that 'there is no spring that is not holy', when in places they are no more than a few hundred metres apart? Furthermore, as many sanctuary sites have no obvious water source or natural association, how are we to explain their presence?

A clear problem of focussing on the natural features of sanctuary sites is the lack of attention paid to other, human, elements of the landscape. Sanctuaries were not inserted into a pristine environment, but rather one which was crisscrossed with different forms of occupation and use; their placement must be understood in this sense. The most obvious examples are those sanctuaries built within towns as at Alba Fucens or Potentia. In these cases sanctuaries structured the space of the colonies upon which other public buildings focused (Bispham 2006). However, we can also look to whole range of relationships, with funerary areas – Teramo-La Cona, Sant’Ippollito – or within potential agricultural areas – Loreto Aprutino and Monterinaldo. It is true that there is a general tendency towards areas of the limestone Apennines that are today characterised by forestry, scrub or pasture, which might lead us to think of the role of sanctuaries in liminal places on the edge of the cultivated world, but this may in part be due to factors of preservation.
Several scholars have argued strongly for the placement of sanctuaries along communication networks arguing that they act in an explicitly economic manner providing locations for markets and fairs (e.g. Salmon 1967: 68-69; Pasquinucci 1979; Frayn 1993). To ascertain the veracity of these claims it is necessary to establish if there is a correspondence between routeways and sanctuaries if there is evidence for market activity. Regarding the latter, Frayn (1993) has discussed Chieti as a site for hosting seasonal sheep fairs, but there is no direct evidence to support this, instead she draws her interpretations from similar activities in the Medieval period. In fact, the only concrete example is the sheep market that lies in the sanctuary of Hercules at Alba Fucens, but this is unique both as a very early urban sanctuary, and in its position in a very large Latin colony. The evidence for considering these sites as markets is therefore largely absent (although the possibility remains attractive). The link between sanctuaries and communication routes, perhaps as stopping off points, seems more persuasive. Van Wontergem (1998) has produced a map that shows how a number of sanctuaries, dedicated to Hercules (often taken as a patron of shepherds and travellers), align with the network of the calles derived from late medieval-early modern records. Noticeably, however, Van Wontergem has omitted many of the sanctuaries that do not fit this scheme (cf. Fig.2 and Fig.3). The argument also becomes somewhat circular when sanctuaries like that of Iuvanum are assumed to lie on tratturi in large part because of their upland location and association with springs, and many of the routes are in truth somewhat conjectural (particularly the route that connects Iuvanum – but cf. Aromatario et al. 1985). Bradley, (2006) is certainly right in suggesting that evidence for Iron Age–Roman droveways are strongest at points that would be important for all forms of communication – river crossings, mountain passes. There is likely something in Van Wontergem’s argument, but a direct link between Hercules, sanctuaries, and transhumance seems to divest these sites of their local context. Further, given the nature of the intermontane basins, valleys and high mountains there are not many upland locations where a sanctuary would not be near to a proposed transhumance route! It might be more interesting to consider to what extent the springs associated with sanctuaries were used by local rather than transhuming shepherds. Bradley, (2006 138-140) concludes that there is no more need to view a connection between pastoralism and sanctuary as any other activity.

When direct association between route ways and sanctuaries are considered they are found only in more local associations. Thus, the roadside sites of Teramo La Cona and Sant’Ippolito that can be related to the Roman towns of Interamnia (modern Teramo)
and Corfinium respectively, although as they are also linked to extensive areas of burial, their association may be secondary. Temples are known from the Adriatic harbours of Vasto and Ancona — both lie on hilltop promontories and presumably would have been visible markers from the sea (most scholars also assume that a pre-Roman sanctuary was part of the harbour at Cupra Marittima, but archaeological confirmation is lacking).

Even a cursory overview of sanctuary sites must conclude that there are multiple forms of patterning. A critical failing of all three of the locational interpretations mentioned at the start of this section is that they tend to assume an encompassing strategy that remained static throughout the period that the sanctuaries were in use.

7.5 Roles

This brief review has highlighted how religious practices and places evolved over hundreds of years and at any point included a wide range of architectural forms, locales, material culture and, presumably, activities. Most descriptions and analyses underplay these dynamic qualities, implicitly assuming that Sanctuaries were always conceived as monumentalised temple compounds (their end form).

In the Iron Age religious activity is evidenced by the deposition of material culture, very occasionally at places that were modified with enclosures (such as Monte Primo), but more commonly at sites that required no prior construction of structures. The limited numbers of individually small items suggests a flexible system in which some sites may have been used only once or a few times by only a small number of people before knowledge of their location was forgotten and the site replaced. Potentially, this could involve these types of activities being enacted in suitable types of environment — e.g. by the river, or in the woods — instead of a specific place. Alternatively, if a specific place was important it might be known only to a few people and the knowledge of its location might often be lost or (deliberately?) forgotten between generations. However, some places were definitely fixed, such as the caves that appear to have been used for votive deposition throughout the study period (although some peak sites might also have much longer histories as religious sites).

The next major change in habits seems linked to the construction of enclosures and terraces. Some of these appear almost indistinguishable from the hillforts recorded in the area (and many more may turn out to have been religious foci). The dating of the
initial construction of these is highly problematic although most scholars agree on a fourth/third century BC date (Bispham 2007: 205). As noted above hilltops might have been the more 'fixed' points of religious activity, perhaps for this reason the earliest sanctuary sites can be found there. The deposition practices appear to continue within these enclosures, but in this period it is far more public. Votive acts are made with the community acting as an audience when previously they can be considered far more individual. These sanctuaries might also be considered in more functional terms: fulfilling a number of economic, social, political and defensive roles and providing a centre or core for the community. The construction of buildings and especially temples within these enclosures may have occurred at around the same time the first enclosures were built (suggesting a late, sudden development of sanctuary precincts and architecture) or took place subsequently (and hence a more gradual two-stage development).

During the second century BC there appears to have been an explosion in sanctuary construction; these were not limited to any one type of geographical feature and it is tempting to consider that a large number of religious places were monumentalised at this time. Although this can be considered again as a move from individual or small group sites to communally used sites (although activities may have been continued to be individual), there is evidence for increasing hierarchy within the larger group. Dedications on mosaics (e.g. Schiavi d'Abruzzo), altars and statues (e.g. Ercole Curino) demonstrate that some of these sites were the result of extremely wealthy benefactors (but some may have been funded by subscription). There is little evidence with which to suggest the demography of sanctuary users, but it can be considered that the poor would be either excluded from participation of parts of religious life or else indebted to wealthier patrons for providing or furnishing places of worship. The sites of simple deposition posited for the Iron Age are not attested during this period. However, part of this model is based on the assumption that the material culture used in religious activities is identifiably different. It is possible that Iron Age practices continued, if with different materials and/or forms, but archaeologically these are considered as off-site material or not recognised at all.

Joyce's (2004) work on monumentality in Formative Mesoamerica provides a model by which the changing role of sanctuaries can be explored. She highlights how the perception and function of large communally constructed earthen platforms changes over time. In the first phase these appear to have been built using house-building
skills to raise certain activities higher and to create large social spaces. Unintentionally, these platforms were far more durable than surrounding houses and so, in time, they became centres for villages. At a later date again burials were made for the first time in the platforms instead of in mountain caves, marking a stage in the creation of sacred ancestral mountains of the Classic Maya (ibid. 24-25). Thus not only were these platforms not initially conceived of as the ancestral mountains they would become, but this transformation also played a part in the re-conceptualisation of space and society. Returning to the example of Schiavi d'Abruzzo detailed above, it seems plausible that when the first deposits were made at the site the practices taking place at the site were no different to those occurring elsewhere in Late Iron Age central Adriatic Italy with a number of loosely connected votive acts. Perhaps because of the site's liminal position or placement on important routeways the site was frequented more often and the local community decided to define it with a terrace and either at the same time or just after a temple. This new sanctuary facilitated the display and storage of votive materials and perhaps this display culminated in increased competition (or at least acted as a new arena in which this could take place). It is in this atmosphere that G. Paapis Mitileis presumably decided to contribute funds towards the construction (or at least decoration) of a second temple and altar. This use of religious activities to distinguish individuals within the community and provide a means for one group to compete with another was something that does not seem to have been envisaged when deposition first occurred at the site, or perhaps when the boundaries of the sanctuary were drawn out, but they can be considered a consequence.

7.6 Summary

Several general characteristics of religious activity in the Iron Age to Roman period of central Adriatic Italy can be observed. Iron Age religious activity is notable for its lack of distinctiveness: there is almost no evidence of enclosure, no associated structures and only a minority of material culture can be identified as being created for use in a ritual. The distinctiveness is also reflected in the permanence of the sites. Only when a permanent natural place, such as a cave, was used is there evidence of continuity in use. A third element is the small, handheld nature of the material culture. Not only would this have made it portable (and so potentially break the link between religious practice and deposition), but it also encourages the perspective that practice was carried out on an individual rather than a communal basis.
In the third to first centuries there appeared a number of changes. Sanctuaries were constructed for the first time in the study region (although they had existed in nearby Lazio and Etruria since at least the sixth century) with clearly demarcated precincts and a range of specifically structures, most prominent of which is the temple, but also altars, colonnades, sacelli and treasuries. The addition of this element transformed ritual activity from potentially private to something that was conducted in the presence of one's peers. The display of votives before their deposition also implies that even those not present at the time of dedication (not just absentee locals, but also outsiders) could assess the events that took place. The creation of sanctuaries can be considered to have created an arena for competition in the religious sphere and we might consider the inscriptions associated with mosaics, statues and even temples an element of this.

However, whilst Abruzzo is famous for its sanctuaries, in Le Marche there is relatively little evidence for these constructions in the latter parts of the first millennium BC. The site of Monterinaldo apart, they are only firmly known at the urban sites of Ancona, Potentia and Asculum all of which received colonies of Roman citizens in the second or first centuries BC. Other Roman sanctuaries are evident in the plans of cities coming to light in recent remote sensing surveys (e.g. Trea – Vermeulen et al. 2009 and Urbs Salvia – Fabrini 2009), but so far, these are all dated to the Augustan period or later. So, although religious activity changed substantially in Abruzzo in the third to first centuries BC it might be best to consider that there was relatively little change in Le Marche at all until the Augustan period.
Chapter Eight: Identities, activities and landscapes

8.1 Ceramics and identities

This final analytical chapter considers ceramics from a functional perspective as evidence of past activities, exchange and consumer choice. Past studies have utilised ceramics, or the sites that they indicate, as an index for such varied topics as demography (e.g. Fentress 2009), trade (e.g. Fulford 1977; Peacock 1982; Millett 1990: 157-180), consumption (e.g. Greene 2009), and identity. This last category can be sub-divided into ethnic, tribal or other groupings (present in many, albeit cautionary, forms from Cunliffe’s 2005: 87-124 regional groupings in Britain, to Wobst’s 1977 argument for the symbolic communication of group identity to outsiders), culture change (most commonly Romanisation in traditional studies such as Morel 1998, but more recently other forms of changing networks such as Pitts’ arguments for Globalisation – 2004; 2005; 2008) and assessing status. The last two decades have seen a critical reworking of archaeological conceptions of both individual and group identities in archaeology (notably Dietler and Herbich 1998; Jones 1997; Díaz-Andreu et al. 2005; Canuto and Yaeger 2000; Insoll 2004, see further discussion in chapter 2) inspired by sociologists such as Barth (1969), Anderson (1991), Bourdieu (1977) and Giddens (1984). These have argued for a position in which it is the practices involving ceramics – who used it, how, where, when and with who – rather than the material itself (i.e. a pot should not be described as elite or Samnite) which can inform us about the identities of its users. Several researchers have sought to use pottery to study different aspects of identity within this framework which I outline below:

1. Mac Sweeney’s (2009) study of Late Bronze Age-Early Iron Age Anatolia considered how ceramics might inform on different group identities through their role in group activities – religious ritual or feasting – or as material styles deployed in specific social situations – e.g. using the best crockery for Sunday dinner.

2. Cool (2006) based her study around food, drink and their role in determining the use of different ceramics to demonstrate the different lifestyles and tastes between communities throughout the Roman period in Britain.
3. Also considering food preparation, Yentsch (1991; 1994: 133-148) has argued that social structure and the deployment of gender within it can be perceived from the choice of ceramic fabrics – earth-toned and white-toned – or vessel forms present at different sites in colonial America.

4. Wynne-Jones (2007) meanwhile emphasises the importance of imports and new forms of material culture rather than any one particular type of artefact that distinguished coastal urban groups from rural communities in southern Tanzania.

5. In Iron Age Britain Moore (2006; 2007) has used quern and ceramic evidence of long- and short-distance exchange networks as a starting point for considering the construction of identities following the work of Hodder and Saitta that 'exchanging material culture... [embodies] the social relations and needs of individual communities'.

Together these approaches form a framework from which the assemblages of field surveys can be explored in which artefacts are the 'fossilised evidence' of peoples' interactions and activities (Wobst 2000: 47). In order to better understand the role of pottery it is necessary to outline how pottery might have been produced, distributed and most importantly used and consumed. A combination of the limited archaeological evidence from Italy and the wider European Iron Age and Roman sphere and ethnoarchaeological studies carried out across sub-Saharan Africa, Central and South America and south-east Asia can be used to construct a hypothetical model of ceramic usage in central Adriatic Italy.

8.2 Ethnoarchaeological approaches to ceramics

The starting point for any discussion of pottery use in the Classical world must be the seminal work of Peacock (1982), the influence of this will be apparent in the discussion that follows. Although there has been little development of Peacock's ideas in Roman ceramic studies, they have been vigorously discussed by Mesoamerican archaeologists. They have sought to revise and update much of Peacock's models in light of developments in archaeological theory and ethnoarchaeological research.

8.2.1 Production

Evidence of production comes from a combination of excavated kilns and workshops, wasters and the debitage of pottery production, literary evidence and the pottery itself
— potters' stamps, uniformity, and production marks (of moulds, wheels, etc.). Peacock (1982) has combined this with ethnographic accounts to suggest as many as eight possible types of pottery production based on varying levels of production scale and the differences in organisation. Six of these are relevant to the area and time period studied in this thesis.

1. Household Production — in which each household makes the pottery it requires
2. Household Industry — in which professional craftsmen produce pots for profit, probably in a part-time seasonal manner to supplement the household income.
3. Individual Workshops — in which pottery-making is a main source of subsistence
4. Nucleated Workshops — where these workshops are nucleated and there is a degree of cooperation between artisans
5. The Manufactory — the term for an establishment where a number of artisans are grouped together in one enterprise and the pottery production process is divided into its component steps. Peacock suggests it should have 13 or more workers. Variations are possible in which the production is divided amongst the homes of the workers — a domestic industry. In all cases the injection of capital is necessary
6. Estate Production — production on a large rural site initially for internal needs, but developing into a commercial enterprise. These might normally be expected to start with easily produced bricks and tiles.

This typological approach has been criticised as too one-dimensional (Feinman 1999; Pool and Bey 2007: 4-6), conflating scale and intensity of production whilst ignoring other dimensions of variability such as variation in products, spatial organisation, setting or degree of independence from elite or state control (Costin 1991). Costin further argues that typologies such as these should be grounded in the social, economic, political and environmental conditions specific to each time period (ibid. 8). In this sense, it is necessary to consider how production changes over the 500 year period, and how this will be reflected in the analysis.

Evidence from Abruzzo and le Marche of production facilities is somewhat sparse and weighted heavily towards the Roman period and amphorae and Black Gloss vessels. Within Abruzzo and le Marche there do not seem to have been the clay resources available to build up nucleated workshops or manufactories of the like found at Arrezzo or Pozzuoli, thus these systems need not be considered further (although
some pottery from them did circulate within the study area, see distribution and consumption below). In the Iron Age there are several known ceramic kilns at Moscosi di Cingoli, used for the production of tile, Matelica, handmade impasto pottery (Biocco and Silvestrini 2008), and Montedoro di Scapezzano, handmade impasto pottery (Gobbi 2002), all in le Marche and, in Abruzzo, the unpublished Colle Fiorano (impasto pottery), near Loreto Aprutino (noted on a plan – Staffa 1998). These sites can all be associated with habitation structures of some kind (see Chapter Four). In the Hellenistic period evidence is again limited to a handful of sites – in le Marche a kiln is attested near the hoard site of Monte Fanum, interpreted as a sanctuary (Staffa 2006) and in Molise there are kilns in and around Monte Vairano that were used to produce Black Gloss ceramics, the best known of these is located within the Porta Vittoria (De Benedittis 1991). A brick kiln is also known from Arcitelli, Cugnoli (Staffa 2003) which was used for firing bricks in an area adjacent to a nucleated settlement (again, not yet published). In the late republican and imperial periods evidence is rather better: several kilns have been excavated at town sites – on the outskirts of Aesis (Brecceiaroli Taborelli et al. 1996-1997) and in Molise there are kilns in and around Monte Vairano that were used to produce Black Gloss ceramics, the best known of these is located within the Porta Vittoria (De Benedittis 1991). A brick kiln is also known from Arcitelli, Cugnoli (Staffa 2003) which was used for firing bricks in an area adjacent to a nucleated settlement (again, not yet published). In the late republican and imperial periods evidence is rather better: several kilns have been excavated at town sites – on the outskirts of Aesis (Brecceiaroli Taborelli et al. 1996-1997) and in Molise there are kilns in and around Monte Vairano that were used to produce Black Gloss ceramics, the best known of these is located within the Porta Vittoria (De Benedittis 1991).
there was a general shift from more household based production towards a more
centralised and market-focussed structure based on estate production and individual
workshops.

8.2.2 Distribution and Consumption

One of the easiest forms of information to derive from ceramic data is the distribution
of different forms and fabrics, these have been at the basis of trying to recreate models
of ceramic distributional systems and frameworks for understanding stylistic
patternning and social boundaries (Stark 2003: 202). Key to this has been the
examination of technical factors (ecological and economic factors, mechanical and
functional attributes of artefacts) and cultural factors (historical, political and social)
that generate variability in ceramic systems (Costin 2000). Archaeologists have
consistently followed one of two approaches when considering the movement of
ceramics: (i) exchange systems in which the movement of artefacts is a product of
social interactions, an approach generally taken by Prehistorians, and, (ii) trade-based
systems where all transactions are for practical, physical considerations – favoured by
economically-minded Romanists. Brief discussion of both will highlight the problems
of this somewhat artificial dichotomy and lead to a reconsideration of the modes by
which ceramics were moved around.

In discussions of Iron Age Europe, anthropological studies of gift-exchange (e.g.
Mauss 1954; Gregory 1982; Godelier 1999) have been highly influential in
understanding the movement of things (cf. Fowler 2004; Moore 2006; 2007; Sharples
2007). These emphasise that an exchange will create a social tie between giver, who is
‘inalienated’ from the object and the receiver who in effect only ‘loans’ the object
(Gregory 1982: pp) because he is compelled to reciprocate in some fashion. Despite
the recognition that gift-exchange is rarely the only route by which goods are
transferred in any society it is often argued as the dominant feature (Sharples 2007:
175). Thus Wells (2008: 362-363) argues goods were circulated as a way of
maintaining social relationships amongst large regional groupings in the European
Iron Age. In similar fashion, Morris highlights the importance of kinship alliances for
maintaining down-the-line exchange systems of pottery in Iron Age Britain (1996: 44)
and, ultimately, the material’s role in expressing social cohesion (ibid. 46). However,
although this system may be effective in explaining the movement of objects that were
deliberately deposited in contexts such as graves or ditch terminals, they are less
useful for explaining those items thrown away as waste. It does not explain how cooking pots, that might have a use-life of only 1-2 years, could be replaced unless all utilitarian needs were matched by household production. Yet, Morris suggests that by at least the Middle Iron Age in Britain there is good evidence of ‘household industry’ production (1996: 46) implying the activity of specialists, as must have been present for the production of salt or iron. How then could these (part-time?) craftsmen use their goods to help support themselves? Patronage is certainly one option (whether by an individual or a community), but it seems impossible to rule out different forms of trade and it seems unlikely that the system was so simple as to only involve down-the-line exchange (which in the rather mathematical form outlined by Renfrew – 1975, relies on the dominance of nucleated village settlements, takes no account of seasonality or other physical and social pressures and removes any sense of agency both in the potters choosing who to sell to and the consumers choosing what to buy – cf. Stark 1994). Moore in his work on communities in the Severn-Cotswolds region (2006: 207-210) has recognised the problems of these models and particularly the fallacy of divorcing different material categories – pottery, querns, metalwork, agricultural products, glass – into separate exchange systems, but his focus is upon the movement of items by communities or specialist traders and the importance of the Severn Estuary as a communication route to be exploited and not the mechanisms of distribution. Having arrived in the area of a different community, or even within their own community, how would a specialist potter or trader exchange their wares in a pre-monetarised, pre-urban society? Did they trade from their workshop, peddle, or attend markets and were some kind of middlemen involved?

In complete contrast to the Iron Age it is argued that in the Roman period, across Europe, potters used several strategies to sell their wares including residential and workshop selling, market vending, shop vending and itinerant peddling by producers or intermediaries (Peacock 1982: 156-158; Peña and McCallum 2009). Archaeological evidence is slight, but it would seem that in addition to selling pottery at the source – whether itinerant, household, estate or workshop based – ceramics were retailed in shops – present at towns and almost certainly at some sanctuaries (e.g. Pietrabbondante where there are tentative identifications) – and, perhaps most importantly in a rural society, markets. As ceramic studies have overwhelmingly focussed on specialised amphorae and finewares there is little data with which to consider how far the bulk of pottery that constitute domestic assemblages was transported. De Sena and Ikielimo in their study of a household assemblage from
Pompeii (2003) found that locally produced ceramics constituted at least 52% of table- and storage-wares and at least 82% of coolwares in all periods. Ceramics imported from outside the bay of Naples never seem to have reached more than 5% of the assemblage (not including amphorae) and never more than 1% of the assemblage was derived from outside Italy in the period 150-1 BC. Elsewhere we must fall back on ethnoarchaeological studies of distributions and consumer habits in non-industrial societies. Observations of the Kalinga of the Philippines (Stark 1994), the Luo of Kenya (Dietler and Herbich 1998), the Gamo of Ethiopia (Arthur 2006) and the Faro of Cameroon (Vander Linden 2001) would suggest that most potters sell the majority of their wares within a radius of 15km i.e. a distance that allows a 24-hour round-trip visit with distance only increasing when transportation can be facilitated by boat, lorry, etc. or when there are particularly worthwhile markets to exploit. Similarly to the Pompeian case study, Arthur’s study of 3 villages amongst the Gamo of south-west Ethiopia, Arthur found that 56-71% of ceramics derived from the village studied (when potters were present) and the vast majority were produced within a 15km radius. However, it is not just factors of distance that generate the distribution patterns: Stark (1992) noted a tendency of Kalinga potters to sell their wares only to kin and Arthur (2006) describes the varying perceptions of pots produced in different villages as consumers purchase on what Millar describes as ‘personal feeling’ (1998).

It is not easy to marry the divergent research trends of Iron Age and Roman studies regarding distribution and supply. Despite Peacock’s outlining of the problem over 25 years ago (1982: 81) and Morris’ call for research (1996: 49) few studies have developed usable models of ceramic exchange systems in Iron Age archaeology and gift-exchange seems of dubious applicability to the vast majority of pottery. For this reason I have favoured backtracking the ethnoarchaeologically-based Roman system of peddlers, workshops, markets and fairs. However, to this somewhat functionalist perspective can be added the recognition, that exchange is inherently social and must take into account people’s concerns and choices in consumption when considering distribution patterns (Vander Linden 2001: 149).

8.2.3 Consumers and the uses of pottery

It thus follows that for the archaeological distribution of pottery to have interpretational value it must be linked to the consumers. Ceramics have been split into several different use categories (e.g. Rice 1987: 209; Smith 1988: 913-914; Skibo
1992: 35-38) these broadly encompass different forms of storage – long- or short- 
term, dry materials, liquids, potables and non-potables; processing – baking and 
boiling, grinding, mixing, etc.; and transfer – eating, drinking, serving, pouring and 
transport. Any one pot may be intended for one or more of these uses and may 
actually be used or reused for several more (for example, amphorae were produced for 
the transportation of potables such as wine and oil, but found use in a myriad of 
situations including as drains and grave markers). Studying the composition of a 
pottery assemblage will therefore give some indication of the activities of its users. 
This might be linked to the profession of the users e.g. farmers may require more large 
jars for the storage of agricultural produce and fermentation, dining habits, both in 
the choice of foods e.g. casseroles and the degree of commensality in eating and 
drinking, or other social needs e.g. the range of miniature pottery found associated 
with religious contexts. However, there are more factors than functional needs 
governing the desires and choices of consumers. Arthur’s work amongst the Gamo 
highlighted how the economic wealth and cultural background of a consumer affect 
the fabrics and forms that they utilise:

- Wealthier households can afford more choice and more and larger vessels
- The size of a household will directly affect the size and number of vessels 
- Proximity to potters may also increase the inventory of a household (Arthur 
  2006: 55-56)
- Households might develop patron-client relationships with individual potters, 
  particularly those that are in close proximity, are related by kin-ties or if 
  production is estate-based (see above).
- The use-life and recycling of ceramics will vary both based upon the activities 
  of the household, and the qualities of the pots that they purchased (i.e. poorer 
  families may have to purchase more pots that are cheaper, but more prone to 
  breakages).

8.3 Central Adriatic Ceramics

To summarise the findings of ethnoarchaeology and the archaeology of Iron Age and 
Roman Europe – the assemblage of a household will be formed from a range of 
economic, social and practical realities that reflect the choices made by producers, 
retailers and consumers of ceramics. Although, it obviously cannot recreate a full
picture of identity, differences between assemblages help in the reconstruction of the complex communities that produced, distributed and used them. If it is assumed that the ceramic assemblages from fieldwalking units and scatters are (at least to some extent) representative of the different consumption strategies of households and the inequalities between them, it is thereby appropriate to consider their potential for describing past identities.

To explore past identities it is necessary to first construct a framework of the trade of ceramics within the survey areas through consideration of their attributes (Table 8.1). This provides a means of dividing the assemblages for analysis (Table 8.2).

Table 8.1. Attributes of main pottery groups studied

<table>
<thead>
<tr>
<th>Name</th>
<th>Date Range</th>
<th>Uses of Pottery</th>
<th>Locations of Production</th>
<th>Types of Production</th>
<th>Marketing Method</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Impasto</strong></td>
<td>Sangro: 1000-30 BC</td>
<td>Cookwares, utilitarian wares and tablewares</td>
<td>Local</td>
<td>Household production</td>
<td>Own consumption, purchased directly from site of production, market</td>
</tr>
<tr>
<td><strong>Coarse Wares</strong></td>
<td>Sangro: 450 BC - AD 1000</td>
<td>Cookwares, utilitarian wares and tablewares</td>
<td>Local</td>
<td>Household/workshop production</td>
<td>Purchased directly from site of production, market</td>
</tr>
<tr>
<td><strong>Buff Wares</strong></td>
<td>Sangro: 450 BC - AD 1000</td>
<td>Cookwares, utilitarian wares and tablewares</td>
<td>Local</td>
<td>Household/workshop production</td>
<td>Purchased directly from site of production, market</td>
</tr>
<tr>
<td><strong>Greek Wares</strong></td>
<td></td>
<td>Tablewares (fine), utilitarian wares (fine)</td>
<td>Outside Italy</td>
<td>Workshop production</td>
<td>Imported, sold in market</td>
</tr>
<tr>
<td><strong>Black Gloss Wares</strong></td>
<td>Sangro: 450-30 BC (but, mostly 2nd and 1st centuries)</td>
<td>Tablewares (fine), utilitarian wares (fine)</td>
<td>Central Adriatic</td>
<td>Workshop production, commonly associated with towns (e.g. Aesis) or hillforts (e.g. Monte Vairano)</td>
<td>Markets, sanctuaries</td>
</tr>
<tr>
<td><strong>Italian Terra Sigillata</strong></td>
<td>Sangro: 30 BC - AD 400</td>
<td>Tablewares (fine)</td>
<td>Italy, particularly from Arretium</td>
<td>Nuclated industry production</td>
<td>Markets</td>
</tr>
<tr>
<td><strong>Thin-Walled Wares</strong></td>
<td>Mid-2nd century BC - 1st century</td>
<td>Tablewares, utilitarian wares</td>
<td>Central Adriatic</td>
<td>Workshop production</td>
<td>Markets</td>
</tr>
</tbody>
</table>

259
### Internal Red-Slip Cookwares

<table>
<thead>
<tr>
<th>Period</th>
<th>Type</th>
<th>Origin</th>
<th>Production</th>
<th>Markets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mid-2nd century BC - 1st century AD</td>
<td>Cookwares</td>
<td>Italy (Campania)</td>
<td>Workshop production</td>
<td>Markets (normally as packaging of foodstuffs rather than as a separate commodity)</td>
</tr>
</tbody>
</table>

### Amphorae

<table>
<thead>
<tr>
<th>Period</th>
<th>Type</th>
<th>Origin</th>
<th>Production</th>
<th>Markets</th>
</tr>
</thead>
<tbody>
<tr>
<td>4th century BC - 7th century AD</td>
<td>Portable jars/jugs (c. 6-150 litres) for the packaging and distribution of foodstuffs.</td>
<td>Mostly central Adriatic, some Italian, some Mediterranean</td>
<td>Workshop production, commonly associated with estates</td>
<td>Markets</td>
</tr>
</tbody>
</table>

### Dolia

<table>
<thead>
<tr>
<th>Period</th>
<th>Type</th>
<th>Origin</th>
<th>Production</th>
</tr>
</thead>
<tbody>
<tr>
<td>450 BC - AD 1000</td>
<td>Fixed or semifixed jars (c. 400-3000 litres) for storage, particularly of agricultural produce</td>
<td>Local</td>
<td>Produced on location by itinerant potters</td>
</tr>
</tbody>
</table>

---

### Table 8.2. Attributes of main pottery forms studied

<table>
<thead>
<tr>
<th>Form</th>
<th>Use</th>
<th>Fabrics</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amphora</td>
<td>Storage, Transport</td>
<td>Black Gloss, Buffwares, Coarsewares, Italian Terra Sigillata, Internal Red-Slip Cookwares, Thin-walled wares</td>
<td>Rim diam. 50-510mm, bowls occupy the upper end of this spectrum</td>
</tr>
<tr>
<td>Bowls/Dishes/Cups</td>
<td>Tableware (food/drink)</td>
<td>Buffwares, Coarsewares, Impasto, Thin-walled wares</td>
<td></td>
</tr>
<tr>
<td>Closed Vessels</td>
<td>Cooking, Storage Tableware (drink)</td>
<td>Buffwares, Coarsewares, Impasto, Thin-walled wares</td>
<td></td>
</tr>
<tr>
<td>Cooking Pots/Casseroles</td>
<td>Cooking</td>
<td>Buffwares, Coarsewares, Impasto</td>
<td>Rim diam. 140-310mm</td>
</tr>
<tr>
<td>Clibanis</td>
<td>Cooking</td>
<td>Coarsewares</td>
<td>Rim diam. c. 400mm</td>
</tr>
<tr>
<td>Dolia</td>
<td>Storage</td>
<td>Dolia</td>
<td>Rim diam. 600+mm</td>
</tr>
<tr>
<td>Flagons/Jugs</td>
<td>Tableware (drink)</td>
<td>Black Gloss, Buffwares, Coarsewares, Impasto</td>
<td>Rim diam. 20-310mm</td>
</tr>
<tr>
<td>Jars</td>
<td>Cooking, Storage</td>
<td>Buffwares, Coarsewares, Impasto, Thin-walled wares</td>
<td>Rim diam. 50-600mm</td>
</tr>
<tr>
<td>Lids</td>
<td>Cooking</td>
<td>Buffwares, Coarsewares, Impasto</td>
<td>Rim diam. 140-250mm</td>
</tr>
<tr>
<td>Mortaria</td>
<td>Processing Mortaria</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Open Vessels</td>
<td>Tableware (food)</td>
<td>Buffwares, Coarsewares, Italian Terra Sigillata, Internal Red-Slip Cookwares, Thin-walled wares</td>
<td></td>
</tr>
<tr>
<td>Platter</td>
<td>Tableware (food)</td>
<td>Black Gloss, Italian Terra Sigillata</td>
<td>Rim diam. 150-350mm</td>
</tr>
<tr>
<td>Skyphoi</td>
<td>Special</td>
<td>Black Gloss, Buffwares</td>
<td></td>
</tr>
<tr>
<td>Unguentaria</td>
<td>Special</td>
<td>Black Gloss, Buffwares, Coarsewares</td>
<td></td>
</tr>
</tbody>
</table>
The method of analysis (described in detail below) is exploratory but it is nonetheless directed by research questions that consider the aspects of identity retrievable from pottery consumer habits. These are:

1. The inequality of wealth - visible through the cost, size, number and diversity of ceramics. Access to imported material is considered significant given the increased production and transport costs. Wealth in itself is not strictly an aspect of identity, however, I have chosen to single it out in an attempt to detach it from the assumption of an ‘economic basis of social domination’ that underlies many archaeological discussions of status (Babić 2005: 69-71)

2. The status (Roman citizen, ally or slave) and profession (craftsmen, farmer or landowner) – visible through the choice of ceramics, e.g. dolia for farmers;

3. Group affiliation – ethnicity is, given the type and quality of the data, unlikely to be accessible (Dietler and Herbich 1994), but communities centred on topographic locales (coast, valleys, mountains, etc.) or geographical places – hillforts, sanctuaries, cemeteries and towns should be.

8.4 Methodology

'The systematic comparison of archaeological assemblages promises to be a powerful tool in understanding the past. It is based on the premise that regularly occurring patterns of associations are likely to reflect patterns of activity and behaviour in the past.’ (Cool and Baxter 1999: 73)

Exploratory data analyses (EDA) are a branch of statistics that place a premium upon visual examinations of data, forcing us ‘to notice what we never expected to see’ (Tukey 1977: vi). Instead of testing a particular hypothesis, EDA requires the user to start from their data and ask what these can show about the relationships between different variables (Wheatley and Gillings 2002: 142). Despite a scattering of examples (such as Gillings 1997), Wheatley and Gillings argued that this technique had not been sufficiently developed in archaeological-GIS. In the last decade Conolly and Lake devoted an entire chapter in their recent manual (2006) and it has become an increasingly important area of GIS-based research (in particular see the work of Luc Anselin 1994; 1998; Anselin et al. 2006; Messner and Anselin 2004). However, recent studies in journals such as Journal of Archaeological Science and Internet Archaeology have focussed more on issues such as visibility (e.g. Ruestes Bitrià 2008; Ogburn 2005; Roughley and Shell 2004) and movement/cost-surfaces (e.g.
Siart et al. 2008; Howey 2007; Hare 2004; Van Hove 2004). An area particularly underdeveloped in GIS is that of multivariate techniques, particularly Correspondence Analysis which has grown increasingly popular for interpreting artefact (e.g. Cool and Baxter 1999; Pitts 2005) and archaeobotanical assemblages (van der Veen 2007; Livarda and van der Veen 2008; Livarda 2008). Wheatley and Gillings merely say this ‘might be of considerable relevance’ (2002: 146), while Conolly and Lake similarly describe the potential of Factor Analysis and Principal Components Analysis, but stop short of providing any examples of its use. The recent introduction of these into current ArcGIS packages may well stimulate new research with these tools.

The databases of field surveys are typically complex with hundreds of survey units, fabric types and forms giving a vast dimensionality to the data that are, at their core, made up of counts in different categories. Together these data form a kind of archaeological assemblage that has been identified above as key to understanding identity in the past. When considered in this manner an extremely useful technique to use is Correspondence Analysis – a reductive technique for displaying patterns in multivariate data (Cool and Baxter 1999, see also Baxter 1994; Shennan 1997). These data are described by columns (fabric groups, fabrics or forms) and rows (individual fields or scatters from one or more surveys); the analysis creates two plots – a row plot and a column plot – that can be displayed together or separately. These should be read in relation to the origin which represents ‘the average profile, so locations away from this represent departures from the average’ (Shennan 1997: 321). The axes themselves represent part of the chi-squared distance (i.e. variance) between the row profiles (fields and scatters). In each of the following graphs this is represented by an inertia value for each axis, the higher this value, the more representative the axis is in describing the distribution of row and column profiles. A group of assemblages in one area of the plot will generally have a more than usually high proportion of the fabrics or forms which are plotted in the same position relative to the origin (Cool and Baxter 1999: 78). Of most interest for analysing geographic aspects of the data is the row plot, as the resulting graph can then be queried spatially. Alternatively, the results of the row plot can be displayed spatially within a GIS. The reasons for displaying a Correspondence Analysis in a GIS are twofold: firstly, to provide a means of viewing the data in an easy to understand format where readers can make their own observations; and secondly to provide a means of identifying patterns in the distribution of different types of assemblages between fields and scatters.
In order to display the correspondence analysis I have divided the typical two-axes scatter plot into 12 segments which are each sub-divided into two by a circle of radius 1 centred on the origin. The resulting 24 segments are assigned a hue from the RGB colour palette at equal intervals (unfortunately this schema is not suitable for the colour-blind, future applications should seek to address this issue!), with the saturation varied to 30% for the inner sub-segments, fixed at an arbitrary distance of 1 (Fig. 8.1). This inner circle was decided upon after a visual analysis of the graphs used in this study. Each sample in the row plot can then be assigned a colour depending where it lies and how close to the origin. Samples that are close to each other on the graph (because they have similar assemblages) will share the same or similar colours whereas those samples that are distant from each other (with quite different assemblages) will have quite distinct colours. From this we can identify if groupings that are visible on a bi-plot also have a spatial grouping, whether they are constricted by any geographical features or if they are distributed evenly across a survey.

Figure 8.1. Colouring of CA bi-plots
8.5 Variance between Survey Blocks

Fabric groups provide a common denominator whose variance can be analysed across different surveys despite the varying interests and strategies of the projects (Figs. 8.2 to 8.5). Samples are based on the survey field assemblages with 50 or more sherds recovered. There is an implicit assumption within this analysis that each sherd can be equated to one pot. On occasion two or more sherds from the same pot will have been collected, but the minimum size of each sample will help to maintain their integrity without excluding important sites that produced relatively few sherds (a potential problem for the Iron Age in which there was less pottery consumption).
Figure 8.2. CA Sample and species plots of fabric groups from across central Adriatic Italy (46% of the inertia accounted for by the first axis, 21% by the second).
Figure 8.3. CA map plot of fabric groups from across central Adriatic Italy
Figure 8.4. CA Sample and species plots of fabric groups from across central Adriatic Italy, Lower Potenza excluded (50% of the inertia accounted for by the first axis, 14% by the second).
Figure 8.5. CA map plot of fabric groups from across central Adriatic Italy, Lower Potenza excluded
The overwhelming impression from the map of the row plot is the difference in fabric groups present in the Lower Potenza, next to the Adriatic coast, compared to all other areas. This arguably reflects the high level of imports into this area in both the Iron Age and Roman periods. Elsewhere the tendency is for fairly uniform assemblages with a few that can be considered as outliers. However, the Middle Sangro zone does seem to have a higher level of variance than other areas, with many parts seemingly lacking imported ceramics in the Roman period. The numbers of sherds from these areas of survey generally support these observations, with imported ceramics accounting for more than 9% of the Lower Potenza assemblages compared to 2-4% for all other areas. There are also notable differences in the types of imported finewares – such as thin-walled wares present in much higher numbers in the Potenza Valley and Black Gloss ceramics more common in the Sangro Valley. Further, Buffwares are more common in those areas that have fewer imported ceramics, suggesting that more upland isolated areas consumed pottery in quite different ways to more coastal areas.

8.6 Variance of Fabrics around the Sangro Valley

As the Sangro Valley Survey (SVS) and Iuvanum Survey Project (ISP) lie in close proximity and, more importantly, their ceramics were studied in the same way with the same categorisation, it is possible to study the distribution of individual fabrics from an area c.20x15 km with a high variety of topographic features (the river Sangro, Monte Pallano, the Iuvanum Plateau). For example, the distributions of the major coarse- and buffwares can be mapped. This demonstrates the strong spatial patterning in the distribution of different wares, but also reveals the complexity of the assemblages. Regional Coarseware 1 and Regional Fineware 1 are by far the most common coarse- and buffwares respectively across both survey regions (e.g. Fig.8.6). The other fabrics show more asymmetric distributions.
8.6. Distribution of Regional Coarseware 1 and Regional Fineware 1 in the Sangro Valley

For these analyses I have maintained the sample parameters from above of a minimum size of 50 sherds. I have explored this combined assemblage initially by period (Iron Age – Figs. 8.7 to 8.10, Hellenistic/Republican – Figs. 8.11 to 8.14, Late Republic/Early Imperial – Figs. 8.15 to 8.18), analysing by abundance and presence for each.
Figure 8.7. CA bi-plot of the abundance of Iron Age fabric classes for the Sangro Valley (13% of the inertia accounted for by the first axis, 12% by the second).
Figure 8.9. CA bi-plot of the presence of Iron Age fabric classes for the Sangro Valley (10% of the inertia accounted for by the first axis, 7% by the second).
Figure 8.10. CA map plot of the presence of Iron Age fabric classes for the Sangro Valley
The row plot of abundance of Iron Age to Hellenistic material shows two distinct groupings by survey with a great deal of overlap around the origin (Fig. 8.7). This variance seems largely caused by the Black Gloss with fabrics BG01, BG03, BG04, BG05, BG08, BG09 and BG13 associated with the SVS and BG07, BG10, BG11, BG18 and BG19 with the ISP. The CA map plot shows no clear patterning (Fig. 8.8), although sites in very close proximity often seem to have very similar assemblages.

The bi-plot of presence (Fig. 8.9) shows a clearer delineation of samples by survey and also divides the ISP into two groups – one associated with Dolia (DL13, DL14, DL16) and Black Gloss (BG05, BG07, BG10, BG11, BG14, BG18, BG19) (displayed as reds, oranges and yellows), the other more closely linked to impasto fabrics (in greens and light blues). These groupings are perhaps based on the dating of the sites, but the map of this plot would suggest that the latter group of greens and blues are loosely clustered around the base of hillforts.
Figure 8.11. CA bi-plot of the abundance of Hellenistic/Republican fabric classes for the Sangro Valley (24% of the inertia accounted for by the first axis, 16% by the second).
Figure 8.12: CA map plot of the abundance of Hellenistic/Republican fabric classes for the Sangro Valley.
Figure 8.13. CA bi-plot of the presence of Hellenistic/Republican fabric classes for the Sangro Valley (12% of the inertia accounted for by the first axis, 8% by the second).
Figure 8.14: CA map plot of the presence of Hellenistic/Republican fabric classes for the Sango Valley.
The abundance bi-plot of Hellenistic to Roman material (Fig. 8.11) shows little variance in the SVS material which is dominated by RCr1 and RF1 and quite a high variety of fabrics present in the ISP assemblages. Notably, in the Sangro Valley the outlying colours are found in areas next to the river (Fig. 8.12). There are possibly some spatial groups amongst the ISP material with yellows and greens predominating in the south west and oranges, reds and pinks in the north east, but these are not clearly defined.

Analysing by presence helps to explode the bi-plot (Fig. 8.13). RCr1 and RF1 still lie almost at the centre of the plot, but there are two clear divisions – the x-axis divides the samples between SVS (negative x) and ISP (positive x) while the y-axis delineates forms of amphora (negative y) against several forms of Black Gloss (BG02, BG03, BG06, BG09, BG10, BG13, BG18, BG19) and local wares (RF2, RF5 and RCr5). Spatially, the samples with amphora (in greens and light blues) are found clustered around the town and sanctuary of Iuvanum (Fig. 8.14). Patterning is harder to distinguish in the Sangro Valley, but there are lighter colours on the slopes directly above the River Sangro.
Figure 8.15. CA bi-plot of the abundance of Late Republic/Early Imperial fabric classes for the Sangro Valley (25% of the inertia accounted for by the first axis, 16% by the second).
Figure 8.16. CA map plot of the abundance of Late Republic/Early Imperial fabric classes for the Sangro Valley
Figure 8.17. CA bi-plot of the presence of Late Republic/Early Imperial fabric classes for the Sangro Valley (12% of the inertia accounted for by the first axis, 7% by the second).
The final period split concerns the Late Republic and Imperial periods (Figs. 8.15 and 8.16). As with the Hellenistic to Republican period the abundance of RCrs1 and RF1 wholly dominates the SVS assemblage (shown in pale blues and indigos) while the ISP assemblages are more varied following the same patterning observed above. This is unfortunately a relic of the difficulty of periodising the local Coarse- and Buffwares.

Regarding presence, quite a different picture to the earlier periods emerges (Fig. 8.17). Whereas many fabrics of Black Gloss were at opposite ends of the y-axis to amphora in the Roman period almost all imported fabrics amphora, lamps and finewares (from Italy and the wider Mediterranean) seem to occupy positive y. Negative y consists of locally produced coarse- and buff-wares and the occasional presence of amphorae from northern Italy, the Bay of Naples and Tripolitania. Places with imports — indigos, purples, pinks and reds — are found scattered through the two survey blocks, but there is a significant concentration to the north of Iuvanum and many outlying areas (in greens and turquoise) seem to have few items of imported fabrics (Fig. 8.18).

Based upon the initial plots by period new analyses can be constructed to explore and assess aspects that may be creating the variance in the assemblages, namely:

1. Impasto and dolia of handmade Iron Age production (abundance and presence) — Figs. 8.19 to 8.22
2. Coarse- and buff-wares of local Hellenistic and Roman production (abundance and presence) — Figs. 8.23 to 8.26
3. Hellenistic and Roman material of regional and supra-regional production (presence only) — Figs. 8.27 and 8.28
4. Hellenistic Black Gloss fabrics of regional production (presence only) — Figs. 8.29 to 8.30
5. Late Republic to Early Imperial fine-wares (Terra sigillata, Colour-Coated Wares, Thin-Walled Wares, Internal Red-Slip Cooking Wares) of supra-regional production (presence only) — Figs. 8.31 to 8.32
Figure 8.19. CA bi-plot of the abundance of Impasto and dolia of handmade Iron Age production in the Sangro Valley (21% of the inertia accounted for by the first axis, 18% by the second).

Figure 8.20. CA map plot of the abundance of Impasto and dolia of handmade Iron Age production in the Sangro Valley.
Figure 8.21. CA bi-plot of the presence of Impasto and dolia of handmade Iron Age production in the Sangro Valley (14% of the inertia accounted for by the first axis, 12% by the second).

Figure 8.22. CA map plot of the presence of Impasto and dolia of handmade Iron Age production in the Sangro Valley.
In contrast to almost every other analysis there is a great deal of overlap in the row plot between the SVS and ISP when only Iron Age Impasto and Dolia fabrics are considered, with only a tendency for SVS samples in positive $y$ and ISP in negative $y$ (Fig. 8.21). This is reflected in the map of the plot which shows blues and purples in all areas (particularly linked to the common fabric IMP03) and greens around the hillforts on the Iuvanum Plateau and reds and pinks around the hillfort of Monte Pallano (Fig. 8.20).

This patterning is somewhat lost when only presence is considered with turquoises predominating amongst smaller assemblages and a wide range of colours (and therefore assemblage compositions) visible elsewhere. From this it can be understood that it is not the exclusivity of fabrics that causes the spatial patterning, but their relative abundance. This parallels well with Arthur’s study of the Gamo in which households from three different villages all had pots from the same group of Ochollo villages, but the composition of each assemblage was heavily influenced by which village and, therefore, which markets they would choose to attend. This is exactly the kind of patterning that might arise from household industry production feeding a small number of markets scattered across the Sangro Valley area.
Figure 8.23. CA bi-plot of the abundance of Coarse- and Buffwares of local Hellenistic and Roman production in the Sangro Valley (29% of the inertia accounted for by the first axis, 18% by the second).

Figure 8.24. CA map plot of the abundance of Coarse- and Buffwares of local Hellenistic and Roman production in the Sangro Valley.
Figure 8.25. CA bi-plot of the presence of Coarse- and Buffwares of local Hellenistic and Roman production in the Sangro Valley (20% of the inertia accounted for by the first axis, 13% by the second).

Figure 8.26. CA map plot of the presence of Coarse- and Buffwares of local Hellenistic and Roman production in the Sangro Valley
The locally produced material of the Hellenistic and Roman periods does show a clear distinction between the SVS and ISP with a far greater range and abundance of Coarse- and Buffwares (Fig. 8.23 and 8.24): the SVS is almost entirely light blue from the high abundances of RCrs1 and RF1; on the Iuvanum Plateau there are loose groups of greens and yellow (RF1a, RF3, RCrs3/RF3 and RCrs3) in the centre to southwest, reds (RCrs2, RCrs2a and RCrs5) to the west and extreme south west, and oranges (RCrs1B, RCrs3 and RCrs4) in the centre to north east.

Greater complexity in the patterning is seen in the presence row plot with more overlap between the SVS and ISP samples (Fig. 8.25), but with far less distinct groupings, except for a clear group of greens around Iuvanum itself (Fig. 8.26). On the row plot this is the area where the rarer coarse- and buff-fabrics (grouped under RCrsOther and RFineOther) are found.
Figure 8.27. CA bi-plot of the presence of Hellenistic and Roman material of regional and supra-regional production in the Sangro Valley (9% of the inertia accounted for by the first axis, 7% by the second). Figure 8.28. CA map plot of the presence of Hellenistic and Roman material of regional and supra-regional production in the Sangro Valley.
The row plot of presence of imported material shows a strong distinction between the ISP and SVS in the x-axis (Fig. 8.27). The map of this plot (Fig. 8.28) shows more yellows (including lamps, African red slip wares and Tripolitanian amphoras) around Monte Pallano and more greens around Fara in the extreme north (lacking in Italian terra sigillatas and Pompeian cooking wares) that both might be loosely linked to Mediterranean rather than Italian imports. Otherwise the clearest distinction is of the blues and purples present in the ISP, but not the SVS.
Figure 8.29. CA bi-plot of the presence of Hellenistic Black Gloss fabrics of regional production in the Sangro Valley (16% of the inertia accounted for by the first axis, 13% by the second).

Figure 8.30. CA map plot of the presence of Hellenistic Black Gloss fabrics of regional production in the Sangro Valley
The presence of Black Gloss wares (Fig. 8.29) is strongly divided between the ISP (BG05, BG07, BG10, BG11, BG14, BG18 and BG19) and the SVS (BG01, BG06, BG08, BG13) – a pattern already noted above. However, the removal of all other fabrics from the analysis allows the identification of three distinct groups (Fig. 8.30) – pinks in the south west of the ISP (perhaps associated with BG02, BG04 and BG03), indigo in the north east of the ISP and greens in the SVS (with three oranges in the south east of the SVS hinting at a possible fourth grouping).
Figure 8.31. CA bi-plot of the presence of Late Republic to Early Imperial fine-wares of supra-regional production in the Sangro Valley (17% of the inertia accounted for by the first axis, 15% by the second).

Figure 8.32. CA map plot of the presence of Late Republic to Early Imperial fine-wares of supra-regional production in the Sangro Valley.
The row plot of presence of imported fine wares once again splits largely by survey, with SVS samples in negative x and ISP in positive x (Fig. 8.31), but a more complex pattern emerges from the map (Fig. 8.32): the northern area of Fara bears similarities to the assemblages around Iuvanum (with Thin-Walled Wares, Internal Red-Slip Cooking Wares, Southern Gaulish and Eastern Terra Sigillata), whilst the outlying north east of the ISP (closest to the River Sangro) has the same indigoes of the majority of the SVS (consisting largely of ITSo1, ITSo3 and colour-coated wares).

8.7 Variance of Forms on the Iuvanum Plateau

The final set of correspondence analyses makes use of the detailed database of the Iuvanum Survey Project to draw its samples, with species based on those ceramic forms presented in Table 2. This will allow a consideration of how different assemblages may reflect the different consumption choices and indicate changes and aspects of household identity from the Iron Age to Roman periods. In order to increase the size of the data-set possible forms have been included alongside definitely identified forms. Also, the numbers of amphora and dolia sherds have been included as they are pots with both a specific fabric and form. Further, to increase the number of samples the minimum size of each sample is dropped to just five (now measured by number of forms identified rather than number of sherds recovered). This makes the analyses substantially more susceptible to the varying preservation conditions and the chance occurrences of field surveys than the fabric-based analyses. However, as the analysis is exploratory this does not invalidate the results per se (although some may be discounted), rather an emphasis on caution in interpretation and identifying potential trends is required.
Figure 8.33. CA species plot of assemblages by form for the Iuvanum Plateau (53% of the inertia accounted for by the first axis, 32% by the second).
Figure 8.34. CA sample plot of assemblages by form for the Iuvanum Plateau (24% of the inertia accounted for by the first axis, 15% by the second)

Figure 8.35. CA map plot of assemblages by form for the Iuvanum Plateau.
The first analysis of forms from the Iuvanum Survey Project is designed to examine any broad patterns in all the data. Figure 8.33 shows the CA species plot with vessels grouped by type (name) and fabric (symbol). Impasto forms are clearly visible in the top-right corner of the graph whilst coarsewares and buffwares are closely grouped in the centre, with a mixture of imports found in the bottom half. Linked to this observation is the greater number of forms for serving and eating (platters, bowls, dishes, cups and open vessels) in Black Gloss, Italian Terra Sigillata and Thin-Walled Wares in the bottom half of the plot, whilst vessels linked with pouring and drinking – flagons, jugs and skyphoi – are all to be found in the top half. These patterns largely reflect the importance of time on the fabrics and forms of vessels in use and could suggest a change in dining habits over time.

On the map plot (Fig. 8.35), those sites in reds were principally active only during the Iron Age. A further distinction can be made between those sites in yellows, greens and light blues with greater numbers of imported eating and serving vessels than those in dark blues and purples with greater numbers of pouring and drinking vessels. Apart from a concentration of light blues north of Iuvanum there do not seem to be any discernable spatial patterns.

Any further exploration of the patterns of use must eliminate the assemblages’ strong chronological structure. To achieve this I will consider vessels by different groupings of fabrics:

- **Iron Age (Figs. 8.36 and 8.37)** – Impasto
- **Late Iron Age (Figs. 8.38 to 8.43)** – Impasto and Black Gloss
- **Hellenistic (Figs. 8.44 to 8.49)** – Black Gloss, Buffwares, Coarsewares and Amphora
- **Roman (Figs. 8.50 and 8.51)** – Imports (ITS, IRSC, TWW), Buffwares, Coarsewares and Amphora
Figure 8.36. CA bi-plot of assemblages by form for the Iuvanum Plateau, Impasto only (57% of the inertia accounted for by the first axis, 22% by the second).

Figure 8.37. CA map plot of assemblages by form for the Iuvanum Plateau, Impasto only.
The correspondence analysis of Iron Age ceramics shows a clear distinction in the x axis between tablewares – jugs, bowls, dishes, cups, and other open vessels – on the left, and storage and cooking forms – jars and dolia – on the right (Fig. 8.36). This perhaps suggests that there was a delineation of different types of site based on function and the activities undertaken therein, rather than status or another aspect of identity. It should be noted though that there were only 88 impasto sherds in total from the survey whose form could be identified.

Considering the map plot the yellows and reds can be identified as possible storage sites whilst the blues and purples may represent more general domestic sites (Fig. 8.37). The small data set makes it difficult to convincingly identify spatial patterning. However, the yellow circle of site 5002, notable for the 23 sherds of dolia recovered by the survey, in the south of the image does lie on the flank of the Monte di Maio hills upon which lie a string of hillforts.
Figure 8.38. CA bi-plot (1st and 2nd axes) of assemblages by form for the Iuvianum Plateau, Black Gloss and Impasto only (33% of the inertia accounted for by the first axis, 25% by the second).

Figure 8.39. CA map plot (1st and 2nd axes) of assemblages by form for the Iuvianum Plateau, Impasto and Black Gloss only.
Figure 8.4. C±H map plot (1C and 3H axes) of assemblages by form for the Livuannum Plateau, Impasto and Black Glass only.

For the first axes, 13% by the second.

Figure 8.40. C±H-plot (1C and 3H axes) of assemblages by form for the Livuannum Plateau, Black Glass and Impasto only (33% of the inertia accounted.)
Figure 8.42. C stands for the Luminum Plateau, Impasto and Black Cross only, for the first axis, 13% of the second, for the Luminum Plateau, Impasto and Black Cross only, 23% of the inertia accounted for by the first axis, 34% by the second.
The correspondence analysis for Impasto and Black Gloss (to represent as best as possible the late Iron Age) is displayed using three axes representing 73% of the total inertia (Figs. 8.38, 8.40 and 8.42). Each axis shows a different aspect of the assemblages: the first divides the samples into Black Gloss forms (on the left of Figs. 8.38 and 8.40) and Impasto forms (on the right of Figs. 8.38 and 8.40). As was seen above, storage vessels are furthest to the right, finer vessels for eating, drinking and specialised activities are furthest to the left, with jars, used for a wide range of activities, found in the centre. The second axis suggests that there are potentially two types of assemblage making use of the same forms, but in different fabrics – the first makes use of a variety of Black Gloss forms for eating and drinking activities whilst storage and cooking activities are conducted with impasto ceramics, the other uses only impasto fabrics. Intriguingly, dolia are associated with the first grouping, this suggests a two-tier site hierarchy, perhaps based on status (elite and non-elite) or function (central and satellite). Finally, the third axis shows little variation apart from a difference between sites with impasto jugs and those with Black Gloss jugs.

On the whole the distinctions visible from the bi-plots are not related to any strong spatial patterning. In the map plot of the 1st and 2nd axes (Fig. 8.39) there is good representation across the whole of the survey area of pinks and reds (linked to more Impasto forms) and blues (linked to the Black Gloss forms). The map plot of the 1st and 3rd axes (Fig. 8.41) shows predominantly blues centred around Iuvnanum with reds and yellows in assemblages on the outskirts of the Iuvnanum Plateau. This could tentatively be linked to more agricultural, utilitarian assemblages represented by the yellows and, perhaps, wealthier households closer to the sanctuary taking root at Iuvnanum at this time. The final map plot of the 2nd and 3rd axes (Fig. 8.43) shows the heterogeneity of the different sites with a wide variety of different colours and should caution against the over-emphasis of observable patterns in this period.
Figure 5: CA map plot (1st and 2nd axes) of assemblages by forest for the Livuim Plateau, Impalpo and Limpo excluded.

Figure 8: CA bi-plot (1st and 2nd axes) of assemblages by forest for the Livuim Plateau, Impalpo and Limpo excluded (≥8% of the inertia accounted).
Figure 6.4.7: CA map plot (1st and 2nd axes) of assemblages by form for the Luvianum Plateau, Impasso and Imporl excavated.

Figure 6.4.6: CA bi-plot (1st and 2nd axes) of assemblages by form for the Luvianum Plateau, Impasso and Imporl excavated (31% of the inertia accounted for by the first axis, 11% by the second).
Figure 8.48. CA bi-plot (2\textsuperscript{nd} and 3\textsuperscript{rd} axes) of assemblages by form for the Iuwanum Plateau, Impasto and Imports excluded (12\% of the inertia accounted for by the first axis, 11\% by the second).

Figure 8.49. CA map plot (2\textsuperscript{nd} and 3\textsuperscript{rd} axes) of assemblages by form for the Iuwanum Plateau, Impasto and Import excluded.
The correspondence analysis of the possible third to second century BC material shows effectively the differentiation in assemblages that seems to have started to emerge at around this time. On the bi-plots, the 1st axis splits those forms that might have been used in agricultural production – dolia and amphoras – or were showing a greater level of consumption in fine wares and imported produce – again amphoras, but in non-local fabrics – with what might be considered a more domestic assemblage – primarily coarsewares (Figs. 8.44 and 8.46). The 2nd axis bolsters this description with coarsewares and dolia on the positive side and buffwares, Black Gloss and amphoras on the negative (Figs. 8.44 and 8.48). In effect this divides the sites into three overlapping groups – domestic sites, production sites and consumption sites.

The map plot highlights another dimension not visible in the bi-plots (Figs. 8.45, 8.47 and 8.49). Reds and oranges that might be considered agricultural production sites (see above) are found in those areas around or below 800m. This is approximately the current altitude limit for oleo- and viticulture and certainly these locations would have been better suited for these crops in antiquity (due to fewer frosts). Yellows and greens that can in turn be linked to sites of greater ceramic and imported consumption are quite widespread, but there is a spread across the area directly east of Iuvanum. This is an area that seems to have seen substantial growth and development of the land between the Iron Age and Roman period (see Chapter Five). Potentially the results of this analysis might be linked to the growth of new estates, producing in new ways and corresponding households with an increased connectivity to the wider region.
Figure 8.50. CA bi-plot of assemblages by form for the Iuvanum Plateau excluding Impasto and Dolia (34% of the inertia accounted for by the first axis, 11% by the second).

Figure 8.51. CA map plot of assemblages by form excluding Impasto and Dolia for the Iuvanum Plateau
This final analysis considers the ceramics in circulation in the first century BC, dolia have been excluded due to the skewing effect they have on the distribution, so that variation within the rest of the assemblage can be displayed. The most striking part of the CA bi-plot (Fig. 8.50) is the top right quarter of the graph which is occupied by imported finewares (Italian Terra Sigillata, Internal Red-slip Cookwares and Thin-Walled Wares) and amphorae (a mixture of imported and locally produced). Black Gloss forms are notably separate from these imports, instead they are intermingled with the coarse- and buffwares. This in many ways parallels the argument made by Roth (2007; 2008) that Black Gloss should not be seen as an elite form of material culture. There are further implications for its use as a comparative fabric, at least in central Adriatic Italy, to the diagnostic Italian Terra Sigillata, widely seen as a like-for-like replacement around 30 BC.

The map plot (Fig. 8.51) shows a strong clustering of dark pinks and reds, which can be associated with the imported forms, around the developing centre of Iuvanum, especially to the north of the site. Elsewhere there are a smattering of greens, yellows and blues that further reinforces the diverse nature of the assemblages. Greens (in general associated with flagons, jugs, kyphoi and other closed vessels associated with liquids) are found only in the north eastern sector of the survey, but there is no apparent reason for this loose clustering.

8.8 Discussion of Results

The three sets of analyses of fabric groups, fabric classes and forms have highlighted the high level of variance within the three field surveys studied which changes depending on the scale, period and subject matter of each individual correspondence analysis. In itself this demonstrates that the application of normative site hierarchies do not exploit the full potential of intensive fieldwalking surveys, but more problematically they obscure the material realities of diverse households. The structure of this discussion is to take in turn the three aspects of identity pinpointed in the introduction of this chapter – economic and social equality, agricultural practices and group identity.

8.8.1 Economic and Social Inequality

Imported finewares provide a good starting point from which to consider economic inequality as they can be considered to be a luxury (their forms are mostly served by
locally produced Coarse- and Buffwares) and both their production and transport would have required greater resources. However, their distribution can also be shown to have been strongly linked to trade routes, particularly maritime ones, thus the Lower Potenza (figs. 8.2 and 8.3), the only survey block adjacent to the sea has a substantially higher number of imports, in both the Iron Age and Roman period, than any other of the study areas. When the skewing effect is removed by excluding the Lower Potenza from analysis the general impression is that assemblages from the four remaining survey areas are quite consistent in their composition (in terms of fabric groups) – the correspondence analysis groups imported finewares in the same area of the graph as locally-produced ceramics (fig. 8.4) and the broadly similar sample locations demonstrated by the light blues and purples spread across the map (the significant difference seems to be one based on date rather than differential access). A similar pattern emerges in the study of fabric classes in the area of the Sangro Valley area, there is very little variance in the assemblages caused by the presence or absence of finewares. To put this more simply, access to imported finewares seems to have been restricted by geographical location and access to trade routes rather than to the wealth of a particular household. This is in keeping with the argument forwarded by Roth that Black Gloss should not be seen as a form of elite material culture; pottery was cheap in all its forms.

Amphorae provide a different indicator. They could be taken to represent the movement and consumption of food products (most likely oil, wine and fish products). As with imported finewares, access seems to have been highly important – demonstrated in the Lower Potenza with high levels of Greek transport amphorae during the Iron Age and a spectrum of Italian, Spanish and African amphorae in the Roman period. However, when the Lower Potenza is excluded, amphorae can be shown as a major cause of variation between assemblages (fig. 8.4). In both the Upper Potenza and the Iuvanum Plateau a small number of locations can be identified as having high percentages of amphorae (shown in pink on fig. 8.5), in particular the fields PVS 00-F27, PVS 00-K12, PVS 00-K7, ISP 3023. The assemblages of these fields are curious in that more than 40% of sherds were from amphorae and another 40% of sherds were of Buffwares (compared to average values of 5% and 25% respectively from the three surveys combined), even odder was the almost complete lack of coarsewares (normally the bulk of any assemblage) and the lack of any other type of imported material. It thus seems reasonable to conclude that these finds might relate either to the production of amphorae, the packaging of produce into amphorae
(neither seem likely in these upland areas, all the more so when similar assemblages are not present in the Middle Potenza or Middle Sangro), or to a secondary use of amphorae, perhaps as field drains or funerary contexts, rather than an indicator of wealth or status.

If the composition of assemblages does not demonstrate economic inequality then the size of assemblages might. Yet here there is the problem of lacking data on the size of the household and length of occupation compared to the size of the house or plot. With very limited excavation of what structures may underlie survey scatters and a host of preservation issues it seems unwise to draw conclusions from these data.

In terms of the specific ceramic forms utilised divisions within the samples related to economic inequality may have been present during the Hellenistic/Republican and Late Republic/Early Imperial period. In the Hellenistic/Republican period this is over access to Amphorae, particular dining vessels in Black Gloss (bowls, dishes, cups, skyphoi and unguentaria) and a range of undefined Buffware vessels (open vessels, closed vessels and lids) that perhaps relate to serving food. This collection of vessels may thus be evidence of a different form of eating and dining, but the exact sites involved changes depending on which two axes are considered making it difficult to pinpoint any one assemblage as significantly different at this time. During the Late Republic/Early Imperial period a similar dining assemblage is observable that replaces many of the Black Gloss vessels with imports, particularly in Italian Terra Sigillata, this also coincides with the introduction of several new forms such as platters for serving food and cliban i for cooking. It is immediately apparent that sites with these kinds of pots do have a strong spatial patterning that is centred to the north of the munici pium of Iuvanum. It is possible that in this period social inequality is observable between the rural outlying areas and the centralised suburban areas.

These observations need not imply that there was little or no difference in status, although this is certainly one possible conclusion, at least in terms of the consumption of ceramics. It could be instead that this is a pattern born of high levels of social mobility - wealth may be contingent on the good fortune or skills of single generations rather than restricted to a few long-lived households.
8.8.2 Agricultural Practices

Several scholars have drawn attention to the role that control of food surpluses play in creating social inequalities and hierarchies within complex societies (e.g. Halstead 1994). Given (2004a) suggests within this that the act of storage can be used to study identities because it can ‘embody a head of household’s prudence and care, or the power of an elite over its subjects, or the proud memory of a family’s hard work during the harvest.’ Examining how food-stuffs were stored may therefore provide a means of considering the level of social inequality within a society. Relating this to survey evidence, the principal storage container of both the Iron Age and Roman period was the dolium – a giant storage jar with a volume, perhaps, of 500 – 1000 litres or more.

In the analysis of forms across the Iuvanum Plateau, dolia are found to occupy a section of the correspondence analysis bi-plots apart from all other vessel forms in all periods (figs. 35, 37, 39, 41, 43, 45, and 47). This would suggest that the storage of surpluses, whether for risk-buffering or exchange, was kept separate from other activities (that might leave a ceramic trace). This is exemplified by one site – ISP Site 5002 - which has a particularly odd assemblage of 2 Black Gloss sherds, 72 buffware sherds, 7 coarseware sherds, 43 impasto sherds and 23 dolia sherds. Similar site assemblages are found in the Middle Potenza PVS 01-F23 which has 29 dolia sherds in an assemblage of 177 sherds and in the Middle Sangro SVS Site 101 which has 15 dolia sherds in an assemblage of 205 sherds. Comparisons can be drawn with the fields noted above that were especially high in amphorae and it seems likely that this was some kind of dedicated storage and/or agricultural processing site, perhaps (due to the limited occurrence) used at the level of the community, rather than the household. Elsewhere the numbers of dolia are generally below 10 sherds per field/site except in the Lower Potenza where there are 10 locations, almost all of which are linked to high numbers of amphorae. Here there seems to be a rather different agricultural system that is much more orientated around producing oil and wine for export and hence has higher numbers of vessels for storing and transporting liquids. In summary, there is no clear evidence from the surveys of the centralisation of storage facilities, instead storage facilities seem to have varied, but perhaps have been linked to the size of the household and the land which they farmed. This pattern was disrupted by occasional large storage facilities, but with no excavation of these sites it is difficult to consider what role they played. It must also be accepted that the unsurveyed hilltops, on which fortifications were built, may have had significant storage capabilities. It can be seen
that households undertook different activities at different locations, but identifying social inequality and hierarchies remains elusive amongst the rural population.

8.8.3 Group Identities

If it is difficult to trace firm distinctions between the people that lived in any one area it is perhaps possible to draw out their communal interactions and sense of group identity. The ISP and SVS provides a dense area of well studied assemblages and the consumption of these fabrics might be considered a means for looking at local networks (although obviously only those that were engaged in the production, distribution and consumption of ceramics, undoubtedly these were used in relation to some, but not all other materials). In the Iron Age the CA analysis points towards some loose clustering of local fabrics, but the most common fabrics are widely distributed across both survey areas. This suggests a network that has regular links across and along the Sangro Valley with stronger or more permanent ties at a very local level (i.e. no more than a few kilometres).

By the Hellenistic and Roman periods an entirely different set of networks seems to have developed. Firstly, the locally produced coarsewares and buffwares show divergent patterns between the Middle Sangro and the Iuvanum Plateau, the former area is dominated by the presence of Regional Coarseware 1 and Regional Fineware 1 while the latter area appears to have access to a wide range of local ceramics. The regionally produced fabrics of the Hellenistic Period (i.e. Black Gloss) also follow this pattern with the Middle Sangro utilising a different set of fabrics to the Iuvanum Plateau which also had greater variation within it. There is some indication of this same divided pattern in the supra-regional finewares of the Roman period, but both sides of the River Sangro have fractured distributions.

Considering these various patterns in terms of group identity it can be proposed that a number of small but interconnected groups were present in the Sangro Valley during the Iron Age. By the Hellenistic period (c. late 4th-2nd centuries BC) and continuing into the Roman period a division had occurred in the way that local and regional pottery was produced and marketed that with little material moving across the River Sangro – a major change in group dynamics in the area. In the Middle Sangro area this led to some standardisation of fabrics (perhaps linked to a centre on Monte Pallano?). On the Iuvanum Plateau there was a diversification of fabrics as a number of small producers seem to have supplied the population. This might be evidence of
more groups or a looser group dynamic, alternatively it might equally reflect a wider 
range of archaeologically identifiable clay sources. Regardless, there does not appear 
to be centralisation in the distribution of pottery fabrics around Iuvanum. It may be 
that pottery suppliers were selling directly from their workshops or homes rather than 
at a regional market.

8.9 Conclusions

The novel analysis presented in this chapter set as its aim an exploration of identities 
in the data from field survey. The nature of fieldwalking evidence necessitated a 
framework based upon the production, distribution and consumption of pottery and 
how people make choices or are denied access based upon differences in economic 
and social equality, differences in practices (predominantly agricultural) and 
differences in group identity – not just which group, but the character and strength of 
the group. Perhaps not surprisingly for an exploratory analysis there are not firm 
conclusions that can be drawn, but some notable trends have been identified. In the 
Iron Age there are fewer identifiable differences within and between groups. Although 
this could be evidence of an egalitarian society (and this certainly fits with the trends 
obtained in Chapter Four), it is perhaps better to see it as one where inequalities are 
not transferred from generation to generation, and hence do not create visible 
differences in the archaeological record. Through the Hellenistic and into the Roman 
period variation starts to emerge in the composition of ceramic assemblages. This 
perhaps reflects differing accessibilities and tastes to foodstuffs, ways of cooking and 
ways of dining (cf. Cool 2006). The scale of the community provides an alternative 
perspective on identities with an ever increasing divide between the groups on either 
side of the Sangro Valley. We can also think in terms of the spatial distributions on the 
Iuvanum Plateau that seem to show a distinction between the suburbs of Iuvanum, its 
surrounding countryside and perhaps even a third group on the lower slopes 
concerned with specialised oil or vine cultivation.

That there are patterns manifest in the fieldwalking data at all suggests that more 
rigid practices of consumption were emerging by the Roman period. Hence we might 
think of more clearly defined identities in this period and perhaps also greater 
disparity. This happens at the same point that we might consider familial patterns of 
house and land ownership to be emerging (see Chapter Four). Yet, it can be seen from 
this discussion that there can be no straightforward description of identities in any
period, there is a high degree of variability that reflects the many dimensions of peoples' identities.
Chapter Nine: Conclusions

This thesis has sought to detail the different aspects of the life in central Adriatic Italy during the crucial formative period from the Iron Age to Augustan Age. Through synthetic analysis of buildings, monuments, fields, ceramics and identities it has questioned previous elite-dominated narratives and offered a model of the changes that occurred in people's everyday existence, and how this took place.

The introduction to this thesis sets out three research aims:

1. To develop a history of the diversity and breadth of the different experiences of life across six centuries in central Adriatic Italy,
2. To frame this area in its wider context within Italy, the Mediterranean and Europe,
3. To identify and develop new or alternative methods with which to interpret large bodies of data, particularly those from surveys.

Before addressing these it is first useful to summarise the results from the analyses conducted and to identify the themes that link them.

9.1 Chapter Summary

The core discussions comprised Chapters Four to Eight. In Chapter Four I analysed the development of houses through the concept of 'house biography' (Gerritsen 2003; 2008) to compare and contrast between different sites. Although the wide diversity present was perhaps the most important conclusion, four concurrent trends from the Iron Age to Roman period were emphasised:

1. There was a shift in the method of construction and the choice of materials used to more permanent structures.
2. The length of occupation or use of structures increased, from around one generation to as much as several centuries.
3. House structures grew in size.
4. Later houses showed more modifications and additions than earlier houses (presumably as a result of longer usage).
These trends could be related to changes in the use and ownership of land (tenurial systems), in the roles and responsibilities of different groups (community ties), and the linkages between households and the land (the ease of translocation, relocation or migration).

Chapter Five’s discussion of land-use again highlighted the diversity in types of change from the Iron Age to the Roman period. Blanket arguments of uniform economic and/or demographic growth were shown as too crude to be useful in interpreting change at the scale of the micro-region (at which fieldwalking surveys operate) and these interpretations largely lacked support from any part of the central Adriatic. Some trends were identified that suggested general changes in land-use that affected only the coastal area around Potenza or the uplands of the Sangro Valley that might be related to wider changes in Italic and Mediterranean economies, but these were tempered by the overriding importance of local circumstances. More likely, for example, the establishment of a colony (Potenza) or the personal fortunes of a local centre (the contrasting developments at the Iuvanum and Monte Pallano sanctuaries) were the key determinants acting on the development of different agricultural systems. Similar to the changes in house-use, land-use appears to have been deeply tied into the social mechanisms of tenurial systems, the relationships between different groups in society and, potentially, the levels of population movement in any one particular area (although these are of course hard to trace).

Chapters Six and Seven moved beyond household economies to focus upon landscape aspects of the religious sphere, in particular, the role of the dead and the places and nature of conspicuous rituals. These, perhaps surprisingly, were shown to take quite contrasting trajectories. Religious sites or sanctuaries become gradually more fixed in people’s landscapes being instantly recognisable as religious through their architecture and use of place by a range of locals (insiders), travellers and migrants. Conversely, cemeteries disappeared from group consciousness, as large visible ‘communal’ cemeteries generally fell out of use from the start of the fifth century BC in favour of small private ‘household-sized’ burial groups.

The cemeteries of the Italian Iron Age were large, often monumentalised and highly visible. There is no intercutting even when there are no tumuli or other markers and it is certain that knowledge of the whereabouts and meaning of cemeteries and burials within would have been widespread within the community. Gradually, and perhaps unexpectedly, all but a few of these cemeteries dropped out of use. The cemeteries of
the final four centuries of the first millennium BC were characterised by their small size, the short period in which burials were made and their lack of prominence. Cemeteries were no longer the domain of the community, but instead they could be taken to relate to individual households. Very rich burials bucked this trend, tending to reuse some of the Iron Age cemeteries, as at Fossa. However, even here, great emphasis was placed on family over communal ties, with individual households perhaps laying claim to the past in a fashion that is quite distinct from the first groups of burials.

Despite (or perhaps even because of) the fixed and monumental cemeteries in the Iron Age, I argued that there were few permanent sanctuaries; instead, discreet, individual forms of deposition (involving portable items such as small statues and other simple offerings) might have been located at significant natural places (cf. Bradley, R. 2000) — certainly caves, springs and peaks, but also groves, outcrops, etc. These might have passed in and out of use as knowledge of them was potentially linked to only one or a few households that were continually growing, moving and dying. By the Roman Republican period, some of these sites had become fixed, clearly delimited by large terraces, monumental buildings and highly visible in people’s landscapes. By this point votive deposition was an individual act carried out in a communal setting (rather than a personal or household setting), creating an arena in which identities would be displayed.

Finally, Chapter Eight utilised a newly designed GIS-based method to track changing household networks and identities in the Sangro Valley. The analyses demonstrated the probable existence of local networks that supplied local, regional and imported ceramics. Between the Iron Age and Roman periods (although the data are too coarse to identify if this was a sudden or a gradual change) a fracture appears to occur in these networks along the line of the River Sangro that can perhaps be related to the growth of centres at sanctuaries on either side of the valley (Iuvanum and Monte Pallano). These central places also appear to have had a role in defining zones of different household consumption with possible ‘suburban-type’ living in the immediate surroundings of Iuvanum and more rural, functional consumption further away. This ‘zoning’ is only visible in the data of the Roman ceramics and may relate to greater social differentiation during the Roman period.
9.2 Contextualising the Evidence – Aim One

Certain themes have recurred, throughout the chapters. Although these can be interpreted with regard to a specific class of evidence, they are better understood by integration of the different strands of the evidence analysed.

9.2.1 Communities and Households

The long period of the sixth to first centuries BC has been recognised as marking a transition from a kinship clan-based society to a more individualistic state-based society (Bradley, G. et al. 2007). Scholars have generally concentrated upon textual, epigraphic and funerary evidence (specifically data from grave goods) to justify these claims (Isayev 2007b: 7-11). My analysis of burials took a new trajectory in examining the practices involved, the landscape role of monuments, and the context of other forms of ritual, deposition and construction (notably votive deposits and sanctuaries). The change from communal necropoleis in favour of elite monuments or small household cemeteries is similarly paralleled by the change in communal house construction to household-based differentiated buildings by the end of the study period. This increasing differentiation between households can also be seen in the identities traced in the field survey evidence from the Sangro Valley: although the chronological resolution is lower (i.e. Iron Age/Roman) it would appear that differentiation in household consumption patterns had emerged as a result of changes in the social structure that again emphasised the developing importance of the household over the community.

Two trends buck the movement from community to household: the construction of sanctuaries from the third century BC and the processes of municipalisation in the first century BC. Monumental building at sanctuaries required huge expenditure of resources and might have been paid for in a number of ways by individuals, families, subscriptions, or other groups such as the local community. This group-oriented display, albeit with some individuals being more prominent than others, highlights the complex process by which competing social structures were expressed in different realms. Changes in funerary culture did not coincide with the immediate construction of temples at religious sites, nor did they match the transition from timber to stone in house construction. The archaeological indicators are less clear than the textual and epigraphic sources (see the thorough discussion in Bispham 2008): the municipalisation and rapid urbanisation of parts of central Adriatic Italy would
appear to be a result of external pressures as Roman and Italic political, economic and social spheres collided with chaotic consequences. Thus, there is a gap in our understanding as to the motivations and pressures for non-elites to support (or indeed resist) the creation of towns and their administrative and social institutions (i.e. the creation of new communities). The relationship between community and household was always complex and both were subject to local, regional and supra-regional (i.e. Italy and the Mediterranean) changes. Currently, only an incomplete picture showing a gradually growing tilt towards individualism can be traced.

9.2.2 Tenure and Territory

Ingold defines tenure as 'a mode of appropriation', whereas territoriality is 'a mode of communication' (1986: 133). He further notes that the ownership of territory entails obligations of entry and use and hence denotes not so much a division of resources, but divisions between givers and receivers, hosts and visitors. The boundaries of territory can be more or less flexible and more subject to change depending upon the opportunities and pressures at any one point.

Following from the discussion in Chapter Two the dialectic between community and household can be considered with respect to the aspects of territory described by Ingold (1986: 133): the group that is appropriating (Scale), the resources that are divided (Resources), the access that is afforded to outsiders (Accessibility), the means by which it is communicated (Communication), and the length of time that territories are in existence before extinction, modification or re-appropriation.

In the data relating to Iron Age houses, (Chapter Four) I argued that houses (suitable for no more than a handful of people – e.g. a family) were invariably built upon 'virgin soil' utilising the help of the wider community. After one (or a few) generation(s), each house would discontinue in use and in some cases there is strong evidence for the deliberate dismantling of the house. In central le Marche (where the archaeological record is fullest for this period), the house sites might then be covered by a necropolis that, on the basis of the number of burials, was in use by a much larger part of the community than the original house. Necropoleis across the whole study area, in contrast to the houses, were large in terms of internments and, with their tumuli, would have been an ever present marker in the landscape. The study of land-use in the Iron Age (Chapter Five) would suggest that there were many 'empty' or uninhabited areas of land available, perhaps occupied by forest or scrub. Finally, the analysis of
field survey assemblages suggests few differences in consumption practices between individual households. On the basis of these strands of evidence I wish to suggest a speculative model by which land was occupied in the Iron Age (c. sixth to fourth centuries BC):

The household took over tenure of a parcel of land with the consent and help of the wider community, and this would be an area that had been previously only lightly used or else unoccupied and would also have required clearance and preparation for agricultural purposes. At some point, perhaps as part of the creation of the household territory, certain significant places would be sought out that would be suitable for religious activity. During the life of this household, resources – certainly labour, construction materials and food – would be requisitioned by the community for, amongst other activities, the creation of new households. The territory of the household would be communicated by the evidence of their practices – their livestock, their fields, their managed meadows and woodlands, their ritual sites (that were in current use). Boundaries may thus have been highly flexible and subject to expansion and contraction, much as the household would have been. When the household or generation died, after 20-100 years, its territory was extinguished (instead of propagated by the descendents). The house was removed, the sites of deposition forgotten and (some of) the fields abated. In its place a long standing monument to the community was erected in the form of tumuli for the dead. In this schema the territory of the community is marked in two main ways: by necropoleis that signify the tenure of a particular group, and by the more or less homogenous farms of its constituent households that demonstrate the parts of the territory currently in use.

Sanctuaries cannot be clearly defined in this period, but there was deposition involving small, portable material culture in certain types of places – springs, peaks, groves, caves and other 'natural places' (Bradley, R. 2000). These acts of deposition and the practices related to them, although poorly attested archaeologically, on the whole were repeated in any particular place no more than a handful of times and would have left little or no visible trace on the surface, especially after a year or two’s weed growth (although the long temporal sequences from caves are a notable and importantly different trajectory, and here the antiquity of use would have been highly visible, implying that they were more 'communal' than other sites).

However crude or imperfect this reconstruction of land relations may be, it is clear that by the organisational reforms of the Augustan period a significant shift had taken
The fieldwalking data suggest that the management of the land had changed: more areas were in use together and periods of abatement were probably reduced, although the intensification of use in some areas might have actually decreased due to a possible movement towards extensive forms of farming. The reduced availability of land is likely to have had knock-on consequences. In the central Apennines hazards to farming include erosion, earthquakes, landslides, avalanches, drought and forest fire; some areas will be more susceptible to these factors. The quality of the land can also be determined by environmental variables — altitude, slope, aspect, rainfall — plus social and economic variables such as accessibility and connectivity to local and regional networks. A denser occupation of the land would have inevitably created greater distinctions in plot productivity and desirability and may have removed a balancing force in a more egalitarian society. The houses of the last few centuries BC (or at least the small sample known through excavation) were in general constructed of more durable stone and tile, were larger and were in use over several generations, if not by several distinct households. This certainly indicates that investment in property, that could be passed from one household member to another, had become a more common part of society, and if the houses truly outlived households it is evidence of a phenomenon not visible in the Iron Age — signifying probably the buying and selling of land and/or property. I argued above that if in the Iron Age tenure was governed by the community, by the Roman period land transactions might have bypassed this social group, instead being conducted between individuals, families or households. The work of ethnographer Robert Netting on smallholders in state and stateless societies in sub-Saharan Africa and southeast Asia is particularly interesting as a parallel here. He suggests that ‘where land is a scarce good ... rights approximating those of private ownership will develop’, (1993: 158). Generally, changes seem to relate directly to the intensity (specifically the length of fallow periods) that land is farmed (ibid.). A long fallow period of several years will tend to create problems for an individual household as members grow old, die or move away, so instead the household will assume tenurial rights only when it is actively farming a plot. A short fallow period of no more than a couple of years will require far greater concentration of resources by a household on one location and as well as being easier to manage the household will be far less inclined to give up tenure after such significant investment. To keep plots of land in use, intensive techniques such as manuring might be more frequently utilised, meaning potentially more ceramics to be distributed as a by-product of this activity. This is precisely what can be seen in the
counts and weights (where available) by field between the Iron Age and Roman periods.

This provides one strand of explanation as to why large monumental communal necropoleis saw far less use after the sixth century, with burial far more focussed instead upon smaller cemeteries that lacked lasting markers. The re-use of the tumuli necropoleis for very rich burials attests to a later stage of this change: by burying members within the monuments that signified the tenure of the community, the elite may have been able to subvert their meaning and establish themselves as the inheritors of tenure of an 'ancestral' territory, however genuine this may be. With the upsurge in individualism the sanctuaries and towns could be seen as new expressions of the community, ones that were concrete, visible and accessible. Instead of marking places that had been occupied, they delineated with their physical boundaries areas that were sacrosanct from appropriation. Within both there was space for competitive, individual display, but the overall effect would have been of common purpose rather than divided lands. I therefore argue that the evidence points towards a significant change in the way that land was conceived of, owned, occupied and used between the Iron Age and Roman periods, and is one, that parallels the changing relationships between communities and households.

9.3 Central Adriatic Italy in its wider context – Aim Two

This increasing importance of households at the expense of communal groupings and a corresponding movement in tenure to households, reflects how ‘private property’ and ‘individuals’ emerged out of more egalitarian kinship-based social structures. Scale is an important consideration as we see that the trajectories individual communities followed – e.g. those around Ancona and Monte Pallano – were highly dependent on local circumstances – ideas of ‘Greekness’, the affordances of the respective environments, and varying access to imports. The wider patterns still require some explanation. In particular, trends such as the decline in funerary tumuli can be traced across all of the study area and are also apparent in other parts of Italy, central Europe, and the Aegean. In all areas the change is largely around the end of the sixth and start of the fifth centuries BC (see respectively Izzet 2007; Babić 2002; Morris 1992), although they all follow different paths after this period. Morris, in the fullest account of these changes, interprets the Greek world as changing due to a movement towards group-oriented display that favoured the expression of communal
ideals, most explicitly through the more egalitarian *poleis* (ibid. 149-155). Izzet’s model of Etruscan society follows a similar bent as she argues that changes in society in the mortuary, sacred and domestic spheres are linked to a developing ideology associated with the creation of Etruscan cities and the new differences and dynamics inherent in these sites. Central Europe provides several alternative models: traditionally changes were linked to the severance of centre-periphery trade-links with the Mediterranean (e.g. Frankenstein and Rowlands 1978; Champion 1989) with the focus on Greek imports as ‘prestige goods’ (see discussion in Babić 2002; Thurston 2009). Other models such as Hedeager’s (1992) model of change in Denmark and Gosden’s model for northwest Bohemia (1985) have focussed upon models of production. Gosden argued that an increased emphasis on local production (such as ceramic industries) can be seen as an instigator for change from Hallstatt D to La Tène A (ibid. 489-495) that also saw increased population densities and intensity of land-use. Hedeager saw the early Iron Age as a labour-intensive, but largely egalitarian, society (1992: 240-242), that in the centuries after 500 BC became increasingly hierarchical with a new system of agricultural production and a distinct elite class after all available land had been filled (ibid. 242-246). Increasingly, though, archaeologists have reconsidered changes in material culture (that have been used to identify different social systems) in terms of changing consumptive desires (Dietler 1990) or communal ideals (Babić 2002: 82-3). Importantly, the link to urban structures is much weaker in these societies given that there is an absence of cities, and oppida, ill-defined and widely varying as they may be, did not reach their most developed phases until the second and first centuries BC (at around the same time that towns start appearing in central Adriatic Italy). Furthermore, the interpretations from the classical world are exactly the opposite of my interpretations. Morris emphasises the problems of assigning changes to egalitarian *poleis* development, when they are equally apparent in aristocratic ethnoi and he provides a possible solution by suggesting that increasingly egalitarian structures squeezed out individualising display within communities, before they started to return again in the fourth century BC as elites attempted to show their prominence at a higher, pan-Hellenic, level.

This provides a framework in which to position the developments outlined above (Section 9.2). It seems that ideologies of community, household and the individual were quite fluid around the time of the sixth century BC. Many variants likely existed between the societies of Europe and the Mediterranean and the economic and social
networks that connected them provided a means by which new ideas could pass and be interpreted at a local level. At this stage the social structures were local in their outlook (but not isolated). From as early as the fifth century communities and individuals were engaging with each other (often violently) on an ever increasing scale. This more globalising perspective provided new opportunities and might be seen as a contributing factor in the development of cities or, in the central Adriatic case, more individual systems of land tenure (with a market extending far beyond kinship structures, communal tenure might become subverted and/or redundant).

It is not surprising that there was little urbanisation in central Adriatic Italy until the second and first centuries BC (and even then on a very limited scale), in contrast with the Greek, Etruscan or Latial models. The area has few urban areas today, nor did it possess them in the post-Roman period, and such developments have always tended to be towards the coast or some of the intermontane basins. The explanation is both apparent and simple: the land is not able to support such high concentrations of people, hence the region’s links to pastoralism and other rural activities. I suggest then that although the pressures and ideologies apparent during the Iron Age to Roman periods did not stimulate the growth of cities (as for example in Etruria), they still fostered population movements, both enforced and by choice. As discussed in Chapter Five, wars, enslavements and colonisations increasingly led to higher numbers people being born and dying in different locales with a peak probably sometime during the civil wars and veteran settlements of the first century BC (by which time the region was more fully integrated into the wider Mediterranean world as is shown from the wide range of imported ceramics present in the field survey data for this period). As these people invariably moved as individuals or families (and I have not even touched upon economic or social migrants that would increase numbers yet further), they would sever ties with their former communities. Although they would undoubtedly foster new links to the communities that occupied the locale to which they moved, these would not be based on a history of kinship interactions. In essence the ties that bound the communities together in the Iron Age were, in part, dissolved by the physical breakup of the groups. The population movements also would have encouraged forms of land appropriation that relied more upon economic rather than social resources, as newcomers would lack this social capital.
9.4 New Methods for Old Data — Aim Three

A key consideration in this thesis has been to find new dimensions to the increasingly large datasets created by fieldwalking surveys. Chapters Five and Eight can be considered my main contribution to this aim. I have chosen to favour GIS models of field walking zones as a basis for creating detailed and wide-ranging analyses whose results can be quickly, easily and, most importantly, clearly demonstrated. Further, my use of GIS creates a framework within which datasets can be easily, expanded or modified and to which new datasets can be added.

I have demonstrated in Chapter Five that the use of thresholds (proposed by Lock and Daly 1999; Lock 2008) is a powerful way of identifying different types of change in fieldwalking survey data. Their particular strength is in not favouring analysis of just those fields that were designated sites, or those that produced diagnostic (but likely imported) ceramics (as either of these would require excluding the majority of the areas surveyed, if not also the majority of artefacts collected). Instead it encodes a measure of change into every surveyed field and hence opens up the possibility of considering different forms of land-use and agricultural systems. This change can then in turn be considered against the geographic features of the land, both environmental (such as slope and hydrology) and social (such as the proximity of settlement or accessibility).

My adaptation of Correspondence Analysis to create a method of displaying the results in cartographic form was very successful in identifying spatial patterns in the forms and fabrics used in varied locales and in different time periods. As an exploratory statistical method it is highly suited to archaeological datasets as they are often incomplete and asymmetrically described. The major drawback of the analysis is the requirement for large sample sizes meaning that probably only those fields that would likely be labelled sites are analysed. However, so flexible is the method in comparing suited assemblages (provided they are above a certain size) that it is relatively simple to include samples from different field surveys and could potentially include excavated assemblages.

The major characteristic of the new methods that I have pursued in this thesis is their target of analysis. Instead of focussing upon site hierarchies (that add a layer of interpretation that severely limits the potential for the comparison of field surveys), I have based methodologies around the irreducible pottery sherd. Hence, provided a
fieldwalking survey is conducted with an intensive strategy (so that the total number of different types of ceramics can be estimated by field), it can be compared to other surveys.

### 9.5 Reassessing the Roman Conquest

Having answered the questions of my research aims, I would now like to return to a key question that has dominated the research into central Adriatic Italy (but one that I have carefully kept in the background, see Chapter One): What was the impact of Rome? The major events that could be considered to have significantly changed ways of life in the study area are detailed below in Table 9.1.

#### Table 9.1. Relations between Rome and central Adriatic Italy

<table>
<thead>
<tr>
<th>Date</th>
<th>Event</th>
<th>Consequences</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>294 BC and after</strong></td>
<td>Annexation by Romans after Sentinum</td>
<td>Destruction and abandonment of hilltop sites (Oakley 1995). Adoption of Black Gloss ceramics and ‘Romanisation’ (Morel 1981); Ciuccarelli 2009. Construction of first towns, roads, field systems (Moscatelli 1991; 1995)</td>
</tr>
<tr>
<td><strong>202 BC and after</strong></td>
<td>Post-2nd Punic War expansion</td>
<td>Population growth (e.g. Lloyd 1995a), enrichment of the region (Bispham 2007) – greater numbers of imports, construction of monumental sanctuaries (Bradley, G. 2000).</td>
</tr>
<tr>
<td><strong>91-38 BC</strong></td>
<td>Social and Civil War period</td>
<td>Municipalisation and the construction of regional centres (Bispham 2008), Veteran settlements within selected towns (Keppie 1983).</td>
</tr>
</tbody>
</table>

The above is a historically-driven model in which waves of wars and colonisations are seen as the major stimulus of change. Few would accept this as bluntly as presented here, but nevertheless these are the events that still lie behind many archaeological analyses. My own conclusions, drawn above, allow some reassessment. I have stressed
that the major changes that affected people on a daily to yearly basis were: (i), a shift in importance from communities to household groups; (ii), the development of land ownership that can be linked to greater investment in property, changed tenure rights and forms of agricultural intensification and extensification.

Population growth could be a major cause of these changes, although the use of field survey-based settlement as proxies for population is problematic (Mattingly and Witcher 2004; Witcher 2006; Mattingly 2009). Furthermore, without highly precise dating it cannot be said if such a growth was caused by a yearly 0.1% growth (Scheidel 2004) or sudden waves of immigration (see Scheidel 2006); some combination is perhaps most likely.

Traumatic though they can be, few wars leave archaeological correlates (even the battlefield of Cannae is unknown) and rarely are destruction layers securely linked to sieges or pillaging. Wars may have caused long-term social imbalances through the enslavement of indigenous or invading groups or the removal of groups such as the elites or adult males, but at present these cannot be traced.

The construction of colonies of Roman or Latin settlers is the most visible representation of imposed Roman power. Far from leading the way in introducing Roman and Hellenistic culture (as has been suggested by Comella 1981 with regard to votive practices) none of the visible changes in settlement, material culture consumption, burial or religious practices have spatial correlates to these impositions. Land-use change at Potenza does appear to be significantly different, but this could in part be due to the land's coastal character, its suitability for drainage, and its ideal position on the Adriatic to access markets for its agricultural products. Greater study of other coastal areas is needed to understand whether the observed pattern developed because of the imposition of the colony or because of the characteristics of the land upon which it sits. In general, the colonies seem most likely to have integrated within existing networks and adopted a local character, albeit often with an urban form where none had existed previously. The construction of infrastructure has surely been overplayed; whilst it was undoubtedly beneficial, there were existing communication routes prior to the Roman conquest and the extension and dating of centuriation to the majority of the study area is highly doubtful (Barrington Atlas). Other forms of land division, ownership and agricultural system must have been more suitable in this mountainous terrain.
Municipalisation appears to have been the single most important change in the landscapes of central Adriatic Italy, since within less than a century the settlement system was largely rearranged around a system of c. 30 towns (7 of which were colonies), each with its own monumental forum, temples and local administration. The study of their impact on the countryside is still ongoing (see the work of Vermeulen et al. 2009), but around Iuvanum I have shown how these became centres around which identities and social networks were rearranged and which created new divisions of an urbanised elite and ruralised peasantry.

A final change especially relevant to the importance of communities and systems of tenure could be the imposition of new laws, particularly in the area designated ager Romanus. These might have rewritten property rights and allowed greater levels of migration rapidly, provided that they were accepted. Choosing to follow traditional rules and arbitrations, even if completely outlawed, is a common form of resistance as can be attested in many modern states (Given 2004a).

The initial conquest of Rome seems to have thus been largely in name only. The region’s integration came only gradually, retaining much of its character and social power. As Terrenato has suggested for Etruria (1998), most change probably took place at the level of a community, with some (such as those on the coast or in important intermontane basins) changing rapidly whilst others remained the same (the mountainous areas seem to change very little from the Iron Age to the Roman period and beyond). In many ways central Adriatic Italy is comparable to other problematic mountainous areas — north-west Spain (Orejas and Sánchez-Palencia 2002), inland North Africa (Mattingly 1992), and northern and western Britain (Mattingly 2006). None of these were urban when Rome encountered them and all took centuries to fully subdue and urbanise (if this took place at all). As has been observed elsewhere, Roman hegemony was often best suited to incorporating already urbanised territories of dense city-states (like its heartland of Latium, coastal Africa, coastal Spain and Greece).

### 9.6 Evaluating the Analyses and Future Directions

Clearly this study highlights several new avenues for research and gaps in archaeological knowledge that should be filled. Additionally, the analyses presented here are limited by the time period, study area, and choice of material and each should be expanded to produce a fuller narrative or synthesis.
Chapters Four, Six and Seven covering the houses, settlements, burial grounds and sanctuaries could be better situated with a dataset encompassing all of northern and central Italy. Many of the most prominent features, such as burial tumuli, or the small stone-built rural houses have wide distributions and the boundaries used in the thesis are necessarily restrictive in this regard. However, there are no central databases that describe the features of sites across the Italian peninsular for the Iron Age, Hellenistic or Roman periods. The compilation of data on rural settlement, hilltop sites, towns, cemeteries, votive deposits and sanctuary complexes from published sources and grey literature, although a massive task, would be of immense use for understanding how the many regions of Italy differ and what wider changes took place (as Taylor has shown for rural settlement in Roman Britain – 2007). Unfortunately, the current structure of Italian archaeology makes this an unlikely development for the near future. These topics would also benefit from greater comparison to regions outside Italy. Greece has long been recognised as having cultural similarities (although the relationship between the areas is much debated), but there is evidently a strong link between central Adriatic Italy and both the wider Adriatic basin (northern Italy, Istria and the Dalmatian Coast), and the Hallstatt Culture of central Europe as a whole (Switzerland, southern Germany, Austria, Slovenia). Although these similarities may have been noted in passing before (such as that between the Capestrano warrior and warrior statues on tumuli along the Danube) no thorough exploration exists of how the Italian Iron Age fits in with wider narratives of European Prehistory because it is seen as part of the classical world and therefore somehow different (Terrenato 2005).

In this thesis I agree (as have others before me, e.g. Witcher 2006) that fieldwalking surveys have been greatly underexploited due to a focus on settlement patterns above all else. I have shown that the evaluation of land-use proposed in Chapter Five, although generally successful, would be better considered if further datasets could be added. The analysis requires high quality data from intensive field-walking surveys – total collection being key for statistical validity. There are no more published surveys of this type from the study region that could have been included, but other Italian surveys that could be instantly added include the Rieti Survey (Lazio), the Sacred Landscape Project (Molise), and the Regional Pathways to Complexity surveys (Ninfa, Fogliano, Ostuni and Sibartide). Other potentials include the Agro Pontine, South Picenum, Upper Esino, Tuscania, Metaponto and Bova Marina surveys. Some potential problems of integrating new datasets into the analyses would be issues with different ceramic chronologies and the ubiquity of impasto and coarsewares, but these
should not be insurmountable. Certainly, the inclusion of more datasets would allow a
greater appreciation of the level and manner of land-use change that took place
between the Iron Age and Roman periods and would provide a source for
understanding questions of new regimes, new crops and new social organisations
(notably whether plantation-type slavery is archaeologically visible).

The Spatial Correspondence Analyses pursued in Chapter Eight could and should be
expanded to fully incorporate data from the Sangro Valley Survey dataset (much of
which was not available for analysis during the course of this PhD). This would far
ter better contextualise the significance of form choice. However, the full potential of this
analysis can likely only be achieved with larger sample datasets. Survey is perhaps not
the best source of this datatype given the difficulty of isolating periods and the
difficulties of identifying specific forms and fabrics from a fieldwalking context and
the analysis could equally be applied to assemblages drawn from excavation, although
the spatial patterns that might emerge would be dependent upon the strength of the
coverage of sites. A well excavated region such as the Vesuvian area might be a
suitable area to test. The analysis also has applicability at a range of other scales: it
could be applied to look at assemblages from houses, or even rooms within a single
town or it could be used to look at botanical samples across the whole of the
Mediterranean (see, for example, the recent work of Livarda 2008 who applies CA to
Roman and medieval 'exotic' and imported foods). In fact, given the importance of
conventional Correspondence Analysis across the social sciences for exploring
patterns, I see no reason why this spatial form might not be far more widely applied in
all manner of situations.

9.7 To Summarise...

This thesis has achieved two main goals. Firstly, it has shown that the synthesis of
archaeological datasets – survey and excavation, settlement and monument – is not
only possible, but necessary, if we are to create strong and testable archaeological
narratives. Secondly, it has demonstrated that through these narratives it is possible
to access social aspects of household, community, and land relations that are not
detailed as broadly in other sources of evidence (texts, inscriptions and visual
evidence). A final result was identifying the value of good data, but there are still a
lack of these new modes of data collection, in both excavation and survey. Arguably
what is most needed is a re-assessment of research approaches to a number of key
themes within Iron Age Italian archaeology and the framing of new research agendas between Italian and foreign scholars (cf. Haselgrove et al. 2001 seeking to redefine approaches to the British Iron Age). I hope I have demonstrated the potential and importance of studying largely rural non-elite populations and of revealing the complexity and importance of their lives' their relationship with their land, their neighbours and each other, and their situation within an ever-changing web of local, regional, Italian, Adriatic, Mediterranean and European networks and cultural ideas.
Bibliography


Betts, E., 2003b. The sacred landscape of Picenum (900-100 BC): towards a phenomenology of cult places. In J. Wilkins and E. Herring, eds. *Inhabiting*


