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ABBREVIATIONS
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ABSTRACT

Certain inbred strains of mice can be divided into two groups on the
basis of their submandibular gland (SMG) renin activity. High renin
producing strains have two genes Ren—I4 and Ren—2d, whereas low
producers have a single gene Ren—IC. To search for the presence of
regulatory elements involved in renin control, approximately 1Kb of both
Ren—14 and Ren—24 5 flanking sequence containing the major
transcription start-site P3 were fused to a "G-free" reporter cassette,
and the resulting templates transcribed in various nuclear-protein extracts.
In rat liver, mouse kidney and mouse testis extracts the Ren—24 promoter
was 2-fold more active than the Ren—I4 promoter whereas in mouse
liver, both promoters were transcribed equally well. Deletion-mapping
data are consistent with the presence of a functional negative control
element(s) within Ren—14 but not Ren—2d. Polymerase catalysed chain
reaction (PCR) generated deletions have shown that a fragment of 62bp,
containing only the P3 promoter, was sufficient for accurate in—vitro
transcription. Disruption of the P3 TATAAAA resulted in total loss of
activity. Deletion of an AP-2 consensus sequence from the Ren—Id
promoter had little effect on in—vitro transcription. Furthermore,
sequences 3’ to the Ren—I4 P3 start-site when positioned either upstream
or downstream to the Ren—I4 promoter/G-free fusion, appeared to have
a minimal effect on promoter activity suggesting that these regions are
not involved in in—vitro regulation of the Ren—I4 gene. Finally, patterns
of specific protein-DNA interactions observed with the mobility-shift
assays, are also consistent with an overall negative control hypothesis.



CHAPTER 1

INTRODUCTION

11 Renin-Angiotensin System

Renin [EC 3.4.99.19] is an aspartyl protease which plays an important role
in the maintenance of blood pressure (Davis, 1971; Cowely et al., 1971;
and MacGregor et al.,, 1981). The enzyme is stored in granules in
epithelioid cells of the afferent arterioles of the juxtaglomerular apparatus
in the kidney (Figure 1.1), and is confined to the secretory granules of
the granular convoluted tubules in the submandibular gland (SMG) of
high producer mice (Tanaka et al., 1980).

Upon release into the plasma renin cleaves angiotensinogen, a protein
produced under hormonal control in the liver, to angiotensin I the
N-terminal decapeptide. Angiotensin I is then quickly cleaved by
angiotensin converting enzyme (ACE) to angiotensin II, by removal of
two carboxy terminal amino acids (Page, 1939; Braun-Menendez et al.,
1940; and Skeggs et al., 1954) (Figure 1.2). Although angiotensin I has no
known biological activity, angiotensin II is a potent vasopressor (Cowley
et al., 1971) and is directly or indirectly involved in blood pressure
maintenance. First, angiotensin II has a direct vasoconstrictive action on
the arterioles, resulting in increased peripheral resistance and hence
elevated blood pressure. Second, it can also stimulate further secretion of
its primary precursor angiotensinogen, thereby enhancing the cascade.
Third, it can stimulate the secretion of aldosterone from the adrenal
cortex, resulting in sodium and water retention, which leads to a greater
blood volume and hence elevated blood pressure (MacGregor et al.,
1981).

The mechanism by which the kidney is stimulated to release renin has
been intensively studied. According to the barorecepter hypothesis, the
renal afferent arterioles and juxtaglomerular cells respond to changes in
vascular volume and pressure (Tobian et al., 1959; and Skinner et al.,
1964). Additional evidence that the degree of constriction of the renal
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