Title: Leukotriene E₄ is a full functional agonist for human cysteinyl leukotriene type 1 receptor-dependent gene expression

Authors: Holly R. Foster¹,²‡, Elisabeth Fuerst¹,²‡, William Branchett¹,², Tak H. Lee¹,²‡, David J. Cousins¹,²,³, Grzegorz Woszczek¹,²*

Affiliations:

¹ Division of Asthma, Allergy and Lung Biology, King’s College London, UK.

² MRC & Asthma UK Centre in Allergic Mechanisms of Asthma, UK.

³ NIHR Leicester Respiratory Biomedical Research Unit, Leicester Institute for Lung Health, Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, UK.

‡Present address: Allergy Centre, Hong Kong Sanatorium and Hospital, Hong Kong.

‡These authors contributed equally to this manuscript.

*To whom correspondence should be addressed:

Dr. Grzegorz Woszczek, Division of Asthma, Allergy and Lung Biology, King's College London, 5th Floor, Tower Wing, Guy's Hospital, London SE1 9RT, UK, tel.: 02071880597, fax: 02074038640, e-mail: grzegorz.woszczek@kcl.ac.uk
Abstract

Leukotriene E₄ (LTE₄) the most stable of the cysteinyl leukotrienes (cysLTs) binds poorly to classical type 1 (CysLT₁) and 2 (CysLT₂) receptors although it induces potent responses in human airways *in vivo*, such as bronchoconstriction, airway hyperresponsiveness and inflammatory cell influx suggesting the presence of a novel receptor that preferentially responds to LTE₄. To identify such a receptor two human mast cell lines, LAD2 and LUVA, were selected that differentially responded to LTE₄ when analysed by intracellular signalling and gene expression. Comparative transcriptome analysis and recombinant gene overexpression experiments revealed CysLT₁ as a receptor responsible for potent LTE₄-induced response in LAD2 but not in LUVA cells, an observation confirmed further by gene knockdown and selective inhibitors. Lentiviral overexpression of CysLT₁ in LUVA cells augmented intracellular calcium signalling induced by LTE₄ but did not restore full agonist responses at the gene expression level. Our data support a model where both an increased expression of Gαq-coupled CysLT₁, and sustained intracellular calcium mobilisation and extracellular signal-regulated kinase (Erk) activation, are required for LTE₄-mediated regulation of gene expression in human cells. Our study shows for the first time that CysLT₁ expression is critically important for responsiveness to LTE₄ within a human cell system.
Introduction

Cysteinyl leukotrienes (cysLTs) (LTC\(_4\), LTD\(_4\) and LTE\(_4\)) play pivotal roles in cell proliferation, differentiation, migration and regulation of immune responses implicated in a wide variety of disorders, including asthma, allergy, atherosclerosis and cancer\(^1\). CysLTs are products of the 5-lipoxygenase (5-LO) pathway. 5-LO converts arachidonic acid to an unstable intermediate LTA\(_4\), which is then conjugated to reduced glutathione by leukotriene C\(_4\) synthase to form LTC\(_4\). After transport to the extracellular space LTC\(_4\) is converted to LTD\(_4\) and then to the terminal product LTE\(_4\), the most abundant cysLT in biological fluids. The biological actions of cysLTs are mediated by 2 currently identified G-protein coupled receptors (GPCR): cysLT type 1 (CysLT\(_1\)) and 2 (CysLT\(_2\)) receptors. They differ in binding affinities for different cysLTs. CysLT\(_1\) is recognized as a high-affinity receptor for LTD\(_4\), whereas CysLT\(_2\) binds LTC\(_4\) and LTD\(_4\) with similar affinity. LTE\(_4\), the most stable of the cysLTs, binds poorly to the classical CysLT\(_1\) and CysLT\(_2\) and is also much less potent than LTC\(_4\) and LTD\(_4\) in inducing cellular responses \emph{in vitro}, showing a partial agonistic activity\(^2\)\(^-\)\(^5\). However \emph{in vivo}, it is LTE\(_4\) that has shown to be the most potent cysLT in eliciting influx of eosinophils and basophils into bronchial mucosa of asthmatic subjects and in enhancing airway responsiveness to histamine and increasing vascular permeability, suggesting the existence of one or more leukotriene receptors that have not been identified to date\(^6\)\(^-\)\(^10\). The potential presence of such a receptor has been demonstrated in CysLT\(_1\)/CysLT\(_2\) double knock-out mice\(^11\) but human data are lacking.

The observations that asthmatic airways respond with enhanced bronchoconstriction to inhaled cysLTs, especially to LTE\(_4\) in comparison with normal subjects\(^10\) and that
infiltration of airways by mast cells is associated with disordered airway function in asthma.12 Suggest that mast cells could be a potential target cell type expressing a putative receptor preferentially responding to LTE\textsubscript{4}. In fact, the possible existence of such a novel, LTE\textsubscript{4}-activated receptor has been suggested in human mast cells.13 In this study LTE\textsubscript{4} has been shown to be the most potent of cysLTs in inducing cell proliferation and activation of gene expression in human primary mast cells and LAD2 human mast cell line. LTE\textsubscript{4}-mediated activities were resistant to knockdown of CysLT\textsubscript{1} and CysLT\textsubscript{2} but were dependent on PPAR-\gamma signalling. Another study has suggested that the P2Y\textsubscript{12} receptor is required for LTE\textsubscript{4}-mediated responses14 but these observations have not been confirmed15. In order to identify such a receptor responding to LTE\textsubscript{4} we studied human mast cells and used transcriptome profiling by microarrays, recombinant GPCR overexpression models and methods analysing GPCR signalling. We characterize LTE\textsubscript{4} as a fully functional agonist activating human CysLT\textsubscript{1} and show for the first time that CysLT\textsubscript{1} expression is critically important for responsiveness to LTE\textsubscript{4} within a human cell system.
Results

LTE₄ signals differently in LAD2 and LUVA cells

LTE₄ has been shown to induce potent responses in LAD2 cells\(^{13}\) offering a model for identification of the elusive receptor responsible for LTE₄ signalling. In order to compare responses between LTD₄ and LTE₄ microarray analysis of LAD2 cells stimulated with either vehicle control, LTD₄ or LTE₄ was carried out in the presence of L-cysteine (3 mmol/L) to inhibit dipeptidase enzyme responsible for converting LTD₄ to LTE₄\(^ {16}\). Both leukotrienes significantly regulated expression of 64 genes including many chemokines, growth and transcription factors (Figure 1A and supplementary Table 1). LTE₄ was more potent in up and down regulation of gene expression than LTD₄ for the majority of analysed genes, providing strong evidence for a robust LTE₄ response in LAD2 cells. CCL4 and CSF2 were among the most upregulated genes in LAD2 cells and were selected for further analysis. qRT-PCR and ELISA analysis of LAD2 cells showed induction of CCL4 and CSF2 with LTE₄ consistently matching or being the more potent of the 2 ligands (Figure 1B). To verify whether this responsiveness to LTE₄ is characteristic for other mast cells, another human mast cell line, LUVA, was analysed to compare responses to LTD₄ and LTE₄. Although in LUVA cells LTD₄ regulated gene expression in a similarly potent way to LAD2 cells, LTE₄ induced only very weak responses (Figure 1C). As intracellular calcium mobilisation is a secondary messenger signalling cue for classical leukotriene receptors, cysLT induced calcium mobilisation was analysed in both cell lines. In LAD2 cells, all cysLTs induced a concentration-dependent calcium mobilisation (Figure 1D), with LTD₄ and LTC₄ showing similar potency (LTC₄ EC\(_{50}\) = 1.3x10\(^{-9}\) M, LTD₄ EC\(_{50}\) = 0.58x10\(^{-9}\) M) and LTE₄ being the weakest of all 3 ligands but still
inducing a robust response (LTE₄ EC₅₀-1.67x10⁻⁹ M). In contrast, LTD₄ was the most potent ligand in LUVA cells (EC₅₀-2.8x10⁻⁹ M) followed by LTC₄ (EC₅₀-1.7x10⁻⁸ M), while LTE₄ induced very weak response (EC₅₀-not determined)(Figure 1E). Similar potencies of cysLTs as in LUVA cells were detected in HEK293T cells transfected with human CYSLTR1 (Figure 1F) (LTC₄ EC₅₀-1.12x10⁻⁸ M, LTD₄ EC₅₀-0.9x10⁻⁹ M; LTE₄ EC₅₀-8.32x10⁻⁸ M). Therefore LAD2 and LUVA cells represent two human mast cell lines that respond differently to LTE₄ stimulation.

Comparison of GPCR gene expression profiles between LAD2 and LUVA cells

A previous study ¹³ has suggested that in LAD2 cells LTE₄ signals through a novel, CysLT₃ receptor, different from classical CysLT₁ and CysLT₂. As our observations in LAD2 and LUVA cells indicated that a potential LTE₄ receptor should be differentially expressed in LAD2 and LUVA cells, gene expression was compared between LAD2 and LUVA cells using microarray in order to identify the putative gene. A list of significantly differentially expressed genes (ANOVA p<0.05; > 2 fold difference) was generated and GPCR genes were filtered using the IUPHAR GPCR database ¹⁷. Among 27 GPCRs that differed significantly in expression between LAD2 and LUVA cells (Figure 2A, supplementary Table 2), 10 GPCRs were considered orphan receptors (without known ligands)(GPR12, GPR37, GPR65, GPR85, GPR114, GPR137B, GPR174, MAS1L, MRGPRX2 and P2RY8). GPR65, MAS1L and MRGPRX2 were the most differentially expressed orphan GPCRs (9.9, 32.4 and 70.2 fold difference between LAD2 and LUVA cells, respectively). To ascertain whether cysLTs, and LTE₄ in particular, could mediate signalling through any of these receptors, plasmids encoding GPR65, MAS1L and MRGPRX2 were
transiently transfected into HEK293T cells and calcium mobilisation was analysed upon stimulation with cysLTs (Figure 2B). CYSLTR1 gene was among differentially expressed GPCRs and was used as a positive control for all experiments. No specific calcium responses were observed in any of the transfectants apart from cells transfected with CYSLTR1, which showed the predicted pattern of response to cysLTs. As co-transfections of GPCRs and Gα16 have been reported previously to direct signal transduction to phospholipase C and calcium signalling, target genes were co-expressed with human Gα16 and responses to cysLTs measured using calcium mobilisation in order to analyse potential alternative GPCR signalling pathway. Similarly, no response was observed in any of our overexpression models apart from CYSLTR1 transfected cells (Figure 2C). Thus CysLT1 was the receptor that was differentially expressed in LAD2 and LUVA cells (4.3 fold difference) and responded to cysLTs.

CysLT1 is required for LTE4 induced signalling in LAD2 cells

To determine whether CysLT1 could be involved in LTE4 signal transduction, LAD2 and LUVA cells were pretreated with selective CysLT1 and CysLT2 antagonists, Montelukast and HAMI3379, respectively. Antagonists’ selectivity was previously verified in HEK293T cell transfection models (supplementary Figure 1). qRT-PCR analysis of CCL4 gene expression in LAD2 cells showed that both LTD4 and LTE4 induced responses were fully inhibited by Montelukast while HAMI3379 had no effect (Figure 2D). In LUVA cells, LTD4 signalling was again fully inhibited by Montelukast but not by HAMI3379 (Figure 2E). Analysis of calcium mobilisation in these cells showed a very similar picture, with Montelukast fully inhibiting LTE4 responses in LAD2 as well as LTD4 responses in LAD2 and LUVA cells while
HAM13379 had no effect (Figure 2D, E). To verify whether the potent LTE₄ induced, Montelukast sensitive, response in LAD2 cells was attributable specifically to CysLT₁ signalling and not via another Montelukast sensitive receptor, stable CYSLTR1 receptor knockdown was generated in LAD2 cells using shRNA. Four shRNA targeting different regions of CYSLTR1 were transduced into separate LAD2 cell populations using lentiviral particles. qRT-PCR analysis of CYSLTR1 revealed shRNA “475” to significantly knock down CYSLTR1, without affecting CYSLTR2 mRNA expression (supplementary Figure 2). Knocking down of CYSLTR1 substantially inhibited intracellular calcium responses to LTD₄ and LTE₄ (Figure 3A, B), confirming a functional decrease in CysLT₁ expression. CCL₄ and CSF2 mRNA and protein expression upon LTD₄ and LTE₄ stimulation were almost completely abrogated in CysLT₁ knocked down LAD2 cells (Figure 3C, D and supplementary Figure 3) identifying CysLT₁ as a receptor responsible for LTE₄ induced signalling in LAD2 cells.

Overexpression of CysLT₁ in LUVA cells does not determine LTE₄ responses

Our GPCR expression profiles identified CYSLTR1 as more highly expressed in LAD2 than in LUVA cells. To test the hypothesis that the expression level of CYSLTR1 is relevant for mast cell responsiveness to LTE₄, CYSLTR1 was stably overexpressed in LUVA cells using lentiviral transduction and positive clones were selected using puromycin. qRT-PCR confirmed a 3-fold increase in CYSLTR1 expression in the transduced population, a level similar to LAD2 cells (Figure 3E). Functional CYSLTR1 overexpression was confirmed using calcium assay and showed potent concentration-dependent increase in LTE₄ induced calcium responses (Figure 3F), again similar to responses observed in LAD2 cells. Stimulation of LUVA cells
overexpressing CysLT₁ and control empty vector-transduced cells with either LTD₄ or LTE₄ revealed no significant differences in CCL4 mRNA or protein induction between both cell lines (Figure 3G, H), showing that the expression level of CysLT₁ does not solely determine LTE₄ induced gene regulation, even though it allows for enhanced calcium mobilisation in response to LTE₄.

Comparison of CYSLTR1 gene sequence between LAD2 and LUVA cells

As genetic variations in the CYSLTR1 gene between LAD2 and LUVA cells could account for such differential responses to LTE₄, promoter and coding regions of CYSLTR1 in both cell types were sequenced. DNA was extracted and CYSLTR1 promoter fragment containing 4 single nucleotide polymorphisms (SNPs)(rs321029, rs2637204, rs2806489, rs7066737) as well as the entire coding region were PCR amplified and sequenced. BLAST analysis of DNA sequences from LAD2 and LUVA cells revealed no differences between cell lines and showed that both cell lines share the same promoter homozygous haplotype, “CAAC” for 4 SNPs studied, respectively and homozygous T allele for rs320995 coding synonymous SNP. Human CYSLTR1 gene is localized to chromosome X thus lack of heterozygosity at the locus was consistent with the fact that both cell lines were derived from male donors.

CysLT-activated CysLT₁ signals through Gαq, calcium and Erk for gene regulation

In order to compare CysLT₁ mediated signalling in LAD2 and LUVA, both cell types were pre-incubated with several signalling pathway inhibitors and gene expression was measured in response to LTD₄ and LTE₄ (Figure 4A, B). LTD₄- and LTE₄-induced CCL4 mRNA expression was potently inhibited by U0126 (MEK/Erk
pathway inhibitor), intracellular (BAPTA-AM) and extracellular (EDTA) calcium chelators but was not modified by pertussis toxin or GW9662 and T0070907 (PPAR-γ inhibitors), suggesting that in both cell lines CysLT₁ couples to Gαq, requires intracellular and extracellular calcium and Erk activation for regulation of gene expression.

LTE₄ activates prolonged signalling in LAD2 cells

To further analyse the agonistic activity of LTE₄, time course experiments of Erk phosphorylation were conducted and analysed by Western blotting (Figure 4C). In LAD2 cells stimulated with LTD₄, Erk phosphorylation peaked at 7 minutes with a gradual decrease until 60 minutes. LTE₄ induced a peak of Erk phosphorylation later but with a more sustained phosphorylation, still being detectable after 60 minutes. In LUVA cells the time point of highest Erk phosphorylation was similar to LAD2 cells but LTE₄-induced Erk phosphorylation was shorter than in LAD2 cells. Thus sustained Erk phosphorylation induced by LTE₄ in LAD2 but not in LUVA cells underlies an important difference in CysLT₁-mediated responses between the cell lines.

We next compared calcium mobilisation kinetics in LAD2 cells; although LTD₄ induced a higher peak response than LTE₄, the intracellular calcium levels decreased at a higher rate after LTD₄ stimulation while LTE₄ induced a long lasting plateau phase (Figure 4D). The sustained calcium signalling in response to LTE₄ was not observed in LUVA cells or in LUVA cells overexpressing CysLT₁ (Figure 4D). As GPCR signalling is regulated through receptor desensitization, cross desensitization experiments with cysLTs were performed (Figure 4E). Prior stimulation with either LTC₄ or LTD₄ completely abrogated calcium response to
LTD₄ in LAD2 and LUVA cells, suggesting that both LTC₄ and LTD₄ can fully desensitize CysLT₁ in both cell lines. However, prior stimulation with LTE₄ caused only partial inhibition of the calcium response to LTD₄ in LAD2 and LUVA cells, showing partial agonistic/desensitizing activity of LTE₄ but no difference between the cell lines in LTE₄ mediated signalling. The sustained increased level of calcium in LAD2 but not in LUVA cells after LTE₄ stimulation was again the main difference observed between the cell lines in these experiments.

To analyse whether prolonged calcium/Erk signalling induced by LTE₄ in LAD2 cells affects gene expression, CCL4 mRNA expression was analysed in LAD2 and LUVA cells after short (5 minutes) and long (2 hours) term exposure to LTD₄ and LTE₄, respectively. In LAD2 cells, 2 hour exposure to LTE₄ and LTD₄, caused similar upregulation of CCL4 mRNA expression (Figure 4F). Stimulation of LAD2 cells with LTE₄ for only 5 minutes failed to induce potent CCL4 expression with mRNA levels being significantly lower than that induced by LTD₄. In LUVA cells, no difference could be observed between different exposure times.
Discussion

This study identifies LTE$_4$ as a fully functional agonist activating human CysLT$_1$ for regulation of gene expression in LAD2 cells although only weak, partial agonism of LTE$_4$ signalling could be detected in LUVA cells. Our data suggest that increased expression of CysLT$_1$ and induction of prolonged intracellular signalling are required for LTE$_4$ functional agonism. Ever since the elucidation and cloning of human CysLT$_1$ and CysLT$_2$, LTE$_4$ has been considered as a final, non-active leukotriene metabolite due to its weak efficacy in recombinant systems and poor binding affinities compared to LTC$_4$ and LTD$_4$ 6. However, it was LTE$_4$ that was shown to be the most potent cysLT in inducing inflammatory and contractile responses in asthmatic subjects. Our observation that LTE$_4$ can induce full agonistic activity through CysLT$_1$ could be of relevance for explaining this discrepancy between potent *in vivo* activity of LTE$_4$ observed in asthmatic patients and weak *in vitro* potency for classical cysLT receptors. Early studies analysing the effects of cysLTs *in vivo* revealed a disproportionate augmentation in relative responses to LTE$_4$ inhalation in asthmatic patients when compared to healthy individuals 10. LTE$_4$ responsiveness was increased more than 200 fold in asthmatics while responses to LTC$_4$ and LTD$_4$ were increased 6 and 9 fold respectively. More recent clinical studies suggest that CysLT$_1$ is more highly expressed in asthmatic airways compared to healthy individuals 19, with further increase observed in asthma exacerbations and in a sub-phenotype of asthma, patients with aspirin-exacerbated respiratory disease (AERD) 20,21. This increased CysLT$_1$ expression observed in AERD patients was significantly decreased following successful aspirin desensitisation, a procedure associated also with a significant reduction in sensitivity to inhaled LTE$_4$ 20. We found similar disproportionate augmentation in LTE$_4$-induced responses when comparing LAD2 and LUVA cells, a
model of relatively high versus low CysLT1 expression. LTC4 and LTD4 were 2-3 times more potent at inducing calcium mobilisation in LAD2 cells compared to LUVA while LTE4 showed nearly 60-fold difference. Such potent responses to cysLTs, including LTE4 have been recently described in other human primary cells expressing high levels of CysLT1, T helper type 2 (Th2) lymphocytes22,23 and group 2 innate lymphoid cells (ILC2)24 supporting further our observation.

Prolonged intracellular signalling was identified as another potential contributing factor for the potency of LTE4 responses. The sustained increase in intracellular calcium and Erk phosphorylation upon LTE4 stimulation were observed in LAD2 but not in LUVA cells, suggesting that prolonged signalling could be critical for transcriptional regulation. LTE4, in contrast to LTC4 and LTD4, shows only partial activity and does not desensitise CysLT1 responses, a feature that can contribute to prolonged signalling in response to LTE4 in LAD2 cells. In fact, in experiments with short term exposure to agonists LTE4 showed only weak, partial agonist activity in comparison to LTD4, confirming important role of prolonged signalling in LTE4 induced responses. Overexpression of CysLT1 in LUVA did not restore sustained intracellular calcium and full agonism even though it increased peak calcium response to LTE4, suggesting that additional unidentified signalling molecules expressed in LAD2 cells but not in LUVA, are also required for full functional agonism of LTE4.

Mouse models provide strong evidence that CysLT1 and CysLT2 are not the only cysLT receptors as germline deletion did not diminish leukotriene-mediated inflammation11,14,25. Our data presented here provide an explanation for potent LTE4 activity observed in humans but do not rule out the possibility of another cysLT receptor. Our study shows for the first time that CysLT1 expression is critically
important for responsiveness to LTE₄ within a human cell system. This could potentially be relevant for human cell types other than mast cells and could thus have important implications for diagnostics and targeted treatment of specific phenotypes of asthma.
Materials and Methods

Reagents
Leukotrienes (LTC4, LTD4 and LTE4), Montelukast, MK-571, HAMI3379, U-0126, GW9662, T0070907 (all Cayman Chemical), EDTA (Ambion), BAPTA-AM, Pertussis Toxin, Calcium ionophore (A23187), (all Sigma-Aldrich) were obtained from the manufacturers.

Cell Culture
HEK293T cells were cultured in DMEM medium supplemented with 2mmol/L glutamine, 10% fetal bovine serum and Penicillin/Streptomycin (50 units/ml) (all Life Technologies) in a humidified 5% CO2 37°C incubator. LAD2 cells (a kind gift from Dr. Arnold Kirshenbaum, NIAID, NIH, USA26) and LUVA cells (a kind gift from Dr. John Steinke, University of Virginia, USA27) were cultured in StemPro-34 medium supplemented with with L-glutamine (2 mmol/L), Pen/Strep (50 IU/ml) and with or without stem cell factor (SCF) (100 ng/ml) (all Life Technologies), respectively. Cells were hemidepleted weekly with fresh medium.

Transient transfections
HEK293T cells cultured to above 60% confluence were transiently transfected as described previously4,15 with a mixture of Lipofectamine 2000 (Life Technologies) and the following plasmids as indicated: pcDNA3.1-empty, pcDNA3.1-human CYSLTR1, pcDNA3.1-human CYSLTR2, pcDNA3.1-human GPR65, pcDNA3.1-human GNA15 (Goα16) (all the Missouri S&T cDNA Resource Center, Rolla, Mo) and
pCMV6-Kan/Neo- human MAS1L and human MRGPRX2 (Origene Technologies) in serum-free medium (Opti-MEM, Life Technologies) according to manufacturer’s protocol. After incubation the transfection medium was removed and HEK293T cells were cultured for 36 hours before calcium mobilisation was assayed in response to stimulation with calcium ionophore (1µmol/L), LTC₄, LTD₄ and LTE₄ (all 100 nmol/L).

Short hairpin RNA (shRNA) knockdown

For stable gene silencing shRNA constructs targeting different regions of human CYSLTR1 (clone ID: V3LHS_305475, V3LHS_305478, V2LHS_90946 and V2LHS_90947) were purchased from ThermoScientific and used to generate lentiviral particles with the lentiviral packaging system (psPAX2, pMD2.G and PEG-it™ precipitation)(System Biosciences) according to manufacturer’s protocol. LAD2 cells were transduced with viral particles for 24 hours and positive cells selected using Puromycin (2µg/ml)(Life Technologies). Efficiency of transduction was assessed by analysing GFP expression using flow cytometry.

CYSLTR1 overexpression

CYSLTR1 gene was amplified from the pcDNA3.1-CYSLTR1 construct (UMR cDNA Resource Center) with primers containing restriction enzyme sites for NheI and BamHI (5’-AGGTGCTAGCATGGATGAAACAGGAAATT and 5’-GCGGGGATCCCTATACTTTACATTTTC) and cloned into lentiviral vector pCDH (System Biosciences) encoding GFP and puromycin resistance under the EF1 promoter and a multiple cloning site under the CMV promoter. Viral particles were generated using lentiviral packaging system (System Biosciences). LUVA cells were
transduced, selected with puromycin (2µg/ml) and transduction efficiency was evaluated by GFP expression using flow cytometry.

DNA sequencing

Total DNA was extracted using DNeasy Tissue kit (Qiagen) and fragments of CYSLTR1 gene were amplified using Platinum Taq Polymerase High Fidelity (Invitrogen) following manufacturer’s protocol and primers: CYSLTR1 promoter 5’- AACTGGAGACTTGAGTTGCAG, 5’-AACATCAAAAGTGTGCCCAGG; CYSLTR1 coding region 5’-TCAATGCTTACACTATTGTG, 5’- TTGGTTTGGACTGGAATGGG and sequenced by Source Bioscience Sanger service using custom designed primers: CYSLTR1 promoter 5’- TAAGATGGGAAGCAGGGACG, 5’-GGCTTCAATCAGCACATACC; CYSLTR1 coding region 5’-ATACCAAGTGCTTTGAGCC, 5’-GCATTTGGCTCTTTGTTG and 5’-GTTTGATTGTCTTGTGGG.

Calcium mobilisation assay

Calcium mobilisation assays were conducted using FLIPR calcium 4 assay kit (Molecular Devices) as described previously. Cells (1.5x10^5/well) were plated into poly-L-lysine coated 96 well plates in RPMI 1640 supplemented with 10mmol/L HEPES, incubated for 1 hour with FLIPR loading buffer prior to addition of ligand and fluorescent intensity was measured at 37°C using a Flexstation 3 (Molecular Devices). Controls included medium control with ethanol for leukotriene stimulations. Results were analysed with SoftMax Pro Software (Molecular Devices).

Real time PCR
LAD2 and LUVA cells were stimulated for 2 hours in the presence of L-cysteine (3 mmol/L) with LTD$_4$ and LTE$_4$ (both 100 nmol/L) and vehicle control. In some experiments as indicated cells were pretreated with U0126 (1µmol/L; 30 min), BAPTA-AM (30µmol/L; 30 min), EDTA (2.5 mmol/L; 5 min), pertussis toxin (PTX)(100ng/ml; overnight), GW9662 (10µmol/L; 30 min) or T0070907 (1µmol/L; 30 min). Total cellular RNA was isolated using the miRNeasy mini kit (Qiagen), DNAase treated (Ambion) and reverse transcribed using RevertAid M-MuLV (Fermentas). Expression of mRNA encoding selected genes was measured using real time PCR on an ABI Prism 7900 Sequence Detection System (Applied Biosystems).

Commercially available primer probe sets: 18S rRNA - 4319413E (Applied Biosystems) and individually designed assays using the Universal Probe Library (UPL) (Roche): CYSLTR1- probe 71, primers 5’-GGAGAGGGTCAAAGCAACAA, 5’-TGCAGAAGTCCGTGGTCATA; CYSLTR2- probe 21, primers 5’-TGATGTGACACTGCCGTTCT, 5’-TCATGGCTTCCTCAATAATGC; CCL4- probe 20, primers 5’-CAGCACAGACTTGCTTGCTT, 5’-CTTCCTCGCAACTTTGTG; CSF2- probe 1, primers 5’-GCCCTTGAGCTTGGTGACCTCC, 5’-TCTCAGAAATGTTTGACCTCC were used. All primers/probes were tested for optimal efficiency of amplification. Relative gene expression was normalized to 18S rRNA. Data were analysed using SDS2.1 software (Applied Biosystems).

Microarray Analysis

Total cellular RNA was isolated using the miRNeasy mini kit (Qiagen), DNase treated (Ambion), quality analysed on an Agilent 2100 Bioanalyzer (Agilent Technologies) and further processed with the Ambion WT Expression Kit (Applied
Biosystems) according to the manufacturers’ instructions. cRNA was fragmented, labelled, and hybridised to the Affymetrix Human Gene 1.0 ST Arrays using the Gene Chip WT Terminal Labeling and Hybridization Kit (Affymetrix). GeneChip fluidics station 450 (Affymetrix) was used for processing of the arrays and fluorescent signals were detected with the GeneChip scanner 3000. Images were analysed with the GeneChip operating software (Affymetrix). Further analysis was performed with the Partek Genomics Suite (Partek). RMA processing and quantile normalization was applied, and after Median Polish and gene level probeset summarization, differentially expressed genes were identified using ANOVA. Data were submitted to Gene Expression Omnibus database (accession number GSE75603).

Western Blot Analysis

Total protein lysates were prepared using lysis buffer containing 1mM protease inhibitor cocktail (Roche), 25µg proteins loaded onto a 10% Bis-Tris NuPage gel (Invitrogen) and transferred onto a nitrocellulose membrane (Invitrogen). The membrane was incubated with primary antibodies against phospho-p44/42 MAPK and p44/p42 MAPK (Extracellular-signal-regulated kinase (ERK)) (Cell Signaling) overnight at 4°C, followed by secondary, horseradish peroxidase-conjugated antibody (goat anti rabbit IgG (Southern Biotech). Blots were developed using ECL plus Detection Reagent (GE Healthcare) and visualized on a Chemidoc MP System (BioRad). Data were analysed using Image Lab 4.1 software (BioRad).

ELISA

LAD2 and LUVA cells were stimulated for 6 hours in the presence of L-cysteine (3 mmol/L) with LTD4 and LTE4 (both 100 nmol/L) and vehicle control. CCL4 and
CSF2 concentrations were measured in supernatants using human CCL4 (MIP-1β) and CSF2 (GM-CSF) duo set kits (R&D Systems, UK) following manufacturer’s protocol.

Statistical analysis

Data were analysed by means of one- or two-way ANOVA using GraphPad Prism software (GraphPad). Differences were considered significant at a p-value of less than 0.05.
References

Author Contributions
HRF, EF, WB and GW performed the experiments and analysed data. GW and THL conceived and designed the experiments. DJC contributed reagents/materials/analysis tools and analysed data. HRF, EF, THL and GW wrote the paper. All authors reviewed and provided comments upon preparation of the manuscript.

Acknowledgements
We would like to thank Estibaliz Aldecoa-Otalora and Matthew Arno from King’s College Genomics Centre for their help in array processing.
This work was supported by a grant from the Medical Research Council (G0900536) to Grzegorz Woszczek. The authors acknowledge support from the Department of Health via the National Institute for Health Research (NIHR) comprehensive Biomedical Research Centre award to Guy’s & St Thomas’ NHS Foundation Trust in partnership with King’s College London and King’s College Hospital NHS Foundation Trust. David Cousins also acknowledges support from the NIHR Leicester Respiratory Biomedical Research Unit.

Competing Financial Interests statement
The authors declare no conflict of interests.
Figure legends

Figure 1. LTE₄ is a potent agonist in LAD2 but not in LUVA cells. (A) LAD2 cells (n=3) were stimulated with vehicle control, LTD₄ and LTE₄ and gene expression was analysed using microarrays. Hierarchical clustering of significantly (ANOVA, p<0.05 LTD₄ and LTE₄ compared to control, False Discovery Rate=0.1) regulated genes is presented as a heat map. (B) LAD2 and (C) LUVA cells were stimulated and CCL4 or CSF2 gene expression were measured at mRNA and protein levels. Data expressed as mean ± SEM from 3 separate experiments. (D) LAD2, (E) LUVA and (F) HEK293T transfected with CYSLTR1 cells were stimulated with indicated concentrations of LTC₄, LTD₄ and LTE₄ and calcium mobilisation was measured. Data from 3 experiments run in triplicate, presented as mean ± SEM of baseline corrected peak intracellular calcium response. Relative fluorescence unit (RFU).

Figure 2. Comparison of GPCR gene expression profiles between LAD2 and LUVA cells. (A) Microarray gene expression was compared in LAD2 and LUVA cells (n=3) and hierarchical clustering of differentially expressed GPCRs (ANOVA, p<0.05, > 2 fold difference) is presented as a heat map. Intracellular calcium mobilisation was analysed in HEK293T cells transiently transfected with the genes of interest (B) and co-transfected with Gα16 (C). Data expressed as percentage of peak calcium ionophore response, mean ± SEM from 3 experiments run in triplicate. LAD2 (D) and LUVA (E) cells were pre-treated with Montelukast (100 nmol/L) and HAMI3379 (1 µmol/L) for 10 minutes, stimulated with LTD₄ and LTE₄ (both 100 nmol/L) and CCL4 mRNA expression or calcium mobilisation was measured. Data expressed as a fold difference in comparison to vehicle control or as baseline corrected peak calcium
response. Mean ± SEM from 3 separate experiments. Relative fluorescence unit (RFU).

Figure 3. CysLT₁ is required for LTE₄ induced signalling in LAD2 cells. Calcium mobilisation responses to LTD₄ (A) and LTE₄ (B) in Empty control (Ctrl) and CYSLTR1 knocked down (CYSLTR1 KD) LAD2 cells. Baseline corrected peak calcium responses from 3 experiments run in triplicate presented as mean ± SEM. (C) Control and CYSLTR1 knocked down LAD2 cells were stimulated with vehicle control, LTD₄ or LTE₄ for 2 (mRNA) (C) or 6 hours (protein) (D) before analysis. Data expressed as fold difference in comparison to vehicle control for CCL4 mRNA and as CCL4 supernatant concentrations. Mean ± SEM from 3-5 experiments, relative fluorescence unit (RFU). (E) LUVA cells were stably transduced with empty (LUVA-empty) or CYSLTR1 overexpression (LUVA-CYSLTR1) vectors and relative CYSLTR1 mRNA expression was measured and compared to LAD2 cells. Mean ± SEM, n=6. (F) Calcium mobilisation response to a range of LTE₄ concentrations was evaluated in empty control and CYSLTR1 transduced LUVA cells. Mean ± SEM of baseline corrected peak calcium responses, n=9. Control empty vector and CYSLTR1 transduced LUVA cells were stimulated as indicated before CCL4 mRNA (G) or protein (H) expression was measured. Mean ± SEM of 3 separate experiments.

Figure 4. LTE₄ induces sustained signalling in LAD2 cells. LAD2 (A) and LUVA (B) cells were pre-treated with selected inhibitors and stimulated with LTD₄ or LTE₄. Data from 3 separate experiments shown as % of LTD₄-induced CCL4 mRNA expression (mean ± SEM), * p<0.05, ** p<0.001, ANOVA with Bonferroni post test compared to LTD₄ or LTE₄. (C) LAD2 and LUVA cells were stimulated for time...
indicated with vehicle control (Ctrl), LTD4 or LTE4 (both 100 nmol/L) and phosphorylated Erk and total Erk expression measured using specific antibodies.

Results from a representative experiment of 3 performed. Calcium mobilisation traces of LAD2, LUVA or LUVA-CYSLTR1 cells stimulated as indicated with LTD4 or LTE4 (100 nmol/L) once (D) or twice (E). Representative of 3 separate experiments, relative fluorescence unit (RFU). Black arrows indicate start of stimulation. (F).

LAD2 and LUVA cells were exposed for either 5 minutes or 2 hours to vehicle control, LTD4 or LTE4 (both 100 nmol/L) and CCL4 mRNA measured by qRT-PCR after 2 hours incubation. Mean ± SEM data from 3 experiments shown as a fold change in comparison to controls. * p<0.05, 2-way ANOVA comparison between 5 min LTD4 and LTE4 stimulations.
Online supplementary material

Title: Leukotriene E$_4$ is a full functional agonist for human cysteinyl leukotriene type 1 receptor

Authors: H. R. Foster1,2†, E. Fuerst1,2†, W. Branchett1,2, T. H. Lee1,2,‡, D. J. Cousins1,2,3, G. Wosczek1,2*
Table 1. List of genes (probes) significantly regulated by stimulation with LTD$_4$ or LTE$_4$ in comparison to vehicle control in LAD2 cells (ANOVA, p<0.05, False Discovery Rate = 0.1).

<table>
<thead>
<tr>
<th>ID</th>
<th>Gene assignment</th>
<th>Gene Symbol</th>
<th>Fold-Change (Control vs. LTD$_4$)</th>
<th>Fold-Change (Control vs. LTE$_4$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>AY766446 // CCL4 // chemokine (C-C motif) ligand 4 // 17q12 // 6351 // AY766447 // CCL</td>
<td>CCL4</td>
<td>-8.74218</td>
<td>-16.7445</td>
</tr>
<tr>
<td>2</td>
<td>AY766446 // CCL4 // chemokine (C-C motif) ligand 4 // 17q12 // 6351 // AY766447 // CCL</td>
<td>CCL4</td>
<td>-8.74218</td>
<td>-16.7445</td>
</tr>
<tr>
<td>3</td>
<td>AY766447 // CCL4L1 // chemokine (C-C motif) ligand 4-like 1 // 17q12 // 9560 // AY7664</td>
<td>CCL4L1</td>
<td>-7.27318</td>
<td>-14.2327</td>
</tr>
<tr>
<td>4</td>
<td>AY766446 // CCL4 // chemokine (C-C motif) ligand 4 // 17q12 // 6351 // ENST00000250151</td>
<td>CCL4</td>
<td>-6.27419</td>
<td>-16.7221</td>
</tr>
<tr>
<td>6</td>
<td>AF216224 // LINC00597 // long intergenic non-protein coding RNA 597 // 15q23-q24 // 816</td>
<td>LINC00597</td>
<td>-4.36168</td>
<td>-5.56335</td>
</tr>
<tr>
<td>7</td>
<td>AF385434 // NFKBID // nuclear factor of kappa light polypeptide gene enhancer in B-cell</td>
<td>NFKBID</td>
<td>-3.15495</td>
<td>-5.53942</td>
</tr>
<tr>
<td>8</td>
<td>BC108724 // CSF2 // colony stimulating factor 2 (granulocyte-macrophage) // 5q31.1 // 1</td>
<td>CSF2</td>
<td>-3.0202</td>
<td>-4.6602</td>
</tr>
<tr>
<td>9</td>
<td>BC030607 // LRRC8B // leucine rich repeat containing 8 family, member B // 1p22.2 // 23</td>
<td>LRRC8B</td>
<td>-3.01226</td>
<td>-4.05937</td>
</tr>
<tr>
<td>10</td>
<td>AF254637 // HEY1 // hairy enhancer-of-split related with YRPW motif 1 // 8q21 // 23462</td>
<td>HEY1</td>
<td>-3.00429</td>
<td>-4.01398</td>
</tr>
<tr>
<td>11</td>
<td>ENST00000464839 // GBP2 // guanylate binding protein 2, interferon-inducible // 1p22.2</td>
<td>GBP2</td>
<td>-2.81828</td>
<td>-4.74415</td>
</tr>
<tr>
<td>Rank</td>
<td>Gene ID</td>
<td>Gene Name</td>
<td>Description</td>
<td>Fold Change</td>
</tr>
<tr>
<td>------</td>
<td>---------</td>
<td>-----------</td>
<td>-------------</td>
<td>-------------</td>
</tr>
<tr>
<td>12</td>
<td>25033</td>
<td>PTGER4</td>
<td>Prostaglandin E receptor 4 (subtype EP4)</td>
<td>-2.63092</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5p13.1 // 5734 // ENST</td>
<td>-3.43541</td>
</tr>
<tr>
<td>13</td>
<td>27122</td>
<td>IER3</td>
<td>Immediate early response 3</td>
<td>-2.61982</td>
</tr>
<tr>
<td>14</td>
<td>33032</td>
<td>IER3</td>
<td>Immediate early response 3</td>
<td>-2.61982</td>
</tr>
<tr>
<td>15</td>
<td>29778</td>
<td>DUSP4</td>
<td>Dual specificity phosphatase 4</td>
<td>-2.61512</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8p12-p11 // 1846 // ENST000002401</td>
<td>-3.12733</td>
</tr>
<tr>
<td>16</td>
<td>16610</td>
<td>PMAIP1</td>
<td>Phorbol-12-myristate-13-acetate-induced protein 1</td>
<td>-2.58693</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>18q21.32 / 53</td>
<td>-3.18639</td>
</tr>
<tr>
<td>17</td>
<td>32904</td>
<td>IER3</td>
<td>Immediate early response 3</td>
<td>-2.51551</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6p21.3 // 8870 // AF083421 // IER3 /</td>
<td>-3.31687</td>
</tr>
<tr>
<td>18</td>
<td>11755</td>
<td>SPRY2</td>
<td>Sprouty homolog 2 (Drosophila)</td>
<td>-2.44659</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>13q31.1 // 10253 // ENST0000037</td>
<td>-3.30198</td>
</tr>
<tr>
<td>19</td>
<td>23985</td>
<td>STATH</td>
<td>Statherin</td>
<td>-2.43164</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4q13.3 // 6779 // BX649104 // STATH // statherin //</td>
<td>-6.5496</td>
</tr>
<tr>
<td>20</td>
<td>30526</td>
<td>NR4A3</td>
<td>Nuclear receptor subfamily 4, group A, member 3</td>
<td>-2.34479</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>9q22 // 8013 //</td>
<td>-4.88248</td>
</tr>
<tr>
<td>21</td>
<td>18963</td>
<td>SOWAHC</td>
<td>Sosondowah ankyrin repeat domain family member C</td>
<td>-2.27147</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2q13 // 65124 //</td>
<td>-2.825</td>
</tr>
<tr>
<td>22</td>
<td>9302</td>
<td>---</td>
<td>---</td>
<td>-2.20735</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>---</td>
<td>-1.41984</td>
</tr>
<tr>
<td>23</td>
<td>6621</td>
<td>SH2D2A</td>
<td>SH2 domain containing 2A // SH2 domain containing 2A // 9q22 // 8013 //</td>
<td>-2.09425</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>S // 1q21 // 9047 // ENST0000368199 // S</td>
<td>-2.62985</td>
</tr>
<tr>
<td>24</td>
<td>26995</td>
<td>NEDD9</td>
<td>Neural precursor cell expressed, developmentally down-regulated 9</td>
<td>-2.01024</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1q21 // 1q21 // 9047 // ENST0000368199 // S</td>
<td>-2.61269</td>
</tr>
<tr>
<td>25</td>
<td>17456</td>
<td>C5AR1</td>
<td>Complement component 5a receptor 1 // 19q13.3-q13.4 // 728 // ENS</td>
<td>-1.99449</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1q21 // 1q21 // 9047 // ENST0000368199 // S</td>
<td>-2.53677</td>
</tr>
<tr>
<td>26</td>
<td>29551</td>
<td>TRIB1</td>
<td>Tribbles homolog 1 (Drosophila)</td>
<td>-1.95595</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1q21 // 1q21 // 9047 // ENST0000368199 // S</td>
<td>-4.18346</td>
</tr>
<tr>
<td>No.</td>
<td>Gene Reference</td>
<td>Gene Information</td>
<td>Ensembl Transcript ID</td>
<td>Log2 Ratio to Control</td>
</tr>
<tr>
<td>-----</td>
<td>----------------</td>
<td>------------------</td>
<td>----------------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>27</td>
<td>BC069540</td>
<td>LIF // leukemia</td>
<td>ENST00000314574 //</td>
<td>-1.89923</td>
</tr>
<tr>
<td></td>
<td></td>
<td>inhibitory factor</td>
<td>YES1 // v-yes-1</td>
<td>-1.80077</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Yamaguchi sarcoma</td>
<td>-2.26037</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>viral oncogene homolog</td>
<td>1 // 18p11.</td>
</tr>
<tr>
<td>28</td>
<td>ENST00000314574</td>
<td>YES1</td>
<td></td>
<td>-1.79981</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-2.23885</td>
</tr>
<tr>
<td>29</td>
<td>BC001746</td>
<td>PTPN7 // protein</td>
<td></td>
<td>-1.78997</td>
</tr>
<tr>
<td></td>
<td></td>
<td>tyrosine phosphatase, non-</td>
<td></td>
<td>-1.68385</td>
</tr>
<tr>
<td></td>
<td></td>
<td>receptor type 7 // 1q32.1 // 577</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>BC030830</td>
<td>CD38 // CD38</td>
<td></td>
<td>-1.74841</td>
</tr>
<tr>
<td></td>
<td></td>
<td>molecule // 6p23 // 9308 //</td>
<td></td>
<td>-2.42664</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ENST00000379153 // CD38 //</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CD38 m</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>AK294876</td>
<td>PER2 // period</td>
<td></td>
<td>-1.70673</td>
</tr>
<tr>
<td></td>
<td></td>
<td>homolog 2 (Drosophila) //</td>
<td></td>
<td>-1.98817</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2q37.3 // 8864 //</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ENST00000254657</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>BC012841</td>
<td>XBP1 // X-box</td>
<td></td>
<td>-1.6855</td>
</tr>
<tr>
<td></td>
<td></td>
<td>binding protein 1 // 22q12.1//22q12 // 7494 // ENST0000021603</td>
<td></td>
<td>-2.31655</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>XBP1</td>
<td>-2.0767</td>
</tr>
<tr>
<td>33</td>
<td>AK299281</td>
<td>BTBD3 // BTB</td>
<td></td>
<td>-1.57894</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(POZ) domain containing 3 // 20p12.2 // 22903 // ENST00000254</td>
<td></td>
<td>-1.96342</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>BTBD3</td>
<td>-2.05834</td>
</tr>
<tr>
<td>34</td>
<td>BC002660</td>
<td>TMOD1 // troponemulin 1 // 9q22.3 // 7111 // ENST00000259365 //</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>TMOD1 // t</td>
<td>-1.52537</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-1.66137</td>
</tr>
<tr>
<td>35</td>
<td>ENST00000313367</td>
<td>OSBPL3 // oxysterol binding</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>protein-like 3 // 7p15 // 26031 // ENST</td>
<td></td>
<td>-1.5228</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>OSBPL3</td>
<td>-1.80363</td>
</tr>
<tr>
<td>36</td>
<td>BC015026</td>
<td>JOSD1 // Josephin domain containing 1 // 22q13.1 // 9929 //</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>JOSD1</td>
<td>-1.46992</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-1.92819</td>
</tr>
<tr>
<td>37</td>
<td>AK291721</td>
<td>CD276 // CD276</td>
<td></td>
<td>-1.45467</td>
</tr>
<tr>
<td></td>
<td></td>
<td>molecule // 15q23-q24 // 80381 // ENST00000318443 // CD276</td>
<td></td>
<td>-1.77488</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CD276</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>MI4333</td>
<td>FYN // FYN</td>
<td></td>
<td>-1.44559</td>
</tr>
<tr>
<td></td>
<td></td>
<td>oncogene related to SRC, FGR, YES // 6q21 // 2534 //</td>
<td></td>
<td>-1.68454</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>FYN</td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>ENST00000368</td>
<td>AF009039 // SYNJ1 // synaptojanin 1 // 21q22.2 // 8867 // ENST00000382499 // SYNJ1 //</td>
<td></td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>21486</td>
<td>EF653821 // SNX33 // sorting nexin 33 // 15q24.2 // 257364 // ENST00000308527 // SNX33</td>
<td></td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>13125</td>
<td>BC039540 // RELL1 // RELT-like 1 // 4p14 // 768211 // ENST00000314117 // RELL1 // RELT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>24452</td>
<td>AK300584 // TNFAIP1 // tumor necrosis factor, alpha-induced protein 1 (endothelial) //</td>
<td></td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>18746</td>
<td>AB004550 // B4GALT5 // UDP-Gal:betaGlcNAc beta 1,4-galactosyltransferase, polypeptide</td>
<td></td>
<td></td>
</tr>
<tr>
<td>49</td>
<td>21157</td>
<td>181057</td>
<td>SLC2A3 // solute carrier family 2 (facilitated glucose transporter), member</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>5298</td>
<td>D38122 // FASLG // Fas ligand (TNF superfamily, member 6) // 1q23 // 356 // ENST00000356</td>
<td></td>
<td></td>
</tr>
<tr>
<td>51</td>
<td>12611</td>
<td>BC005123 // SPTLC2 // serine palmitoyltransferase, long chain base subunit 2 // 14q24.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>52</td>
<td>16621</td>
<td>16621</td>
<td>BC014927 // PHLP1 // PH domain and leucine rich repeat protein phosphatase 1 // 18q21.</td>
<td></td>
</tr>
<tr>
<td>53</td>
<td>5010</td>
<td>19447</td>
<td>AB058771 // ARMC9 // armadillo repeat containing 9 // 2q37.1 // 80210 // ARMC9</td>
<td></td>
</tr>
<tr>
<td>54</td>
<td>11220</td>
<td>AF163324 // WSB2 // WD repeat and SOCS box containing 2 // 12q24.23 // WSB2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Gene Symbol</th>
<th>Gene Name</th>
<th>Description</th>
<th>Chromosome</th>
<th>Genomic Location</th>
<th>Expression Fold Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>SYNJ1</td>
<td>Synaptojanin 1</td>
<td>21q22.2</td>
<td>8867</td>
<td>ENST00000382499</td>
<td>-1.43387 -1.92248</td>
</tr>
<tr>
<td>SNX33</td>
<td>Sorting nexin 33</td>
<td>15q24.2</td>
<td>257364</td>
<td>ENST00000308527</td>
<td>-1.40268 -1.90385</td>
</tr>
<tr>
<td>RELL1</td>
<td>RELT-like 1</td>
<td>4p14</td>
<td>768211</td>
<td>ENST00000314117</td>
<td>-1.38026 -1.68682</td>
</tr>
<tr>
<td>TNFAIP1</td>
<td>Tumor necrosis factor, alpha-induced protein 1 (endothelial)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ARHGAP25</td>
<td>Rho GTPase activating protein 25</td>
<td>2p13.3</td>
<td>9938</td>
<td>ARHGAP25</td>
<td>-1.34839 -1.54089</td>
</tr>
<tr>
<td>B4GALT5</td>
<td>UDP-Gal:betaGlcNAc beta 1,4-galactosyltransferase, polypeptide</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SLC2A3</td>
<td>Solute carrier family 2 (facilitated glucose transporter), member</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TSHZ3</td>
<td>Teashirt zinc finger homeobox 3</td>
<td>19q12</td>
<td>57616</td>
<td>ENST00000240</td>
<td>-1.33225 -1.66953</td>
</tr>
<tr>
<td>FASLG</td>
<td>Fas ligand (TNF superfamily, member 6)</td>
<td>1q23</td>
<td>356</td>
<td>ENST00000356</td>
<td>-1.3298 -1.73157</td>
</tr>
<tr>
<td>SPTLC2</td>
<td>Serine palmitoyltransferase, long chain base subunit 2</td>
<td>14q24.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHLP1</td>
<td>PH domain and leucine rich repeat protein phosphatase 1</td>
<td>18q21.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BCL9</td>
<td>B-cell CLL/lymphoma 9</td>
<td>1q21</td>
<td>607</td>
<td>ENST00000234739</td>
<td>-1.28676 -1.36759</td>
</tr>
<tr>
<td>ARMC9</td>
<td>Armadillo repeat containing 9</td>
<td>2q37.1</td>
<td>80210</td>
<td>AY219922</td>
<td>-1.2482 -1.4451</td>
</tr>
<tr>
<td>WSB2</td>
<td>WD repeat and SOCS box containing 2</td>
<td>12q24.23</td>
<td>55884</td>
<td>AF2291</td>
<td>-1.23277 -1.37082</td>
</tr>
<tr>
<td>ID</td>
<td>Symbol</td>
<td>Description</td>
<td>Chromosome</td>
<td>Log2 Fold Change 1</td>
<td>Log2 Fold Change 2</td>
</tr>
<tr>
<td>----</td>
<td>--------</td>
<td>-------------</td>
<td>-------------</td>
<td>-------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>57</td>
<td>BC000591</td>
<td>AATF // apoptosis antagonizing transcription factor // 17q12 // 26574 // E</td>
<td>AATF</td>
<td>-1.13876</td>
<td>-1.16356</td>
</tr>
<tr>
<td>58</td>
<td>AK290251</td>
<td>STX3 // syntaxin 3 // 11q12.1 // 6809 // AK297419 // STX3 // syntaxin 3 //</td>
<td>STX3</td>
<td>1.02997</td>
<td>1.14411</td>
</tr>
<tr>
<td>59</td>
<td>BC034044</td>
<td>CAMK2G // calcium/calmodulin-dependent protein kinase II gamma // 10q22 //</td>
<td>CAMK2G</td>
<td>1.0915</td>
<td>1.23204</td>
</tr>
<tr>
<td>60</td>
<td>AB040946</td>
<td>POGK // pogo transposable element with KRAB domain // 1q24.1 // 57645 // E</td>
<td>POGK</td>
<td>1.12278</td>
<td>1.38229</td>
</tr>
<tr>
<td>61</td>
<td>BC035609</td>
<td>MTMR4 // myotubularin related protein 4 // 17q22-q23 // 9110 // ENST000003</td>
<td>MTMR4</td>
<td>1.2065</td>
<td>1.43276</td>
</tr>
<tr>
<td>62</td>
<td>AY221117</td>
<td>SPATA12 // spermatogenesis associated 12 // 3p14.3 // 353324 // ENST000003</td>
<td>SPATA12</td>
<td>1.23352</td>
<td>1.5721</td>
</tr>
<tr>
<td>63</td>
<td>ENST0000223145</td>
<td>GLCCI1 // glucocorticoid induced transcript 1 // 7p21.3 // 113263 //</td>
<td>GLCCI1</td>
<td>1.2636</td>
<td>1.50484</td>
</tr>
<tr>
<td>64</td>
<td>AY642122</td>
<td>ZNF394 // zinc finger protein 394 // 7q22.1 // 84124 // BC017051 //</td>
<td>ZNF394</td>
<td>1.3302</td>
<td>1.43708</td>
</tr>
</tbody>
</table>
Table 2. Differentially expressed GPCRs in LAD2 cells compared to LUVA cells (ANOVA, \(p<0.05 \), > than 2 fold difference). Orphan receptors selected for analysis are highlighted.

<table>
<thead>
<tr>
<th>Gene</th>
<th>Description</th>
<th>Orphan?</th>
<th>Fold difference LAD2 vs. LUVA</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADORA3</td>
<td>Adenosine A3 receptor</td>
<td>No</td>
<td>2.27</td>
</tr>
<tr>
<td>ADRB2</td>
<td>Adrenergic β2 receptor</td>
<td>No</td>
<td>2.39</td>
</tr>
<tr>
<td>ADRB3</td>
<td>Adrenergic β3 receptor</td>
<td>No</td>
<td>6.52</td>
</tr>
<tr>
<td>CCR4</td>
<td>Chemokine receptor</td>
<td>No</td>
<td>4.16</td>
</tr>
<tr>
<td>CD97</td>
<td>Adhesion class receptor</td>
<td>No</td>
<td>2.87</td>
</tr>
<tr>
<td>CX3CR1</td>
<td>Chemokine receptor</td>
<td>No</td>
<td>4.76</td>
</tr>
<tr>
<td>CXC3R3</td>
<td>Chemokine receptor</td>
<td>No</td>
<td>-3.60</td>
</tr>
<tr>
<td>CYSLTR1</td>
<td>Cysteinyl leukotriene receptor 1</td>
<td>No</td>
<td>4.32</td>
</tr>
<tr>
<td>DRD2</td>
<td>Dopamine receptor D2</td>
<td>No</td>
<td>4.90</td>
</tr>
<tr>
<td>EDNRB</td>
<td>Endothelin receptor type B</td>
<td>No</td>
<td>6.83</td>
</tr>
<tr>
<td>EMR2</td>
<td>Adhesion class receptor</td>
<td>No</td>
<td>4.50</td>
</tr>
<tr>
<td>GPR12</td>
<td>G-protein coupled receptor 12</td>
<td>Yes</td>
<td>-2.41</td>
</tr>
<tr>
<td>GPR37</td>
<td>G-protein coupled receptor 37</td>
<td>Yes</td>
<td>-2.05</td>
</tr>
<tr>
<td>GPR65</td>
<td>G-protein coupled receptor 65</td>
<td>Yes</td>
<td>9.93</td>
</tr>
<tr>
<td>GPR85</td>
<td>G-protein coupled receptor 85</td>
<td>Yes</td>
<td>2.94</td>
</tr>
<tr>
<td>GPR114</td>
<td>Adhesion class receptor</td>
<td>Yes</td>
<td>-2.14</td>
</tr>
<tr>
<td>GPR137B</td>
<td>G-protein coupled receptor 137B</td>
<td>Yes</td>
<td>4.12</td>
</tr>
<tr>
<td>GPR174</td>
<td>G-protein coupled receptor 174</td>
<td>Yes</td>
<td>-8.04</td>
</tr>
<tr>
<td>HRH4</td>
<td>Histamine H4 receptor</td>
<td>No</td>
<td>5.06</td>
</tr>
<tr>
<td>MAS1L</td>
<td>MAS1 proto-oncogene like receptor</td>
<td>Yes</td>
<td>32.41</td>
</tr>
<tr>
<td>MC1R</td>
<td>Melanocortin 1 receptor</td>
<td>No</td>
<td>2.02</td>
</tr>
<tr>
<td>MRGPRX2</td>
<td>MAS-related GPR, member X2</td>
<td>Yes</td>
<td>70.23</td>
</tr>
<tr>
<td>NPY2R</td>
<td>Neuropeptide Y2 receptor</td>
<td>No</td>
<td>2.30</td>
</tr>
<tr>
<td>P2RY8</td>
<td>Purinergic receptor P2Y, 8</td>
<td>Yes</td>
<td>-6.34</td>
</tr>
<tr>
<td>7916944</td>
<td>Prostaglandin E receptor 3</td>
<td>No</td>
<td>11.40</td>
</tr>
<tr>
<td>PTGER4</td>
<td>Prostaglandin E receptor 4</td>
<td>No</td>
<td>3.96</td>
</tr>
<tr>
<td>TPRA1</td>
<td>Transmembrane protein, adipocyte associated 1</td>
<td>No</td>
<td>2.52</td>
</tr>
</tbody>
</table>
Supplementary Figure 1. The effect of inhibitors in HEK293T-CYSLTR1 and HEK293T-CYSLTR2 overexpression models. HEK293T cells were transiently transfected with human CYSLTR1 (A) or CYSLTR2 (B), preincubated with CYSLTR1 inhibitors (MK-571 (1 μmol/L), Montelukast (100 nmol/L)) or CYSLTR2 inhibitor (HAMI3379 (1 μmol/L)) before stimulation with LTD$_4$ (100 nmol/L). Baseline corrected peak calcium mobilisation is presented as mean ± SEM from 3 experiments run in triplicate. Relative fluorescence units (RFU).
Supplementary Figure 2. Four different shRNAs (475, 478, 946, 947) targeting CYSLTR1 were stably transduced into LAD2 cells and expression of CYSLTR1 (A) and CYSLTR2 (B) mRNA analysed using qRT-PCR for verification of successful gene knockdown. Mean ± SEM of 3 experiments. * p < 0.05, One way ANOVA with Bonferroni post test in comparison to control.
Supplementary Figure 3. CysLT₁ is required for LTE₄ induced CSF2 expression. Control and CYSLTR1 knocked down LAD2 cells were stimulated with vehicle control, LTD₄ or LTE₄ for 2 (mRNA) (A) or 6 hours (protein) (B) before analysis. Data expressed as fold difference in comparison to vehicle control for CSF2 mRNA and as CSF2 supernatant concentrations. Mean ± SEM from 3 experiments.