Carbon in airway macrophages from children with asthma

<table>
<thead>
<tr>
<th>Journal:</th>
<th>Thorax</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuscript ID:</td>
<td>thoraxjnl-2013-204734.R1</td>
</tr>
<tr>
<td>Article Type:</td>
<td>Original Article</td>
</tr>
<tr>
<td>Date Submitted by the Author:</td>
<td>n/a</td>
</tr>
<tr>
<td>Complete List of Authors:</td>
<td>Brugha, Rossa; Queen Mary, University of London, Blizard Institute Mushtaq, Naseem; Queen Mary, University of London, Blizard Institute Round, Thomas; Queen Mary, University of London, Blizard Institute Gadhvi, Dev; Queen Mary, University of London, Blizard Institute Dundas, Isobel; Queen Mary, University of London, Blizard Institute Gaillard, Erol; University Hospitals of Leicester, Department of Infection, Immunity and Inflammation Koh, Lee; Queen Mary, University of London, Blizard Institute Fleming, Louise; Imperial College, London, Respiratory Paediatrics Lewis, Daniel; London School of Hygiene and Tropical Medicine, Department of Social and Environmental Health Research Sanak, Marek; Jagiellonian University Medical College, Department of Medicine Wood, Helen; King's College London, Environment Research Group, MRC-PHE Centre for Environment and Health Barratt, Benjamin; King's College London, Environment Research Group, MRC-PHE Centre for Environment and Health Mudway, Ian; King's College London, Environment Research Group, MRC-PHE Centre for Environment and Health Kelly, Frank; King's College London, Environment Research Group, MRC-PHE Centre for Environment and Health Griffiths, Chris; Queen Mary, University of London, Blizard Institute Grigg, Jonathan; Queen Mary, University of London, Blizard Institute</td>
</tr>
<tr>
<td>Keywords:</td>
<td>Paediatric asthma, Macrophage Biology</td>
</tr>
</tbody>
</table>
Carbon in airway macrophages from children with asthma

Rossa E Brugha¹, Naseem Mushtaq¹, Thomas Round¹, Dev H Gadhvi¹, Isobel Dundas¹, Erol Gaillard², Lee Koh¹, Louise J Fleming³, Daniel J Lewis⁴, Marek Sanak⁵, Helen E Wood⁶, Benjamin Barratt⁶, Ian S Mudway⁶, Frank J Kelly⁶, Christopher J Griffiths¹, Jonathan Grigg¹

1. Blizard Institute, Queen Mary, University of London, UK
2. Department of Infection, Immunity and Inflammation, University Hospitals of Leicester, Leicester, United Kingdom
3. Respiratory Paediatrics, Imperial College, London, UK
4. Department of Social and Environmental Health Research, London School of Hygiene and Tropical Medicine, London, UK
5. Department of Medicine, Jagiellonian University Medical School, Krakow, Poland
6. Environment Research Group, MRC-PHE Centre for Environment and Health, King’s College London, UK

Correspondence should be addressed to: Professor Jonathan Grigg, Centre for Paediatrics, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary, University of London, 4 Newark Street London E1 2AT, UK.

Phone 00 44 207 882 2206, Fax 00 44 207 882 2195

E-mail: j.grigg@qmul.ac.uk
Author contributions: REB recruited participants, supervised sampling, analysed sputum samples and performed phagocytosis assays, and wrote the first draft of the manuscript. NM processed sputum samples, supervised phagocytosis assays and contributed to the manuscript. TR recruited participants, supervised sampling and contributed to the manuscript. DHG recruited participants and supervised sampling. ID recruited participants, and supervised sampling and spirometry. EG and LJF provided samples for validation and contributed to the manuscript. LK differentiated monocytes, conducted phagocytosis assays on human cells and contributed to the manuscript. DJL performed geocoding and contributed to the manuscript. MS performed analysis of samples and contributed to the manuscript. HEW recruited participants and supervised sampling and contributed to the manuscript. BB provided pollution exposure estimate calculations, and contributed to the manuscript. ISM participated in subject recruitment and sample collection and contributed to the manuscript. FK and CJG supervised recruitment of participants and sampling. JG devised the study, supervised recruitment of participants, supervised sampling, data analyses, and phagocytosis assays and wrote the first draft of the manuscript with REB.

Conflict of interest: None

Funding: This study was supported by a grant from the Barts and The London Charity. The research was also supported by the National Institute for Health Research (NIHR) Biomedical Research Centre based at Guy’s and St Thomas’ NHS Foundation Trust and King’s College London. The views expressed are those of the authors (s) and not necessarily those of the NHS, the NIHR or the Department of Health

Running title: Airway macrophage carbon and asthma

Key Words
Paediatric asthma, Macrophage Biology

Total word count: 2,911
Abstract

Background

Airway macrophage (AM) phagocytosis is impaired in severe asthma. Prostaglandin (PG) E\(_2\) and D\(_2\) are increased in severe asthma and suppress AM phagocytic function \textit{in vitro}. In this study, we sought evidence for PG-mediated impairment of phagocytosis of inhalable carbonaceous particulate matter (PM) by AM in children with severe asthma compared with mild asthmatics and healthy controls.

Methods

AM were obtained from children with asthma and healthy controls using induced sputum. AM carbon area (µm\(^2\)) was assessed by image analysis. In a subgroup of asthmatics, urinary PGE\(_2\) and PGD\(_2\) metabolites were measured by HPLC, and PM exposure at the home address was modelled. Phagocytosis of PM by human monocyte-derived macrophages and rat AM was assessed \textit{in vitro} by image analysis.

Results

Airway macrophage carbon was 51% lower in children with moderate-to severe asthma (n=36) compared with mild asthmatics (n=12, p<0.01) and healthy controls (n=47, p<0.01). There was no association between modelled PM exposure and AM carbon in 33 asthmatics who had a urine sample, but there was an inverse association between AM carbon and urinary metabolites of PGE\(_2\) and D\(_2\) (n=33, rs=-0.40, p<0.05, and rs=-0.44, p<0.01). PGE\(_2\) 10\(^{-6}\) M, but not PGD\(_2\) 10\(^{-6}\)
M suppressed phagocytosis of PM$_{10}$ by human macrophages in vitro (p<0.05 vs. control). PGE$_2$ 10^{-6} M also suppressed phagocytosis of PM$_{10}$ by rat AM in vitro (p<0.01 vs. control).

Conclusions

Phagocytosis of inhaled carbonaceous PM by airway macrophages is impaired in severe asthma. PGE$_2$ may contribute to impaired AM phagocytic function in severe asthma.
Key messages

What is the key question?

Is there evidence of impaired phagocytosis of inhaled carbonaceous particulate matter (PM) in children with severe asthma, and is there a role for prostaglandin (PG) E\textsubscript{2} and D\textsubscript{2} in mediating suppression of phagocytosis?

What is the bottom line?

The amount of carbon in AM from children with severe asthma is 51% lower than healthy controls and mild asthmatics, urinary markers of PGE\textsubscript{2} and PGD\textsubscript{2} are increased in severe asthma, and PGE\textsubscript{2} suppresses phagocytosis of PM by human macrophages \textit{in vitro}.

Why read on?

Airway Macrophage carbon is lower in severe asthma, and PGE\textsubscript{2} suppresses AM phagocytosis of PM. These results lead to testable questions; what are the effects of inhaled PM that evades normal AM clearance, and does blocking PGE\textsubscript{2} release improve AM phagocytic capacity?
Introduction

Studies in children and adults suggest that the capacity of airway macrophages (AM) to phagocytose inhaled material is impaired in severe asthma. First, Fitzpatrick et al (1) reported a 50% reduction of phagocytosis of *S. aureus* by AM from children with poorly controlled asthma. Second, Alexis et al (2) reported that phagocytosis of opsonised yeast by AM is impaired in adults with eosinophilic asthma compared with healthy controls. Third, Huynh et al (3), reported impaired phagocytosis of apoptotic human T cells by AM from adults with severe asthma compared with either healthy controls or adults with less-severe asthma. To date, the mechanism for impaired AM phagocytosis in asthma is unclear, but severe asthma is associated with increased airway levels of eicosanoids that suppress macrophage phagocytosis *in vitro*. For example, prostaglandin E₂ (PGE₂) is increased in induced sputum from adults with eosinophilic asthma (4) (5), and inhibits the phagocytosis of opsonised *E. coli* and sheep red blood cells by rat AM *in vitro* (6). Furthermore, PGE₂ inhibits the phagocytosis of sheep red blood cells by murine AM *in vitro* (7), and PGE₂, and to a lesser extent PGD₂, inhibit phagocytosis of apoptotic neutrophils by human macrophages *in vitro* (8). To date, it is unknown whether PGE₂ and PGD₂ suppress macrophage phagocytosis of fossil-fuel derived PM *in vitro*.

Carbonaceous PM is phagocytosed in a dose-dependent manner by AM (9) (10). Studies in animals and humans suggest that the amount of PM in AM is a valid marker of chronic exposure to carbonaceous PM from fossil fuel combustion. For example in rats, the amount of carbon in AM reflects exposure to diesel PM over a 13 wk period (11), and in human adults the amount of carbon in AM is most strongly associated with the modeled mean exposure to inhalable PM (PM
<10 microns in aerodynamic diameter; PM$_{10}$) over the previous 6 months (12). We, and other groups, have therefore used the area of carbon in AM (AM carbon) to assess the health effects of chronic exposure to PM in children and adults (13) (14) (15) (16). The utility of AM carbon as a marker of personal exposure to PM is based on the assumption that the phagocytic capacity of AM is broadly similar between individuals. However, in a previous small pilot study we unexpectedly found low to absent AM carbon in a small number of children with severe eosinophilic asthma, and speculated that phagocytosis of AM carbon in vivo is impaired in severe asthma (14). In the present study, we sought to establish definitive evidence for i) lower AM carbon in children with severe asthma compared with children with either mild asthma or healthy controls, and ii) a role for PGE$_2$ and PGD$_2$ in suppressing phagocytosis.
Methods

Participants

Asthmatic children were recruited from the Royal London Children’s Hospital, the University Hospitals of Leicester, the Royal Brompton Hospital (London), and schools in east London. The major source of carbonaceous PM exposure in children in these urban areas is fossil-fuel derived PM. Current asthma control was established from a review of the clinical notes, or a parent-completed International Study of Asthma and Allergies in Childhood questionnaire (17). Asthma severity was categorised by British Thoracic Society/Scottish Intercollegiate Guidelines Network (BTS/SIGN) criteria. Children with asthma at BTS step 1-2 were classified as “mild”, and BTS step 3-5 classified as “moderate-to-severe” (18). Healthy children were recruited from east London schools, and from siblings of children attending asthma clinics. A subgroup of asthmatic children recruited at the Royal London Hospital also had a urine sample obtained and exposure of their home to PM modelled using i) the London Air Quality Toolkit (LAQT), and ii) the home to main road distance. The LAQT is an established emissions dispersion model capable of producing annual mean pollutant concentrations at a resolution of 20m x 20m (19). The LAQT models the mean exposure of children’s home addresses to PM with mean aerodynamic diameter <2.5 µm (PM$_{2.5}$), for annual, 7-day, and 24 h PM$_{2.5}$ prior to sputum induction (online supplement). Children living in homes within 50 m of a main road were considered to have increased exposure to traffic-derived PM. Written informed assent and consent was obtained from children and parents (Research Ethics Committees approval reference; 08/H0704/139, 11/LO/1732, and 09/H0403/92).
Spirometry and induced sputum

Spirometry was performed according to standard criteria (20) using a Microlab spirometer (Care Fusion, Kent, UK). Post-bronchodilator lung function was measured 15 min after 400 µg inhaled salbutamol via a metered dose inhaler and large volume spacer. Standard deviation scores (z-scores) for forced vital capacity in 1 sec (FEV₁) and forced vital capacity (FVC) were calculated using Global Lung Initiative software (21). Children with asthma underwent sputum induction during a clinician assessed period of stability. Induced sputum was not done within 1 mo of an asthma exacerbation requiring oral corticosteroids. Sputum induction and processing was done as previously described (14) using nebulised 4.5% saline via a Multisonic Profi nebuliser (Schill, Germany) (online supplement).

Airway macrophage carbon

The area of carbon in AM was determined as previously reported (14). Briefly, digital images of 50 randomly selected AM from each child were obtained at x100 magnification, and the mean area (µm²) of carbon determined. Analysis was blinded to asthma status. Additional details are given in the online supplement.

Urinary PGE₂ and PGD₂ metabolites

Urine was obtained from children at sputum induction, transported on ice, and stored at -80 °C within 1 h of collection. Analysis was by high performance liquid chromatography–tandem mass spectrometry (HPLC-MS) (22). Negative ionization was used to detect 13,14-dihydro-15-keto-
tetranor-PGE₂ (-tetranor-PGE₂) and 13,14-dihydro-15-keto-tetranor-PGD₂ (-tetranor-PGD₂)

Metabolite concentrations were expressed in proportion to urinary creatinine (online supplement).

Phagocytosis of PM₁₀ in vitro

The effect of PGE₂ and PGD₂ on the phagocytosis of urban PM₁₀ by human monocyte-derived macrophages and rat AM was assessed using a modification of the *in vitro* assay described by Aronoff *et al* (6) (Online supplement). The aim was to first assess the effect of PGE₂ and PGD₂ on human macrophages at the optimal suppressive concentration (10⁻⁶ M) described by Aronoff *et al* (6), then confirm any positive findings using rat AM. Briefly, either human monocyte-derived macrophages from healthy adult donors, or rat AM, were adhered to bovine serum albumin-coated coverslips, and cultured with PM₁₀ (10µg/mL) collected from urban filters in Leicester city centre, with or without PGE₂ / PGD₂ (Sigma-Aldrich, St Louis, MO, USA) for 1 h (6). Phagocytosis of PM₁₀ was determined by image analysis of 50 cells per well by an operator blinded to exposure status (described above). Experiments were done on at least 6 separate occasions.

Statistical analysis

Data are presented as median (interquartile range; IQR). Correlations were done by Spearman’s rank correlation (rs), and proportions compared by Chi-square test. Data between 2 groups were compared by either Mann Whitney test (unpaired) or Wilcoxon matched-pairs signed rank test.
(paired). Comparisons between more than 2 groups were done by Kruskal-Wallis test and Dunn’s multiple comparison test. Analyses were performed using Prism 5.00 for Windows (GraphPad Software, CA, USA). Results are considered significant at p<0.05.
Results

AM carbon and induced sputum eosinophil differential count (figure 1) were determined in 47 healthy controls, 13 children with asthma at BTS step 1 to 2, and 36 children with asthma at BTS step 3 to 5 (figure 2, table 1). Subject numbers were determined by the study duration (October 2011 to December 2012, online figure 1). For asthmatic and healthy children recruited at the Royal London Hospital and in east London schools, 195 children were approached, 129 consented to undergo a sputum induction, and a technically acceptable IS sample was obtained from 72 (56%). One asthmatic child with sufficient number of cells for AM carbon had insufficient leukocytes for an induced sputum differential count. All 33 asthmatic children recruited at the Royal London provided a urine sample for PG analysis. At the University Hospitals of Leicester, 20 children with asthma and 58 healthy controls were approached for IS, 20 asthmatic children and 17 controls agreed to undergo IS. 10 randomly sampled slides from each group were assessed for AM carbon, and AM carbon determined in 8 asthmatics and 8 controls (online figure 1). At the Royal Brompton, 65 children with asthma were approached for IS, 55 agreed to undergo IS. 8 randomly sampled slides were assessed and AM carbon determined in 8/8 (online figure 1). For analysis, data from all three sites were pooled.

Compared with healthy controls, children with moderate-to-severe asthma (BTS step 3 to 5) but not those with mild asthma (BTS step 1 to 2), had lower post-bronchodilator FEV\(_1\) z-score, and increased induced sputum eosinophils (table 1). In healthy controls, there was no association between AM carbon and age, and no difference in AM carbon between males and females. There was also no significant difference in AM carbon when stratified by site of recruitment in either control or asthmatic groups.
Asthma and airway macrophage carbon.

Asthmatic children with moderate to severe asthma had 51% less AM carbon compared with both healthy controls (p<0.01) and mild asthmatics (p<0.01, table 1, figure 2). There was no difference in AM carbon between healthy controls and children with mild asthma (table 1, figure 2). In asthmatics (n=49), there was an inverse association between AM carbon and sputum eosinophils (%) (rs=-0.32, p<0.05), but not with sputum neutrophils (%) (p=0.14). AM carbon was therefore lower in asthmatic children with sputum eosinophilia defined as ≥2.5% (0.16 vs. 0.25 µm², p<0.01, figure 3). AM carbon in asthmatics was also inversely associated with daily inhaled corticosteroid dose (rs=-0.31, p<0.05), and age (rs=-0.44, p<0.01).

Urinary PG metabolites and AM carbon

In the 33 asthmatic children who had a urine sample taken for PG analysis, exposure to air pollution at the home address was determined by the LAQT air pollution model for 23/33, and the home-road distance assessed in 33/33. There was no difference in modelled annual mean PM₂.₅, 7-day PM₂.₅, or 24 h PM₂.₅ between mild and moderate-to-severe asthmatics (table 2), and no difference in the proportion of homes within 50 m of a main road between the 2 asthmatic groups (table 2). There was no association between modelled PM exposure and AM carbon in 33 asthmatics who had a urine sample. Urinary PG metabolites (13,14-dihydro-15-keto-tetranor-PGE₂ and 13,14-dihydro-15-keto-tetranor-PGD₂) were highly correlated (rs=0.89, p<0.001), and both metabolites were increased in moderate-to-severe asthma (p<0.05, p<0.01 vs. mild asthmatics for -tetranor-PGE₂ and -D₂, figure 4, table 2). AM carbon was inversely associated
with urinary metabolites of PGE$_2$ ((rs= -0.40, p<0.05) and PGD$_2$ (rs= -0.44, p<0.01). There was an association between sputum eosinophils and urinary PGE$_2$ and PGD$_2$ metabolites (rs= 0.35, p<0.05, and rs= 0.39, p<0.05 respectively). Compatible with results from all children, AM carbon in the subgroup with a urine sample was lower in moderate to severe asthmatics compared with mild asthmatics (p<0.01, table 2, online figure 2).

Phagocytosis of PM$_{10}$ in vitro

Phagocytosis of PM$_{10}$ by human monocyte-derived macrophages was suppressed by PGE$_2$ 10^{-6} M (p<0.05 vs. control, figure 5A), but not by PGD$_2$ 10^{-6} M (figure 5B). PGE$_2$ at 10^{-6} M also suppressed phagocytosis of PM$_{10}$ by rat AM (p<0.05, figure 6).
Discussion

This study found, compatible with our previous pilot data (14), that AM carbon in children with moderate to severe asthma is approximately half that of mild asthmatics and healthy controls. It is unlikely that lower AM carbon in children with severe asthma reflects lower exposure to PM, since no difference was found in either modelled exposure to PM at the home address, or in the proportion of homes within 50 m of a main road in the subgroup where this was assessed. Children with more severe asthma were older than mild asthmatics, and as expected, received higher doses of inhaled corticosteroids. Although there were inverse associations between AM carbon and both age and daily inhaled therapy in asthmatics, these are unlikely to be causal. First, as reported previously in healthy children (14), we found no effect of age on AM carbon in healthy controls in the present study. Second, Fitzpatrick et al (1) previously reported that phagocytosis of bacteria by AM in vitro is not attenuated in children receiving regular inhaled corticosteroid therapy for non-asthmatic symptoms. Third, AM phagocytic function is not impaired by β2-adrenoreceptor agonists in vitro (23).

Lower AM carbon in children with severe asthma is compatible with previous studies of AM using other phagocytic targets. For example, Huynh et al (3) in a study of adults with severe asthma, reported a reduced number of apoptotic bodies in AM (reflecting decreased phagocytosis of apoptotic cells in vivo (24)) compared with healthy controls, and in children with poorly-controlled asthma, Fitzpatrick et al (1) reported an impaired capacity of AM to phagocytose S. aureus in vitro. The lack of an effect of mild asthma on the capacity for AM phagocytosis is suggested first by Alexis et al (2) who reported no difference in the capacity of induced sputum AM to phagocytose opsonised yeast in mild asthmatics compared with healthy controls, and
second by Lay et al (25) who found that phagocytosis of inhaled particles by AM in vivo was not impaired in mild asthmatics compared with healthy controls. It is unlikely that lower AM carbon in severe asthma is due to less PM inhaled into the lower airway, since studies in adults suggest increased lower airway deposition of PM in asthmatics compared to controls (26) (27). An increased number of AM in asthma could also result in lower AM carbon. To date, AM density in children with asthma, has not been studied, but no increase in bronchoalveolar lavage AM concentration has been reported in a murine model of asthma (28).

The mechanism causing impaired AM phagocytosis in severe asthma is unclear. Two studies to date have assessed the association between AM phagocytosis in asthma and airway inflammation. Simpson et al (29) reported that uptake of apoptotic bronchial epithelial cells by AM in vitro from adults with non-eosinophilic asthma is impaired compared with adults with eosinophilic asthma. By contrast, Alexis et al (2) reported that phagocytosis of opsonised yeast particles by AM in vitro is attenuated in adults with eosinophilic asthma compared with a non-eosinophilic asthmatic phenotype. Compatible with Alexis et al (2), we found that AM carbon was indeed lower in children with eosinophilic asthma when defined either by a cut-off of $>2.5\%$ (30), or by a cut-off of $>5\%$ (2) ($p<0.05$, Online figure 2).

PGE$_2$ and PGD$_2$ are putative mediators of impaired phagocytosis in severe asthma since they both are associated with eosinophilic asthma and directly suppress AM phagocytosis in vitro (4) (31). Profita et al (4) reported increased induced sputum PGE$_2$ in asthmatic adults with bronchodilator reversibility $>15\%$, and peak flow variability $>20\%$, Aggarwal et al (5)
reported increased induced sputum PGE$_2$ in severe, but not in mild asthmatics, and Fajt et al (31) reported increased BAL fluid PGD$_2$ in severe asthmatic adults. PGE$_2$ in vitro inhibits phagocytosis of opsonised sheep red blood cells and *K. pneumoniae* by rat AM (6), and PGE$_2$, and to a lesser extent PGD$_2$, suppress phagocytosis of apoptotic neutrophils by human monocyte-derived macrophages (8). In the present study, the inverse association between urinary metabolites of PGE$_2$ and PGD$_2$ and AM carbon provides indirect evidence of a role for both mediators in suppressing the phagocytosis of inhaled fossil-fuel derived carbon. Further support for a role of PG is provided by our *in vitro* studies that show, for the first time, that PGE$_2$ 10$^{-6}$ M markedly suppresses phagocytosis of PM$_{10}$ by human macrophages and rat AM. The lack of effect of PGD$_2$ at 10$^{-6}$ M on phagocytosis of PM$_{10}$ is compatible with Rossi et al (8) who reported that while PGE$_2$ 10$^{-6}$ M suppresses by 60% phagocytosis of apoptotic cells by human monocyte-derived macrophages, PGD$_2$ at a concentration of 10$^{-5}$ M suppresses phagocytosis by only 20% (8). A limitation of our study is that we did not measure airway PG directly since HPLC-MS is not suitable for small sample volumes obtained using induced sputum, and PGs are rapidly metabolised in the plasma during sampling (32). However, the urinary metabolites measured in the present study are plausible markers of systemic levels since they result from a common metabolic pathway which includes a reduction of the double bond between C-13 and C-14 and oxidation of the hydroxyl group at C-15, producing 13,14-dihydro-15-keto PGs (33) - metabolites which are excreted unchanged in the urine (22) (34). Although we have shown that PGE$_2$-mediated suppression of phagocytosis is biologically plausible, and have provided indirect evidence for this association *in vivo*, we cannot exclude a role for “intrinsic” changes in phagocytic capacity of AM in severe asthma. For example, Fitzpatrick et al (35) reported that
AM from children with severe asthma are characterised by a distinct molecular phenotype that does not have a clear Th1 or Th2 pattern.

In summary, in children with moderate to severe asthma with no evidence of lower exposure to fossil fuel derived PM, we found lower AM carbon compared with mild asthmatics and healthy controls. Indirect evidence was found of increased systemic concentrations of both PGE$_2$ and PGD$_2$ - mediators that suppress alveolar macrophage phagocytosis \textit{in vitro}. Of these, our \textit{in vitro} studies suggest that PGE$_2$ is a potent suppressor of AM phagocytosis of PM \textit{in vivo}. The consequences of impaired removal of inhaled PM by AM is unknown in humans, but in mice inhaled particles that are normally non-toxic to wild type animals are toxic to animals deficient in the receptor required for efficient AM phagocytosis of PM (36).
References

Legend for Figures

Figure 1. Induced sputum airway macrophages (AM) from children showing phagocytosed inhaled carbon. The black arrows show carbon in AM from healthy children (top row) and from children with moderate to severe asthma (bottom row). The white arrow indicates an eosinophil. Images at x100, bar = 10 µm

Figure 2. Comparison of airway macrophage (AM) carbon between children with mild asthma (British Thoracic Society (BTS) step 1 to 2), moderate-to-severe asthma (BTS step 3 to 5), and healthy controls. Airway macrophage carbon was calculated from 50 AM per child and is expressed as the mean area of carbon per AM (µm²). Comparison is by Kruskal Wallis test and Dunn’s multiple comparisons test. Bar represents median. Children with moderate-to-severe asthma have lower AM black carbon compared with both healthy controls and mild asthmatics. There is no significant difference between healthy controls and mild asthmatics.

Figure 3. Comparison of airway macrophage (AM) carbon between children with eosinophilic (≥2.5%, n=20) and non-eosinophilic (< 2.5%, n=28) asthma. Eosinophil (Eos) differential count is from 400 induced sputum leucocytes per child. Airway macrophage carbon is lower in children with eosinophilic asthma (p <0.01, Mann Whitney test). Bar represents median.

Figure 4. Effect of asthma severity on urinary metabolites of (A) PGE₂ and (B) PGD₂ in the subgroup of 33 asthmatic children where a urine sample was obtained. Urinary 13,14-dihydro-
15-keto-tetranor-PGE$_2$ and 13,14-dihydro-15-keto-tetranor-PGD$_2$ (-tetranor-PGE$_2$/D$_2$) is higher in moderate-to-severe asthmatics compared with mild asthmatics. Urinary metabolites of PGE$_2$ and PGD$_2$ were measured using high performance liquid chromatography–tandem mass spectrometry. Comparison by Mann Whitney test. Bar represents median.

Figure 5: Effect of (A) PGE$_2$ and (B) PGD$_2$ on the phagocytosis of fossil-fuel derived particulate matter (PM) $<$10 μm in aerodynamic diameter (PM$_{10}$) by human monocyte-derived macrophages. Macrophages were adhered onto coverslips, cultured with either PGE$_2$ 10$^{-6}$ M or PGD$_2$ 10$^{-6}$ M for 10 min, then incubated with PM$_{10}$ 10 μg/mL for 1 h. Phagocytosis of carbon was assessed by image analysis of 50 randomly-selected macrophages per coverslip by an operator blinded to exposure, and expressed as mean area of carbon (μm2). Pre-incubation with PGE$_2$, but not with PGD$_2$, suppressed phagocytosis of PM$_{10}$ (*p <0.05, vs. medium control by Wilcoxon matched-pairs signed rank test). Data are from 6 separate experiments done at separate times.

Figure 6. Effect of PGE$_2$ on phagocytosis of urban particulate matter $<$10 micrometers in aerodynamic diameter (PM$_{10}$) by rat airway macrophages (AM). AM were obtained by bronchoalveolar lavage and adhered onto coverslips. Rat AM were cultured with PGE$_2$ 10$^{-6}$ M for 10 min, then incubated with PM$_{10}$ (10 μg/mL) for 1 h. Phagocytosis of carbon was assessed using image analysis. Paired data are from AM from the same animal. Pre-incubation with PGE$_2$ 10$^{-6}$ M suppresses PM$_{10}$ phagocytosis by AM (*p <0.01 by Wilcoxon matched-pairs signed rank test). Data are from 17 separate experiments in separate animals done at separate times.
Table 1: Demographics and airway macrophage carbon in healthy controls and children with asthma

<table>
<thead>
<tr>
<th></th>
<th>Healthy controls</th>
<th>Mild asthma (BTS step 1 to 2)</th>
<th>Moderate to severe asthma (BTS step 3 to 5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>47</td>
<td>13</td>
<td>36</td>
</tr>
<tr>
<td>Age (yr)</td>
<td>9.34 (8.9 to 9.7)</td>
<td>9.41 (9.1 to 9.6)</td>
<td>11.63*** (9.8 to 13.4)</td>
</tr>
<tr>
<td>Gender (M/F)</td>
<td>21/26</td>
<td>11/2*</td>
<td>18/18</td>
</tr>
<tr>
<td>Post-bronchodilator FEV₁ (z-score)</td>
<td>-0.16 (-0.89 to 0.46)</td>
<td>-0.25 (-0.78 to 0.23)</td>
<td>-1.26*** (-1.93 to -0.79)</td>
</tr>
<tr>
<td>ICS dose (µg BDP equivalent/day)</td>
<td>Not applicable</td>
<td>0 (0 to 150)</td>
<td>500 (400 to 750)</td>
</tr>
<tr>
<td>LABA (n)</td>
<td>Not applicable</td>
<td>0</td>
<td>27</td>
</tr>
<tr>
<td>LTRA (n)</td>
<td>Not applicable</td>
<td>0</td>
<td>16</td>
</tr>
<tr>
<td>Induced sputum eosinophils (%)</td>
<td>0 (0 to 0)</td>
<td>0 (0 to 0.60)</td>
<td>3.5*** (0.32 to 9.84)</td>
</tr>
<tr>
<td>Induced sputum neutrophils (%)</td>
<td>1.75 (0 to 22.5)</td>
<td>1.00 (0.13 to 16.8)</td>
<td>16.00** (6.5 to 39.3)</td>
</tr>
<tr>
<td>Induced sputum airway macrophage carbon (µm²)</td>
<td>0.37 (0.16 to 0.53)</td>
<td>0.37 (0.24 to 0.88)</td>
<td>0.19** (0.08 to 0.26)</td>
</tr>
</tbody>
</table>

FEV₁, post-bronchodilator forced expiratory volume in 1 sec. BDP, beclomethasone dipropionate. ICS, inhaled corticosteroid. LABA, long acting beta₂ agonist. LTRA, leukotriene
receptor antagonist. Data are described as median (interquartile range). Comparison between groups by Kruskal-Wallis test and Dunn’s multiple comparisons test. There is a higher proportion of males with mild asthma (p<0.05 vs. controls, Chi-square test). *p<0.05, **p<0.01, ***p<0.001 vs. healthy controls.
Table 2. Prostaglandin E\textsubscript{2} and D\textsubscript{2} metabolites and modelled exposure to air pollution in asthmatic children in whom a urine sample was obtained.

<table>
<thead>
<tr>
<th></th>
<th>Mild asthma (BTS step 1 to 2)</th>
<th>Moderate to severe asthma (BTS step 3 to 5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>13</td>
<td>20</td>
</tr>
<tr>
<td>Induced sputum eosinophils (%)</td>
<td>0 (0 to 0)</td>
<td>2** (0 to 10)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alveolar macrophage carbon (µm2)</td>
<td>0.37 (0.24 to 0.88)</td>
<td>0.19** (0.11 to 0.26)</td>
</tr>
<tr>
<td>Mean annual PM\textsubscript{2.5} (µg/m3)</td>
<td>14.3 (14.1 to 14.6)</td>
<td>14.3 (13.7 to 14.5)</td>
</tr>
<tr>
<td>Mean 7 day PM\textsubscript{2.5} (µg/m3)</td>
<td>15.3 (9.3 to 18.0)</td>
<td>12.4 (10.1 to 21.0)</td>
</tr>
<tr>
<td>Mean 24 hr PM\textsubscript{2.5} (µg/m3)</td>
<td>9.5 (7.9 to 10.1)</td>
<td>11.5 (8.9 to 18.1)</td>
</tr>
<tr>
<td>Home address ≤50 m from a main road (n)</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Urinary 13,14-dihydro-15-keto-tetranor-PGE\textsubscript{2} (pg/mg creatinine)</td>
<td>250 (119 to 450)</td>
<td>505* (218 to 937)</td>
</tr>
<tr>
<td>Urinary 13,14-dihydro-15-keto-tetranor-PGD\textsubscript{2} (pg/mg creatinine)</td>
<td>225 (170 to 470)</td>
<td>779** (259 to 1149)</td>
</tr>
</tbody>
</table>

PG; prostaglandin, PM\textsubscript{2.5}, particulate matter <2.5 µm in aerodynamic diameter modelled at home address for 23/33 children. Sputum eosinophil differential is derived from 400 induced sputum
leucocytes per child. AM carbon is derived from 50 AM per child. Urine samples were obtained from all children recruited via the Royal London Hospital. Data are described as median (interquartile range). *p < 0.05 **p < 0.01 vs. mild asthmatics by Mann Whitney test.
Figure 2. Comparison of airway macrophage (AM) carbon between children with mild asthma (British Thoracic Society (BTS) step 1 to 2), moderate-to-severe asthma (BTS step 3 to 5), and healthy controls. Airway macrophage carbon was calculated from 50 AM per child and is expressed as the mean area of carbon per AM (µm²). Comparison is by Kruskal Wallis test and Dunn’s multiple comparisons test. Bar represents median. Children with moderate-to-severe asthma have lower AM black carbon compared with both healthy controls and mild asthmatics. There is no significant difference between healthy controls and mild asthmatics.

118x122mm (600 x 600 DPI)
Figure 3. Comparison of airway macrophage (AM) carbon between children with eosinophilic (>2.5%, n=20) and non-eosinophilic (< 2.5%, n=28) asthma. Eosinophil (Eos) differential count is from 400 induced sputum leucocytes per child. Airway macrophage carbon is lower in children with eosinophilic asthma (p <0.01, Mann Whitney test). Bar represents median.

88x73mm (600 x 600 DPI)
Figure 4. Effect of asthma severity on urinary metabolites of (A) PGE2 and (B) PGD2 in the subgroup of 33 asthmatic children where a urine sample was obtained. Urinary 13,14-dihydro-15-keto-tetranor-PGE2 and 13,14-dihydro-15-keto-tetranor-PGD2 (-tetranor-PGE2/D2) is higher in moderate-to-severe asthmatics compared with mild asthmatics. Urinary metabolites of PGE2 and PGD2 were measured using high performance liquid chromatography–tandem mass spectrometry. Comparison by Mann Whitney test. Bar represents median.

78x33mm (300 x 300 DPI)
Figure 5: Effect of (A) PGE2 and (B) PGD2 on the phagocytosis of fossil-fuel derived particulate matter (PM) <10 µm in aerodynamic diameter (PM10) by human monocyte-derived macrophages. Macrophages were adhered onto coverslips, cultured with either PGE2 10-6 M or PGD2 10-6 M for 10 min, then incubated with PM10 10 µg/mL for 1 h. Phagocytosis of carbon was assessed by image analysis of 50 randomly-selected macrophages per coverslip by an operator blinded to exposure, and expressed as mean area of carbon (µm²). Pre-incubation with PGE2, but not with PGD2, suppressed phagocytosis of PM10 (*p <0.05, vs. medium control by Wilcoxon matched-pairs signed rank test). Data are from 6 separate experiments done at separate times.

42x20mm (600 x 600 DPI)
Figure 6. Effect of PGE2 on phagocytosis of urban particulate matter <10 micrometers in aerodynamic diameter (PM10) by rat airway macrophages (AM). AM were obtained by bronchoalveolar lavage and adhered onto coverslips. Rat AM were cultured with PGE2 10-6 M for 10 min, then incubated with PM10 (10 μg/mL) for 1 h. Phagocytosis of carbon was assessed using image analysis. Paired data are from AM from the same animal. Pre-incubation with PGE2 10-6 M suppresses PM10 phagocytosis by AM (*p <0.01 by Wilcoxon matched-pairs signed rank test). Data are from 17 separate experiments in separate animals done at separate times.
Online supplement

Inhaled fossil fuel-derived particulate matter in airway macrophages from children with asthma

Rossa E Brugha¹, Naseem Mushtaq¹, Thomas Round¹, Dev H Gadhvi¹, Isobel Dundas¹, Erol Gaillard², Lee Koh¹, Louise J Fleming³, Daniel J Lewis⁴, Marek Sanak⁵, Helen E Wood⁶, Benjamin Barratt⁷, Ian S Mudway⁶, Frank Kelly⁶, Chris J Griffiths¹, Jonathan Grigg¹

1. Blizard Institute, Queen Mary, University of London, UK
2. Department of Infection, Immunity and Inflammation, University of Leicester, UK
3. Paediatric Respiratory Medicine, National Heart and Lung Institute, Imperial College, London, UK
4. Department of Social and Environmental Health Research, London School of Hygiene and Tropical Medicine, London, UK
5. Department of Medicine, Jagiellonian University Medical School, Krakow, Poland
6. Environmental Research Group, King’s College London, UK
7. NIHR Biomedical Research Centre at Guy’s and St Thomas’ NHS Foundation Trust and King’s College London, London, UK.
Exposure to PM at the home address

The London Air Quality Toolkit (LAQT) is an established emissions dispersion model capable of producing annual mean pollutant concentrations across Greater London at a resolution of 20 m x 20 m. Development of the LAQT is described in Kelly et al.\(^1\) The LAQT provided an estimate of the annual mean PM\(_{2.5}\) concentration (for the year 2010) at each home postcode, representing chronic exposure to black carbon pollution. As children underwent sputum induction over a wide time period, it was important to also consider acute exposure in the period immediately prior to the extraction. This was achieved by scaling the annual mean concentration according to a factor (f), defined as the ratio between PM\(_{2.5}\) concentrations measured by a local subset of continuous air pollution monitoring sites (L) in the prior period (t), and the annual mean (a) measured by the same sites. Thus, the acute exposure concentration estimate [P] at time t for point (x,y) was calculated as:

\[
[P]^{(x,y)}_t = f \cdot [P]^{(x,y)}_a \quad \text{where} \quad f = \frac{[P]_t^L}{[P]_a^L}
\]

Sensitivity tests were made using 24 h and seven day prior periods. Factors (f) ranged from 0.5 to 2.6 for the 24 h prior period and 0.6 to 2.2 for the seven day prior period, i.e., acute exposures to PM\(_{2.5}\) concentrations were between 50% and 260% of the annual mean chronic exposure. To identify homes within 50 m of main road, postcodes were geocoded using the National Statistics Postcode Directory via the geoconvert web-service (http://geoconvert.mimas.ac.uk). Each postcode was assigned an easting and northing coordinate pair relating to the centroid of the given postcode, using the British national grid projected coordinate system. Main roads with high traffic density ("A" roads using the UK definition) were extracted from the integrated transport network layer of the Ordnance Survey MasterMap product (Ordnance Survey © Crown
copyright 2013). Using Esri ArcGIS® 10 software (ESRI, CA, USA), the Euclidean (i.e. straight-line/crow fly) distance (m) from the home postcode to the nearest A Road was computed.

Spirometry, sputum induction and sample processing

Spirometry was performed according to ATS/ERS criteria using a Microlab spirometer (Care Fusion, Kent, UK). Children were given 400 micrograms of inhaled salbutamol (albuterol) via a multidose inhaler and large volume spacer (Volumatic, Allen and Hanbury, UK). Post-bronchodilator lung function was measured after 15 min. Sputum induction was performed using nebulised 4.5% hypertonic saline via a Multisonic Profi nebuliser (Schill, Germany) for a maximum of 20 minutes following ERS guidelines for sputum induction in children. FEV₁ and FVC were measured at 5-minute intervals to monitor for the risk of bronchospasm. Standard deviation scores (z-scores) were calculated using GrowingLungs software. Samples were placed on ice for transport until processing within 1 h. Sputum was processed by selecting for cell-rich plugs of airway mucus as per the method of Pizzichini et al. Whole-sputum samples were diluted in phosphate buffered saline (PBS) and agitated. Airway plugs were resuspended in PBS and then selected on visual inspection, aspirated via a Pasteur pipette into a Bijou. 0.1% DTT (Dithiothreitol, Sigma-Aldrich, St Louis, MO, USA) was added and the samples were vortexed, then gently agitated on ice for 15 min to facilitate mucolysis. Samples were then passed through a gauze filter and centrifuged at 10000 rpm for 10 min. Following centrifugation, the cell pellets were re-suspended in PBS. An aliquot was then transferred into cytocentrifuge funnels and spun at 1500 rpm for 3 min. Microscope slides were stained with Hemacolour (Merck,
Darmstadt, Germany), allowed to dry and mounted with glass coverslips using Vectamount fluid, for imaging under oil.

Airway macrophage black carbon

Analysis of the area of carbon in induced sputum AM was based on our previously reported method. Digital photographs of 50 AM per child were obtained using the x100 objective under oil. Digital images were transferred into Photoshop 12.0 (Adobe, San Jose, CA, USA) to generate an individual image for each macrophage. Image files were then imported into ImageJ 1.44p (National Institutes of Health, USA) and converted into 32-bit black and white images. In conjunction with the original image, the image threshold is adjusted to identify darkly stained areas of the cell; typically this includes the nucleus, phagocytosed inorganic carbon particulates (which are black) and adherent bacteria (which are typically Gram positive and stain purple). In direct comparison with the original image, areas of carbon deposited within the macrophage are selected using the freehand tool and the software generates a number of pixels which is converted to an area in micrometers squared (by comparing a known distance on a graticule to a set number of pixels in the image: for our analysis 1473 pixels correspond to 100 micrometers when imaging at x100 magnification). AM carbon is generated as mean area of carbon (μm^2).

The operator was blind to subject or exposure status. This methodology was used to assess macrophage phagocytosis of PM *in vitro* (below)

Urinary PGE$_2$ and PGD$_2$ metabolites
Urine was obtained immediately following sputum induction and stored on ice until transfer to storage at -80°C (within one hour). Analysis was by high performance liquid chromatography–tandem mass spectrometry (HPLC-MS). Chemically identical deuterated internal standards (1 ng all reagents from Cayman Chemical Company, Ann Arbor, MI) were added to each urine sample (0.5 mL), acidified with acetic acid (pH 4.5), then extracted twice with methyl tertbutyl-ether and dried under nitrogen. Methanol dissolved aliquots (10 µL, in methanol) were injected onto a reverse phase column (Zorbax Eclipse XDB C-18, Agilent Technologies, Inc. Santa Clara, CA, USA), stabilized thermally at 37 °C and a gradient consisting of two mobile phases: A acetonitrile/water/acetic acid (20/80/0.0001) and B acetonitrile/iso-propanol/acetic acid (55/45/0.0001, v/v) was used to elute eicosanoids with the flow rate 0.11 mL/min using HPLC equipped with an autosampler (Shimadzu Sil-2-AC, Shimadzu Scientific Instruments, Inc. Columbia, MD, USA). The mobile phase binary linear gradient was 1 min 8% B, 9.5 min 8–95% B, 0.5 min 95% B, 0.5 min 95–100% B, 2 min 100% B. Analytes were measured using multiple reaction monitoring mode (MRM) tandem mass spectrometry (Qtrap 4000, Applied Biosystems, Foster City, CA, USA) equipped with an electrospray ion source. Negative ionization was used for 13,14-dihydro-15-keto-(tetranor)-PGE_2 and PGD_2. The lowest limit of quantification of the eicosanoids was 1.84 pg/mg creatinine. Urine sample extract was prepared by a two step derivatisation to pentafluorobenzyl and trimethylsilyl esters which modified carboxyl and hydroxyl groups of the compound, and were purified by a thin-layer chromatography. A gas chromatography negative–ion chemical ionization mass–spectrometry was used for quantification (model Engine 5989B series II Helwett Packard, Palo Alto, CA). Detected ions mass to charge ratio and retention times are published elsewhere. All the solvents were of HPLC grade and purchased from Mallincrodt Baker, Inc. Phillipsburg, NJ, USA), while other
chemicals were from Sigma-Aldrich Co. (St. Louis, MO, USA). Ethical approval for urine sampling was limited to children recruited by researchers at the Royal London Hospital.

Phagocytosis assay

Human monocyte-derived macrophages were differentiated from donated human blood (40 ml). This was further diluted at a 2:1 ratio in the medium RPMI 1640 supplemented with 25mM HEPES buffer (Sigma-Aldrich UK). The diluted sample was then layered onto Ficoll-Paque reagent (GH-Healthcare Life Science) in a 50 ml Falcon tube at a 1:1 ratio. Following centrifugation for 20 min at 650g, the peripheral blood mononuclear cell (PBMC) layer was aspirated, diluted further in RPMI, centrifuged for a further 10 min at 2000 rpm, resuspended into minicell buffer and then washed 3 times (centrifuging for 5 min at 1700 rpm) in minicell buffer.

Cells were then resuspended in 100μls of minicell buffer with 40μls of CD14 microbeads (Miltenyi Biotec-Germany), and then incubated at 4°C for 15 min. PBMCs were isolated using the magnetic-activated cell sorting system (MACS) (Miltenyi Biotec, Germany). Following separation, cells were resuspended in RPMI 1640 supplemented with Glutamax and 25mM HEPES (Gibco) along with 1% penicillin-streptomycin (SIGMA) and heat inactivated fetal bovine serum (Lonza). Cells were plated into 24 well plates at 5 x 10^5 cells/ml and stimulated with 100ng/ml of GM-CSF (PeproTech) and incubated at 5% CO₂ at 37°C for 7 days. Media and cytokines were refreshed on day 4.

Alveolar macrophages (AM) were obtained from female Wistar rats by bronchoalveolar lavage (BAL). Rats were culled using an intraperitoneal injection of 200mg (in 1mL) phenobarbitone
(Euthatal, Merial Animal Health Ltd, Harlow, UK). Blood was removed from the pulmonary
circulation by percutaneous needle aspiration of the heart. The trachea and mediastinum were
then exposed. The trachea was cannulated using a 20G Venflon (Becton Dickinson, New Jersey,
USA) and 5ml aliquots of sterile PBS were instilled and aspirated via a 3-way tap. Aspirates
were collected in a universal container and transported on ice. Prior to the phagocytosis assay,
glass coverslips were placed into a 24-well plate and coated with 5% bovine serum albumin
(BSA) (Sigma-Aldrich, St Louis, MO, USA) and left to air dry. 1 x10^5 monocyte derived
macrophages/rat AM were suspended in 1ml of DMEM (Dulbecco’s Modified Eagle’s Medium,
Lonza) and added to each well. Cells were incubated (37°C, 5% CO_2) for 2 h to facilitate
adherence to the coverslips. PM_{10} on TX40 Teflon-coated glass fibre filter cartridges (Air
Monitors Ltd, Tewkesbury, UK) was obtained from an air pollution monitoring station sited in
the centre of Leicester (UK). PM was extracted from filters by sonication in PBS (Sigma-
Aldrich, Gillingham, UK) and the extracted dose indexed to the optical density of known
concentrations of ultrafine carbon black (UF-CB) in phosphate buffered saline, as previously
described^8. PM_{10} was suspended in PBS and sonicated at 10 μm amplitude for 1 min to decrease
particle aggregation (Soniprep 150, MSE, London UK).

For the phagocytosis assay, macrophages/rat AM were incubated for 10 min with either PGE_2,
PGD_2 (Sigma-Aldrich, St Louis, MO, USA) or medium control, then incubated with PM_{10} 10 μg
for 1 h. Glass coverslips were then removed from the wells, air dried, and cells stained with
Hemacolor (Merck, Darmstadt, Germany). Following staining, 50 randomly imaged
macrophages or rat AM for each exposure condition were imaged and analysed for carbon area
as described above.
Figure Legend (Online)

Online figure 1. STROBE flowchart outlining recruitment of children who underwent induced sputum for airway macrophage carbon analysis, modelled air pollution exposure at the home address and provided urine samples.

Online figure 2. Comparison of airway macrophage (AM) black carbon between asthma British Thoracic Society (BTS) step 1-2, and BTS step 3-5 in the subgroup of children in whom a urine sample was obtained for prostaglandin metabolite analysis. Airway macrophage carbon was calculated from 50 AM per child and is expressed as the mean area of carbon (µm2). Comparison between groups is by Mann Whitney test. Bar represents median. Asthmatic children at BTS step 3-5 have lower AM black carbon compared with both healthy controls and BTS step 1-2.

Online figure 3. Comparison of airway macrophage (AM) black carbon between children with eosinophilic ≥5.0% and non-eosinophilic (< 5.0%) asthma. Airway macrophage black carbon is lower in children with eosinophilic asthma defined using this higher cut-off (p <0.05, Mann Whitney test). Eosinophil (Eos) differential counts are from 400 induced sputum leucocytes per child.
References (Online)

<table>
<thead>
<tr>
<th>Royal London Hospital</th>
<th>Approached</th>
<th>Consent</th>
<th>Selected</th>
<th>Suitable for analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>65 asthma</td>
<td>50 asthma</td>
<td>50 asthma</td>
<td>33 asthma</td>
<td></td>
</tr>
<tr>
<td>130 controls</td>
<td>79 controls</td>
<td>79 controls</td>
<td>39 controls</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Royal Brompton Hospital</th>
<th>Approached</th>
<th>Consent</th>
<th>Selected</th>
<th>Suitable for analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>65 asthma</td>
<td>55 asthma</td>
<td>8 asthma (selected at random)</td>
<td>8 asthma</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>University Hospitals Leicester</th>
<th>Approached</th>
<th>Consent</th>
<th>Selected</th>
<th>Suitable for analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 asthma</td>
<td>20 asthma</td>
<td>10 asthma (selected at random)</td>
<td>8 asthma</td>
<td></td>
</tr>
<tr>
<td>58 controls</td>
<td>17 controls</td>
<td>10 controls</td>
<td>8 controls</td>
<td></td>
</tr>
</tbody>
</table>

Urine prostanoid analysis and modelled air pollution exposure

<table>
<thead>
<tr>
<th>Royal London Hospital</th>
<th>Approached</th>
<th>Consent</th>
<th>Selected</th>
<th>Suitable for analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>33 asthma with IS</td>
<td>33/33 provided urine sample</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>suitable for AM carbon</td>
<td>23/33 lived within boundary of air pollution model</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Online figure 2. Comparison of airway macrophage (AM) black carbon between asthma British Thoracic Society (BTS) step 1-2, and BTS step 3-5 in the subgroup of children in whom a urine sample was obtained for prostaglandin metabolite analysis. Airway macrophage carbon was calculated from 50 AM per child and is expressed as the mean area of carbon (µm²). Comparison between groups is by Mann Whitney test. Bar represents median. Asthmatic children at BTS step 3-5 have lower AM black carbon compared with both healthy controls and BTS step 1-2.

127x152mm (600 x 600 DPI)
Online figure 3. Comparison of airway macrophage (AM) black carbon between children with eosinophilic ≥5.0% and non-eosinophilic (< 5.0%) asthma. Airway macrophage black carbon is lower in children with eosinophilic asthma defined using this higher cut-off (p < 0.05, Mann Whitney test). Eosinophil (Eos) differential counts are from 400 induced sputum leucocytes per child.