Highlights

- Executed at runtime. The proposed approach can better manage time-varying workloads and system changes.
- Hierarchical mapping approach. The proposed approach is implemented in a many-core managed in a hierarchical way. Such hierarchical system management improves system scalability by dividing the system into regions, each one with a manager responsible for actions inside it. Further, it reduces mapping decision computational effort, not compromising the system performance.
- Induces to a better system reliability. The proposed approach aims to improve energy balancing, which are directly related to a better system reliability.
- Hierarchical energy monitoring. The proposed approach does not employ physical sensors in the mapping decision, which increases area and energy costs. The energy data is obtained at runtime using a hierarchical monitoring approach.
- Clock-cycle model for validation. The proposed mapping approach is validated in a large many-core system (up to 256 processing elements), modeled in SystemC.
Hierarchical Energy Monitoring for Task Mapping in Many-core Systems

Guilherme Castilhos1, Marcelo Mandelli1, Luciano Ost2, Fernando Gehm Moraes1

1PUCRS University, Computer Science Department, Porto Alegre, Brazil – 90619-900
2University of Leicester, Department of Engineering, Leicester, UK
\{guilherme.castilhos, marcelo.mandelli\}@acad.pucrs.br, luciano.ost@leicester.ac.uk, fernando.moraes@pucrs.br

Abstract – This work addresses a research subject with a rich literature: task mapping in NoC-based systems. Task mapping is the process of selecting a processing element to execute a given task. The number of cores in many-core systems increases the complexity of the task mapping. The main concerns in task mapping in large systems include (i) scalability; (ii) dynamic workload; and (iii) reliability. It is necessary to distribute the mapping decision across the system to ensure scalability. The workload of emerging many-core systems may be dynamic, i.e., new applications may start at any moment, leading to different mapping scenarios. Therefore, it is necessary to execute the mapping process at runtime to support a dynamic workload assignment. The workload assignment plays an important role in the many-core system reliability. Load imbalance may generate hotspots zones and consequently thermal implications, which may generate hotspots zones and consequently thermal implications. More recently, task mapping techniques aiming at improving system reliability have been proposed in the literature. However, such approaches rely on centralized mapping decisions, which are not scalable. To address these challenges, the main goal of this work is to propose a hierarchical runtime mapping heuristic, which provides scalability and a fair workload distribution. Distributing the workload inside the system increases the system reliability in long-term, due to the reduction of hotspot regions. The proposed mapping heuristic considers the application workload as a function of the consumed energy in the processors and NoC routers. The proposal adopts a hierarchical energy monitoring scheme, able to estimate at runtime the consumption at each processing element. The mapping uses the energy estimated by the monitoring scheme to guide the mapping decision. Results compare the proposal against a mapping heuristic whose main cost function minimizes the communication energy. Results obtained in large systems, up to 256 cores, show improvements in the workload distribution (average value 59.2\%) and a reduction in the maximum energy values spent by the processors (average value 32.2\%). Such results demonstrate the effectiveness of the proposal.

Keywords – Energy-aware task mapping; monitoring; load balance; energy consumption; many-core systems.

1. INTRODUCTION

Many-core systems have been employed to provide the high demands of performance while maintaining energy efficiency during the execution of concurrent embedded applications (e.g. video compressing, wireless communication standards, gaming). Such systems increase performance by using multiple homogeneous or heterogeneous processors. Many-core systems also integrate memories, dedicated hardware cores, and a communication infrastructure to interconnect the system components, as NoCs (Networks-on-Chip) and buses. Despite the higher design complexity of NoCs, such communication infrastructure offers better scalability, performance and power capabilities when compared to buses [1].

Applications designed to execute in many-core systems may be partitioned into different tasks to execute in different cores, enabling its parallel execution [2]. A task is a set of instructions and data, containing information and constraints for its correct execution in a given core. Additionally, tasks exchange data with other tasks during the execution of the application. The definition in which system core each task will execute is a major issue in the design of many-core systems. In the literature, this issue is defined as task mapping [2].

Task mapping decision should be executed at runtime to deal with time-varying workloads caused by the most of the embedded system applications [3]. Such variations cannot be accurately predicted during design time, such as the scenarios when the system interacts with complex deployment environments or user-
driven requests [4]. Runtime approaches (also referred as online or dynamic mapping approaches) require simple and fast mapping solutions since high time-consuming, and high computational algorithms may compromise the system performance. Further, runtime mapping can better lead with other system changes during runtime, such as cores availability and defective cores [2].

The increasing number of cores also requires scalable and hierarchical mapping solutions. Novel systems, with dozens of cores, are already present in the market [5][6] and ITRS roadmap [7] projects systems integrating thousands of cores by the end of the decade. In such systems, a centralized mapping decision compromises the system performance since a single core handles all mapping requests [8]. Also, centralized mapping contributes to increasing NoC congestion around the mapper leading to hotspot zones, which may result in system failures.

Reliability is an important concern related to task mapping, tightly connected to the workload distribution [9][10][11]. Load imbalance decisions can generate hotspots zones (i.e. peaks of power dissipation) and thermal variations, which affects directly system reliability [9][10][12]. This issue is worse in many-core systems, increasing power densities and, consequently, system temperature. Further, mapping communicating tasks far from each other result in more data transfer through the system, increasing communication latency and energy consumption. Unusable cores induce mapping of applications onto other system cores, increasing their workload and, consequently, reducing their lifetime.

To develop a hierarchical runtime mapping heuristic aiming a fair workload distribution it is necessary to have available accurate information (e.g. power, energy, temperature) to map the tasks. Reliability, temperature, and lifetime are tightly connected to the consumed energy into the system [13]. Thus, a monitoring scheme should provide energy data to the mapping heuristic. Therefore, the energy monitoring scheme is key for the effectiveness of the mapping heuristic.

The main goal of the current work is to propose a new mapping heuristic tackling the following features: runtime execution (dynamic), scalability, and workload distribution. The mapping decisions are guided at runtime by a hierarchical energy monitoring scheme, not requiring application profiling or thermal sensors.

This paper is organized as follows. Section 2 reviews the state-of-art in dynamic mapping heuristics, comparing qualitatively our proposal to the related works. Section 3 details the application model. Section 4 presents the energy model. This model is integrated into the operating system of the processing elements, enabling the energy monitoring at runtime. The hierarchical energy scheme is detailed in Section 5. Section 6 details the mapping heuristic. Section 7 presents results, and Section 8 concludes this paper.

2. STATE-OF-ART

Task mapping literature is wide, requiring a taxonomy considering different mapping criteria. Authors in [14][15] classifies the mapping process according to four criteria:

(i) **Target architecture**: Task mapping can be executed in homogeneous (identical processing elements) or heterogeneous (e.g. DSPs, dedicated IPs, accelerators) systems.

(ii) **Number of tasks per PE**: single or multi-task. Single-task assumes only one task assignment per PE while multi-task allows mapping more than one task per PE according to some criteria (e.g. communication, execution time, task deadlines). A multi-task approach can better explore system resources, enabling the execution of an increasing number of applications in parallel.

(iii) **The moment in which it is executed**: design-time or runtime. Design-time approaches are not suitable to dynamic and unpredictable workloads imposed by the execution of different applications. Runtime task mapping enables different applications to be inserted into the system at runtime, enabling dynamic workloads.

(iv) **Mapping management**: centralized or hierarchical. Centralized mapping uses a single core responsible for the overall management, which is suited for small systems due to scalability issues. In a hierarchical approach, the mapping management is distributed in different cores, increasing system scalability and reliability.

This paper focuses on general-purpose many-core systems, able to execute several applications that are unknown in advance. This paper also assumes that underlying applications can be inserted into the
system in a non-deterministic way, according to user requirements. The literature contains several runtime-mapping approaches. Table 1 summarizes the reviewed works according to the mapping taxonomy.

<table>
<thead>
<tr>
<th>Author / Year</th>
<th>Multi/Mono-task</th>
<th>Architecture model</th>
<th>Management</th>
<th>Optimization Goal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Smit et al. [16] (2005)</td>
<td>Mono-task</td>
<td>Heterogeneous</td>
<td>Centralized</td>
<td>Energy Consumption and QoS requirements</td>
</tr>
<tr>
<td>Coskun et al. [18] (2009)</td>
<td>Mono-task</td>
<td>Homogeneous</td>
<td>Centralized</td>
<td>System Reliability</td>
</tr>
<tr>
<td>Hölzenspies et al. [19] (2008)</td>
<td>Mono-task</td>
<td>Heterogeneous</td>
<td>Centralized</td>
<td>Execution time, mapping time and monitoring traffic</td>
</tr>
<tr>
<td>Al Faruque et al. [8] (2008)</td>
<td>Mono-task</td>
<td>Heterogeneous</td>
<td>Hierarchical</td>
<td>Communication latency, energy consumption</td>
</tr>
<tr>
<td>Schranzhofer et al. [21] (2009)</td>
<td>Mono-task</td>
<td>Homogeneous</td>
<td>Centralized</td>
<td>Communication latency and energy consumption</td>
</tr>
<tr>
<td>Lu et al. [22] (2010)</td>
<td>Mono-task</td>
<td>Homogeneous</td>
<td>Centralized</td>
<td>Network contention, communication volume and energy consumption</td>
</tr>
<tr>
<td>Carvalho et al. [23] (2010)</td>
<td>Mono-task</td>
<td>Heterogeneous</td>
<td>Centralized</td>
<td>Execution time, Communication traffic energy consumption</td>
</tr>
<tr>
<td>Singh et al. [2][3][24] (2010)</td>
<td>Multi-task</td>
<td>Heterogeneous</td>
<td>Centralized</td>
<td>System reliability</td>
</tr>
<tr>
<td>Kobe et al. [25] (2011)</td>
<td>Mono-task</td>
<td>Homogeneous</td>
<td>Hierarchical</td>
<td>System reliability</td>
</tr>
<tr>
<td>Cui et al. [26]</td>
<td>Mono-task</td>
<td>Homogeneous</td>
<td>Hierarchical</td>
<td>System reliability</td>
</tr>
<tr>
<td>Hartman et al. [27] (2012)</td>
<td>Mono-task</td>
<td>Homogeneous and Heterogeneous</td>
<td>Centralized</td>
<td>Energy consumption and system lifetime</td>
</tr>
<tr>
<td>Chantem et al. [9] (2013)</td>
<td>Mono-task</td>
<td>Homogeneous</td>
<td>Centralized</td>
<td>Application deadlines and system lifetime</td>
</tr>
<tr>
<td>Bolchini et al. [28] (2013)</td>
<td>Mono-task</td>
<td>Homogeneous</td>
<td>Centralized</td>
<td>Communication energy reduction</td>
</tr>
<tr>
<td>Das et al. [29] (2014)</td>
<td>Mono-task</td>
<td>Homogeneous</td>
<td>Centralized</td>
<td>Workload distribution and communication volume</td>
</tr>
</tbody>
</table>

Only few works related to multi-task mapping were found in the literature, proposed by Singh et al. [2][3][24] and Mandelli et al. [30]. Multi-task techniques include clustering, which groups tasks to be executed in the same PE. A non-optimized clustering approach may lead to hotspots, reducing system lifetime and accelerating system wear out. Heterogeneous systems may have better performance for specific applications, and homogeneous systems are general-purpose platforms. As industrial examples [5][6], the present work focuses the research in homogeneous architectures. Another important feature is the hierarchical system management approach, as proposed in [25][26][30]. Such approach is scalable and can reduce the mapping algorithm computational effort, increasing system performance.

The literature presents different runtime task mapping approaches to improve system reliability. All reviewed works use a centralized system management approach [9][18][27][28][29]. Among them, some works [28][29] produce mapping decisions at design time, which are stored in a database and used at runtime. This approach may reduce system performance due to its incapability of dealing with unpredictable system variations. Task mapping approaches proposed in [9][27], employ physical sensors to capture thermal or wear-state condition of cores at runtime. Included sensors provide accurate information to the mapping
decision at the cost of the additional system area and energy consumption. Huang et al. [31] use an abstract system to validate the proposed approach, which can produce inaccurate performance results.

The literature presents hierarchical approaches to improve system reliability. However, such approaches use other techniques rather than task mapping [32][33][34]. Ge et al. [32] propose a task migration approach for thermal balancing. This approach uses thermal sensors, which aggregate hardware costs. Wu et al. [33] present a dynamic frequency scaling for thermal management, which may impose additional hardware costs. Liu et al. [34] also present a thermal management task migration approach, which does not consider performance costs.

Mandelli et al. [30] propose the LEC-DN (Lower Energy Consumption based on Dependencies-Neighborhood) heuristic, a hierarchical mapping approach whose main function is to reduce the communication energy. To minimize communication energy, the LEC-DN heuristic aims to reduce the distance in hops between communicating tasks. When a given task \(t_i \) is required to be mapped, this heuristic first analyzes the set of communicating tasks with \(t_i \) already mapped. Then, the heuristic approximates \(t_i \) to the tasks it has a higher communication volume.

This paper proposes a task mapping approach that differs from literature since it includes all the following characteristics:

- **Executed at runtime.** The proposed approach can better manage time-varying workloads and system changes.

- **Hierarchical mapping approach.** The proposed approach is implemented in a many-core managed in a hierarchical way. Such hierarchical system management improves system scalability by dividing the system into regions, each one with a manager responsible for actions inside it. Further, it reduces mapping decision computational effort, not compromising the system performance.

- **Induces a better system reliability.** The proposed approach aims to improve energy balancing, which is directly related to a better system reliability [9][10].

- **Hierarchical energy monitoring.** The proposed approach does not employ physical sensors in the mapping decision. The energy data is obtained at runtime using a hierarchical monitoring approach.

- **Clock-cycle model for validation.** The proposed mapping approach is validated in a large many-core system (up to 256 processing elements), modeled in clock-cycle RTL SystemC.

3. APPLICATION MODEL

An application is modeled as a graph \(G_{\text{App}} = (T, E) \), where each vertex \(t_i \in T \) represents an application task and each directed weighted edge \(e_{ij} \in E \) represents a communication dependence between tasks \(t_i \) and \(t_j \). The weight of an edge \(e_{ij} \) is denoted by \(\text{comm}_{ij} \), representing the total data communication volume transferred between application tasks \(t_i \) and \(t_j \). Figure 1 presents an example of an application modeled as a task graph. Applications may be periodic or aperiodic. If the application is periodic (e.g. video decoding), the task graph represents one iteration of the application.

An application has initial tasks (e.g. \(t_1 \) and \(t_2 \)) and non-initial tasks. Initial tasks are those that initialize the execution of the application when mapped in the system. Such tasks do not have dependencies on other tasks to start to execute. A task \(t_i \in T \) contains a set \(C_i \) called communication task list. This set is defined as \(C_i = \{(t_j, \text{comm}_{ij}); (t_k, \text{comm}_{ik}); \ldots; (t_m, \text{comm}_{im})\} \), where each element is a tuple containing a task \(t_i \) that communicates with \(t_j \) and the value \(\text{comm}_{ij} \), corresponding to the total volume transferred between \(t_i \) and \(t_j \) in both directions (i.e. \(t_i \) to \(t_j \) and \(t_j \) to \(t_i \)).

![Figure 1 - Application modeled as a task graph GApp = (T, E). Initial tasks: t1, t2. Non-initial tasks: t3, t4, t5, t6](image)

Each application has an application description file containing information used to guide mapping...
decision. Such file contains: (i) the application size, which corresponds to the total number of tasks of the application; (ii) list of initial tasks; (iii) the set C_i for each task t_i of the application.

All communication between tasks occurs through message passing. Inter-task communication uses send and receive MPI-like primitives.

4. ENERGY MODEL

The energy consumption in a many-core system is mainly due to three components: memory, processors, and NoC (routers and links). The number of memory accesses is identical for the same workload. Therefore, to fairly compare different mapping solutions using the same workload, we consider the energy consumption of both processor and NoC as main metrics.

As described in the literature [35], the energy consumption (EC) of a processor pe_i is defined by its static and dynamic consumption. The processor EC related to the execution of a given task is a function of the number of executed instructions. In our model, the energy cost of each instruction is determined from a gate-level implementation of the processor, as proposed by Rosa et al. [36].

Each processor pe_i contains an instruction analyzer module, which counts the number of executed instructions for different classes at runtime. The set of classes is defined as $C = \{c_0, c_2, \ldots, c_8\}$, with 9 different classes (e.g., arithmetic, logic, branch) [36]. Results show that the error of adopted instruction analyzer module varies from 0.06% to 8.05% when compared to a gate-level implementation [36]. The instruction analyzer module corresponds to nine instruction counters, included in the control part of the processor. If the hardware of the processor cannot be modified, a sniffer may be added in the address and instruction buses. The instruction counters are specific purpose registers containing the number of executed instructions per class. The instructions per class registers are continuously updated. The area overhead due to this module in the processor corresponds to 6.4%, and in the whole PE it is inferior to 2%.

The processor energy consumption for a given monitoring period is obtained according to Equation 1.

$$E_{\text{processor}} = \sum_{i=0}^{8} \left(\text{energy}(c_i) \times \text{total instructions}(c_i) \right)$$

where: $\text{energy}(c_i)$, energy to execute a given instruction belonging to the class c_i; value obtained by simulating the synthesized processor; $\text{total instructions}(c_i)$, number of executed instructions belonging to the class c_i in the monitoring period.

The NoC EC is proportional to the number of transmitted flits at each router port [37]. A gate level description of the NoC is used to determine the energy consumption of the main router components: buffers, internal crossbar and control logic. Equation 2 gives the energy consumption for a given monitoring period.

$$E_{\text{router}} = \text{nb_flits} \times E_{\text{buffer}} + E_{\text{crossbar}} + E_{\text{control_logic}}$$

where: nb_flits correspond to the number of flits transferred by the router during the monitoring period; E_{buffer}, E_{crossbar}, and $E_{\text{control_logic}}$ to the energy consumption of the main router components during the monitoring period.

Most of the time, the NoC consumes only static power, since the injection rate induced by the processors is typically inferior to 5% (similar injection rate was observed in [38]). Experimental results observed in [37] show that most of the consumed energy comes from processors (roughly 90%). Even if the injection rate is small, it is important to reduce the hop count to reduce the shared resources in the NoC. Increasing the number of shared resources in the NoC may lead to congestion and performance degradation due to increased latency.

Each PE monitors the processor and router energy according to a parameterizable monitoring period. The monitoring scheme uses these values to guide the mapping heuristic.

5. HIERARCHICAL MONITORING METHOD

The many-core system adopted in this work is a general purpose homogeneous MPSoC in which processing elements (PEs) are interconnected through a NoC. The system uses distributed memory architecture, based on scratchpad memories rather than cache memory. The system adopts scratchpad as
local storage memories due to its power efficiency and management facilities when compared to cache memories. Further, scratchpad memory is more predictable in terms of access time, and it does not require any coherence protocol, as required by cache-based architectures [39]. The adopted architecture does not contain shared memories.

The MPSoC architecture can be defined as a directed graph $G_{MPSoc} = (PE, L)$. Each vertex $pe_i \in PE$ is a processing element. An edge $l_{ij} \in L$ is a NoC link interconnecting pe_i to pe_j. Each PE contains a processor, a local memory, a DMA module, a network interface and a router (Figure 2). An external memory, named application repository, contains the object code of the application tasks to execute in the system.

The local memory of each PE, which default size is 32 KB, stores the µkernel (simple operating system), the code and data for the tasks assigned to the PE. The local memory is organized into equally sized pages to simplify the memory management. The number of pages in SPs is defined as SP_PAGES. While the first page stores the µkernel (9.5 KB), the remaining SP_PAGES are used to store the application tasks. If a given task does not fit on one page, the task should be partitioned into smaller tasks. The memory size is a design parameter, being possible to fit this parameter according to the workload to execute in the system. To enable the hierarchical system management, the system is divided into virtual regions, named clusters (Figure 2) [40]. For this purpose, processing elements may assume one of three roles:

- **Slave Processing Element (SPs)**. SPs execute application tasks. Each SP runs the µkernel, which supports communication between PEs, multitask execution and software interrupts (traps). Each SP can execute MAX_SP_TASKS tasks simultaneously, which corresponds to $SP_PAGES -1$.

- **Local Manager Processing element (LMP)**. Responsible for cluster control, executing functions such as task mapping, task-migration, and re-clustering (process to requests SPs to neighbor clusters).

- **Global Manager Processing Element (GMP)**. A single PE responsible for the overall system management, such as defining application-to-cluster mapping, controlling external devices accesses (e.g. application repository). Further, the GMP manages one of the system clusters (for example, the bottom left cluster of Figure 2), executing all functions of an LMP.

![Figure 2 - Example of a 9x9 MPSoC instance, with hierarchical management.](image)

The definition of the clusters’ size occurs at design time. When the system starts, the GMP handles the clusters’ initialization, notifying the LMPs the region they will manage. Then, when an LMP knows the region it will control, it informs all SPs in this region that it will be their manager. This cluster and SPs initialization mechanism provide better system adaptability. For example, runtime re-clustering process enables the modification of the cluster size. The re-clustering process occurs when there are no available SPs inside a cluster to map an application task. The LMP checks the availability of cluster resources when a task
is requested to be mapped. If there is no SP available inside the cluster to receive the requested task, an SP is borrowed from neighbor clusters [40]. When the task finishes its execution, the borrowed SP is released to the original cluster.

The proposed hierarchical monitoring approach comprises intra- and inter-cluster monitoring, as illustrated in Figure 3.

Figure 3 – Hierarchical monitoring method.

Figure 4 illustrates the hierarchical monitoring protocol. SPs periodically send monitoring packets to their LMP with the consumed energy of the PE (processor and router), and the LMP updates its energy table. LMPs update the GMP when a task is requested to be mapped, when an application finishes its execution or periodically.

Figure 4 - Hierarchical monitoring protocol.

5.1 Intra-cluster Monitoring

Intra-cluster monitoring is the process by which each LMP receives information related to the amount of energy each SP has consumed during the monitoring period, according to equations 1 and 2. The \(\mu \)kernel periodically computes the energy spent at each SP, transmitting the obtained value to the LMP. Note that the LMPs know the workload (consumed energy) of each SP, which enables the LMPs to execute heuristics to distribute the workload evenly over the time.

This process induces a small amount of traffic in the NoC, being local to each cluster. Also, as the number of SPs in each cluster is small (typically 16), the computational load to treat the monitoring packets in each LMP is small. On the one side, the number of monitoring packets increases with small monitoring periods, overloading the LMP. On the other side, large monitoring periods delay the computation of the consumed energy by the SPs, leading to wrong mapping decisions. Section 7.1 discusses this trade-off evaluating different monitoring periods.

5.2 Inter-cluster Monitoring

Inter-cluster monitoring is the process by which the GMP receives the information related to the amount of energy consumed within each cluster. Whenever an LMP to the GMP communication occurs, the
cluster energy is inserted in the packet. Such approach avoids overloading the GMP with monitoring messages. Two messages in which the monitoring information is inserted are:

- **NewTask** – the LMP requests an allocation of a new task;
- **AppTerminated** – the LMP reports to the end of a given application. The LMP sends this message when all tasks of a given application finished their execution.

Tasks executing for long periods would not update the GMP, leading to a cluster energy underestimation. Therefore, each LMP notifies the GMP periodically with the consumed energy at each cluster. This inter-cluster monitoring period is larger than the intra-cluster monitoring. Note that the GMP only knows the total energy spent at each cluster, not having a detailed view of the energy distribution.

6. HIERARCHICAL TASK MAPPING

The mapping of the set of tasks \(T = \{ t_1, t_2, \ldots, t_n \} \) of GApp onto the set \(SP = \{ sp_1, sp_2, \ldots, sp_k \} \) of GMPSoc is defined by the mapping function: \(T \rightarrow SP \), where \(\forall t_i \in T, \exists sp_j \in SP \). The hierarchical task mapping is divided into three main steps. (1) **cluster selection**, define a cluster to map a required application; (2) **initial task mapping**, select SPs to map the application initial tasks inside the cluster; (3) **non-initial tasks mapping**, select SPs to map the non-initial tasks.

The GMP receives from the external world requisitions to execute new applications in the system (‘1 – New application’, Figure 5). The GMP verifies if the system has available resources to map the application. If there are no available resources, the application is scheduled to be mapped later. Otherwise, the GMP selects a cluster to map the required application (‘2 – Cluster Selection’, Figure 5). The heuristic to select a cluster is presented in section 6.1.1. Once a given cluster is selected, the GMP obtains the application description (section 5) from the application repository, transmitting it to the selected cluster LMP (‘3 – App. Desc.’, Figure 5). The LMP of the selected cluster receives and stores the application description. Then, such LMP verifies the application description to obtain the initial tasks of the application. Next, the LMP map the initial tasks inside the cluster (‘4 – Initial Tasks Mapping’, Figure 5). The mapping of initial tasks starts the application execution. Section 6.1.2 presents the heuristic to map the initial tasks. After selecting an SP to receive an initial task, the LMP sends a message to the GMP with the service task allocation request (‘5 – NewTask’, Figure 5). Such message requests the allocation of the initial task object code in the selected SP. This happens since the GMP is the only PE with access to the application repository. Then, the GMP obtains the task object code from the application repository and transmits it to the selected SP (‘6 – Task Allocation’, Figure 5). The SP will schedule the new task at the end of the “task allocation” packet reception. Also, the LMP keeps a data structure, named task table, with the address of all mapped tasks in the cluster.

![Figure 5 – Cluster selection and initial task mapping protocol.](image-url)
Consider in Figure 5 the third application insertion. This situation illustrates a scenario where the selected cluster is the one managed by the GMP itself. In this case, the GMP also executes the initial task mapping algorithm.

As explained before, the mapping of non-initial tasks occurs whenever a given task \(t_j \) needs to communicate with a non-mapped task \(t_k \). Suppose the example of Figure 6, where task \(t_2 \), mapped on SP\(_1\), needs to communicate with a non-mapped task \(t_2 \). In this case, task \(t_2 \) requests the mapping of \(t_2 \) to its cluster LMP by sending a Task Request packet message (‘1 – Task Request’, Figure 6). The LMP receives the task request and executes a mapping heuristic to select an SP to map task \(t_2 \) (‘2 – Task Mapping Heuristic, Figure 6). The mapping algorithm, described in section 6.1.3, selects SP\(_2\) to map task \(t_2 \). Next, the LMP request the mapping of task \(t_2 \) on SP\(_2\) to the GMP by sending a “Task Allocation Request” service packet (‘3 – NewTask’ Figure 6). The LMP also uses a “Task Location” service packet to inform to SP\(_1\) the location of \(t_2 \), and to SP\(_2\) the location of task \(t_1 \) (‘4 – Task Location’, Figure 6). These locations are stored in the SPs’ task tables. Finally, the GMP obtains task \(t_2 \) object code from the application repository and transmits it to SP\(_2\) (‘5 – Task Allocation’, Figure 6).

![Figure 6 – Non-initial task mapping protocol.](image)

6.1 “HEAT” MAPPING HEURISTIC

This section describes the proposed HEAT (Hierarchical Energy-Aware Task) mapping heuristic. This heuristic makes a trade-off between workload distribution (processor and router energy) and communication volume reduction. The heuristic uses the following definitions:

- **Definition 1**: application size (app.size) corresponds to the number of tasks of the application to be mapped.
- **Definition 2**: MAX_SP_TASKS is the number of tasks a given SP may execute simultaneously (SP_PAGES - 1).
- **Definition 3**: available_resources corresponds to the number of resources (a resource is a page in the memory) that do not have a task mapped on it. This information may refer to the whole system, available_resources(system), or to a given cluster \(c_i \), available_resources\(_{c_i}\).
- **Definition 4**: available\(_{sp}(sp)\) returns true if \(sp \) is available to receive a new task, otherwise false. An SP is available when the number of tasks mapped on it is smaller than MAX_SP_TASKS.
- **Definition 5**: empty SP is an SP with no tasks mapped on it. Therefore, an empty SP can receive MAX_SP_TASKS tasks.
- **Definition 6**: TE is the total consumed energy by a given SP, corresponding to the energy \((E_i) \) consumed by all already executed tasks and the tasks that are currently being executed on this processor. The router energy consumption is also accounted in the TE value. Monitoring packets transmits the TE value of each SP to the corresponding LMP.
6.1.1 Cluster Selection

This heuristic computes the consumed energy of each cluster c_k, $cl_energy(c_k)$, using data sent by the monitoring packets. Then, the cluster with the smallest $cl_energy(c_k)$ is selected. This procedure avoids mapping an application in a high overloaded cluster, which improves the workload distribution. Algorithm 1 presents the pseudo-code of the cluster selection heuristic.

The heuristic in Algorithm 1 first verifies if the system has available resources to map the application (line 3). If there are no sufficient resources in the system, the application is scheduled to be mapped later. The first loop (lines 4-9) analyzes all clusters that have available resources to map the application, selecting the one with the smallest accumulated energy. If there are no clusters with available resources to map the application, a cluster with the smallest accumulated energy is selected, regardless the number of available resources (lines 11-16). Note that the application is mapped in the MPSoC iff the system has available resources for the application.

Algorithm 1 - Cluster selection heuristic, executed in the GMP.

This heuristic aims to distribute the energy homogeneously when a new application arrives in the system. In the long-term, this procedure avoids hotspots, and processors stressed over the time.

6.1.2 Initial Tasks Mapping

The initial tasks mapping heuristic searches a region with smallest consumed energy in the cluster. The search space is limited by the parameter n_hops, obtained from $\sqrt{|PE_cluster|}/2$, where $|PE_cluster|$ is the number of PEs in the cluster. The reasoning of this procedure is to map communicating tasks near to each other, in a set of PEs with the smallest accumulated energy.

This heuristic divides the initial task process into two phases. The first phase selects an SP with the smallest $region_energy$ to receive an initial task. A second phase is executed when the application has more than one initial task. In such phase, it is created a set with all SPs up to n hops from the selected SP, selecting the SP of this set with the smallest TE (definition 6).

The function $region_energy(sp, n_hops)$ returns the average TE from the set containing sp, and all SPs up to n_hops hops from sp. Figure 7 shows a hypothetical example using a 7x7 cluster, where sp is the central SP $sp_central$ (in green); and n_hops is 3 hops. In Figure 7, the numbers inside each rectangle represent the TE of each SP. The value of $region_energy(sp_central, 3)$ corresponds to 64, since: (i) inside a region 3 hops far from $sp_central$ there are 25 SPs; (ii) the sum of the TEs of the SPs in this area is equal to 4100; (iii) the average TE in this area is equal to $4100/25=64$.

Suppose a hypothetical example of an application with two initial tasks: t_i and t_j. The first initial task t_i is mapped in $sp_central$ of Figure 7. For the mapping of the t_j is defined a region 3 hops from $sp_centrals$ as...
delimited by the numbered SPs in Figure 7. Then, the SP with the smallest TE in this region is selected to map t_j. In the example, such SP has TE equal to 66.

![Figure 7 - Hypothetical example of region_energy.](image)

The pseudo-code of the first phase of the initial tasks mapping heuristic is detailed in Algorithm 2. The main loop (lines 3-8) selects an SP (selected_sp) with the lowest region_energy. This procedure ensures that application’s tasks that will be mapped later will be assigned closer to the selected SP and in SPs with a lower accumulated energy.

```
Input: $n\_hops$
Output: selected_sp
1. selected_sp $\leftarrow -1$
2. selected_region_energy $\leftarrow +\infty$
3. FOR EACH SP $sp_i$ in the cluster
4.    IF available($sp_i$) AND region_energy($sp_i$, $n\_hops$)< selected_region_energy THEN
5.        selected_sp $\leftarrow sp_i$
6.        selected_region_energy $\leftarrow $ region_energy($sp_i$, $n\_hops$)
7.    END IF
8. END FOR EACH
9. return selected_sp
```

Algorithm 2 - First phase of the initial tasks mapping, executed in the LMPs.

If the application has only one initial task, the SP chosen by the heuristic of Algorithm 2 is selected to execute the task. Otherwise, the heuristic presented in Algorithm 3 is executed for each non-mapped initial task. In line 4 it is created a set neighbors_list with all SPs up to n_hops from selected_sp computed in the previous phase. The loop between lines 6-11 selects an available SP from the neighbors_list with the smallest TE. If there is no available SP inside the list, the search space increases 1 hop (lines 12-15), until visiting all SPs of the cluster (line 5).

```
Input: $SP\_address\_n\_hops$  // $SP\_address$ is the $\text{selected}\_sp$ address obtained in the 1st phase
Output: selected_sp
1. selected_sp $\leftarrow -1$
2. selected_sp_energy $\leftarrow +\infty$
3. // Get all neighbors of $\text{selected}\_sp$ within a distance $n\_hops$
4. neighbors_list $\leftarrow $ neighbors($SP\_address$, $n\_hops$)
5. WHILE all SPs in the cluster not evaluated AND selected_sp=-1 DO
6.    FOR EACH SP $sp_i$ in neighbors_list
7.        IF available($sp_i$) = true AND $TE(sp_i)$ < selected_sp_energy THEN
8.            selected_sp $\leftarrow sp_i$
9.            selected_sp_energy $\leftarrow TE(sp_i)$
10.       END IF
11.    END FOR
12. IF selected_sp = -1 THEN
13.    $n\_hops \leftarrow n\_hops +1$
14.    neighbors_list $\leftarrow $ neighbors($SP\_address$, $n\_hops$)
15. END IF
16. END WHILE
17. return selected_sp
```

Algorithm 3 - Second phase of the initial tasks mapping, executed in the STMs.
Algorithm 3 - Second phase of the initial tasks mapping, executed in the LMPs.

6.1.3 Non-initial task mapping

Suppose a non-initial task \(t_i \) is required to be mapped. The HEAT heuristic evaluates the set \(C(t_i) \), and creates a bounding box containing all \(t_i \) communicating tasks mapped within the cluster. Then, such bounding box is increased in one hop offering a large search space. The cluster boundaries limit the search space. Figure 8 illustrates the mapping search space in the cluster. This heuristic selects the SP inside the bounding box with the lowest TE. This heuristic makes a trade-off between workload balancing and communication volume reduction. The heuristic selects the SP inside the bounding box with the lowest TE.

![Figure 8 – Non-initial task mapping search space. (a) search space when one communicating tasks is already mapped \(t_i \). (b) search space when more than one communicating task is already mapped \(t_i \) and \(t_k \).](image)

Algorithm 4 describes the algorithm used to select an SP to receive a non-initial task \(t_i \). The heuristic creates a list with all tasks communicating with \(t_i \) already mapped onto the SPs of the cluster (line 3). In the sequel, it is defined a bounding box rectangle (line 4), with all mapped communicating tasks. This bounding box is increased by one hop (line 5), offering a larger search space to map \(t_i \). A list with candidate SPs is created (line 7). The available SP in the list with the smallest TE is selected (lines 8-13). If no SP can be selected, the bounding box is increased by one hop (lines 14-16). This process continues up to find an SP or to visit all SPs of the cluster.

Algorithm 4 - Mapping of non-initial tasks, executed in the LMPs.

<table>
<thead>
<tr>
<th>Line</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>selected_sp (\leftarrow -1)</td>
</tr>
<tr>
<td>2</td>
<td>selected_sp_energy (\leftarrow +\infty)</td>
</tr>
<tr>
<td>3</td>
<td>MC(t) (\leftarrow) mapped_tasks((C(t_i))) // all tasks communicating with (t_i) already mapped</td>
</tr>
<tr>
<td>4</td>
<td>bounding_box (\leftarrow) area(MC(t))</td>
</tr>
<tr>
<td>5</td>
<td>increase(bounding_box, 1)</td>
</tr>
<tr>
<td>6</td>
<td>WHILE all SPs in the cluster were not evaluated AND selected_sp=-1 DO</td>
</tr>
<tr>
<td>7</td>
<td>neighbors_list (\leftarrow) search_SPs(bounding_box)</td>
</tr>
<tr>
<td>8</td>
<td>FOR EACH SP (sp_i) IN neighbors_list</td>
</tr>
<tr>
<td>9</td>
<td>IF available((sp_i)) = true AND TE((sp_i)) < selected_sp_energy THEN</td>
</tr>
<tr>
<td>10</td>
<td>selected_sp (\leftarrow) (sp_i)</td>
</tr>
<tr>
<td>11</td>
<td>selected_sp_energy (\leftarrow) TE((sp_i))</td>
</tr>
<tr>
<td>12</td>
<td>END IF</td>
</tr>
<tr>
<td>13</td>
<td>END FOR</td>
</tr>
<tr>
<td>14</td>
<td>IF selected_sp = -1 THEN</td>
</tr>
<tr>
<td>15</td>
<td>increase(bounding_box, 1)</td>
</tr>
<tr>
<td>16</td>
<td>END IF</td>
</tr>
<tr>
<td>17</td>
<td>END WHILE</td>
</tr>
<tr>
<td>18</td>
<td>return selected_sp</td>
</tr>
</tbody>
</table>

Algorithms 3 and 4 may return -1, meaning that the cluster has no available SP to receive the task. In this situation, the \(\mu \) kernel borrows an SP from a neighbor cluster (process named **reclustering**), mapping the task in the borrowed SP.
7. RESULTS

The experiments were executed in the reference MPSoC, using a clock cycle accurate model described in SystemC. Each SP can execute up to 2 simultaneous tasks, scheduled by the µkernel. The main cost function of the proposed mapping heuristic, HEAT, is the energy distribution, as previously discussed.

The reference mapping heuristic is the LEC-DN [30]. The LEC-DN heuristic considers the dependencies between all communicating tasks, using as the main cost function the minimization of the communication energy in the NoC. To minimize the communication energy, this heuristic uses the communication volume between tasks since the number of transmitted flits defines the communication energy. This heuristic is selected as the reference since its cost function is the one adopted in most NoC-based systems: minimize the communication energy.

Chantem et al. [9] use as part of their heuristic the largest task first (LTF) algorithm to slow down the wear process on the cores as much as possible. LTF is an energy-aware heuristic that attempts to balance spatially the system load in a non-increasing order of energy consumption and assign them to the core with the least total energy consumption. Once a task is assigned to a core, the core total energy consumption is updated. This heuristic does not divide the system into clusters, and the whole application is mapped at the moment it is required. LTF is also compared against the proposed heuristic, but not used as the reference because it is centralized and not consider in its cost function the communication energy.

Five benchmarks, described in C language, are used: (i) DTW - Digital Time Warping (DTW), with 10 tasks; (ii) MPEG decoder, with 5 tasks; (iii) DJK - Dijkstra, with 6 tasks; (iv) SYN1, synthetic application, with 12 tasks, which emulates the communication behavior of an MPEG4 full decoder; (v) SYN2, synthetic application, with 12 tasks, that emulates the communication behavior of VOP (Video Object Plane) decoder application.

Experiments are conducted using the scenarios presented in Table 2. Scenarios 1 to 5 correspond to a many-core system with 64 PEs, executing a large number of tasks – from 250 to 1,000. Scenarios 1 and 2 contain a mix of applications while scenarios 3 to 5 have identical applications. Scenarios with identical applications are expected to generate mapping solutions with a balanced workload distribution. Scenarios 6 and 7 contain 256 PEs. The goal of these scenarios is to present the effectiveness of the proposed approach for large systems. The last column of Table 2 corresponds to the average number of tasks per SP. Scenarios with larger values in this column correspond to heavier workloads, favoring the proposed heuristic to produce a better workload distribution along the time.

<table>
<thead>
<tr>
<th>Scenario</th>
<th>MPSoC Size</th>
<th>Cluster Size</th>
<th>Applications</th>
<th>Total number of tasks</th>
<th>Number of tasks per SP</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8x8 (60 SPs)</td>
<td>4x4</td>
<td>20 x MPEG, 20 x DJK, 20 x SYN1, 20 x SYN2, 20 x DTW</td>
<td>780</td>
<td>13</td>
</tr>
<tr>
<td>2</td>
<td>8x8 (60 SPs)</td>
<td>4x4</td>
<td>10 x MPEG, 10 x DJK, 10 x SYN1, 10 x SYN2, 10 x DTW</td>
<td>390</td>
<td>6.5</td>
</tr>
<tr>
<td>3</td>
<td>8x8 (60 SPs)</td>
<td>4x4</td>
<td>50 x MPEG</td>
<td>250</td>
<td>4.17</td>
</tr>
<tr>
<td>4</td>
<td>8x8 (60 SPs)</td>
<td>4x4</td>
<td>100 x DTW</td>
<td>1000</td>
<td>16.67</td>
</tr>
<tr>
<td>5</td>
<td>8x8 (60 SPs)</td>
<td>4x4</td>
<td>100 x MPEG</td>
<td>500</td>
<td>8.33</td>
</tr>
<tr>
<td>6</td>
<td>16x16 (240 SPs)</td>
<td>4x4</td>
<td>20 x MPEG, 20 x DJK, 20 x SYN1, 20 x SYN2, 20 x DTW</td>
<td>780</td>
<td>3.25</td>
</tr>
<tr>
<td>7</td>
<td>16x16 (240 SPs)</td>
<td>4x4</td>
<td>40 x MPEG, 40 x DJK, 40 x SYN1, 40 x SYN2, 40 x DTW</td>
<td>1560</td>
<td>6.5</td>
</tr>
</tbody>
</table>

7.1 Monitoring Period Evaluation

Table 3 evaluates the consumed energy at each cluster, varying the monitoring period. With a small intra-cluster monitoring period, the number of monitoring packets increases, overloading the LMP. In such a case, several monitoring packets are delayed, and the LMP takes decisions with current and past data (i.e. some SPs were not updated since the monitoring packets were not treated), leading to wrong mapping decisions. On the other side, with large monitoring periods, SPs may receive new tasks since the energy
consumption was not yet updated. With an intermediate monitoring period, all monitoring packets are received and treated, without incurring in the long updating problem induced by long monitoring periods. Observe the DIFF row, which corresponds to the difference between the maximum and minimum consumption between clusters. The monitoring periods 1ms/3ms lead to the better load distribution among the clusters.

Table 3 – Evaluation of the monitoring period, for scenario 1. TE: total energy consumed in the cluster (µJ). STDEV: standard deviation related to the consumed energy by the SPs in the cluster (µJ). DIFF: difference between the maximum and minimum consumption between clusters.

<table>
<thead>
<tr>
<th>LEC-DN</th>
<th>HEAT - Monitoring period varying the intra/inter periods</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.25ms / 3ms</td>
</tr>
<tr>
<td></td>
<td>TE</td>
</tr>
<tr>
<td>CL 0</td>
<td>2,086</td>
</tr>
<tr>
<td>CL 1</td>
<td>2,245</td>
</tr>
<tr>
<td>CL 2</td>
<td>2,508</td>
</tr>
<tr>
<td>CL 3</td>
<td>2,470</td>
</tr>
<tr>
<td>DIFF</td>
<td>422</td>
</tr>
</tbody>
</table>

Table 4 evaluates different performance parameters for different monitoring periods. Scenario 1 was selected because it has a set of different applications, and an important workload to execute (780 tasks). The results in this Table shows:

- **Workload distribution** (lines 1 to 3). The energy standard deviation between SPs drops from 119 µJ to 31 µJ, while the maximum energy consumption drops from 432 to 234 µJ. Also, using LEC-DN several processors do not execute user tasks (min SP consumption line) while in the proposed heuristic all SPs execute user tasks.
- **Execution time** (line 4). Small reduction. Next section discusses this result, evaluating all scenarios.
- **Energy consumption** (line 5). Increases, because more SPs execute user task. Next section discusses this result, evaluating all scenarios.
- **NoC traffic** (line 6). Increases, because the proposed heuristic reduces the CPU sharing to improve the workload distribution. Next section discusses this result, evaluating all scenarios.

Table 4 – Evaluation of the monitoring period, for scenario 1, considering the total system energy, standard deviation between SPs and clusters, maximum and minimum energy consumption by SPs, and the execution time.

<table>
<thead>
<tr>
<th>LEC-DN</th>
<th>HEAT - Monitoring period varying the intra/inter periods</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.25ms / 3ms</td>
</tr>
<tr>
<td>STDEV all SPs (µJ)</td>
<td>119</td>
</tr>
<tr>
<td>Max SP consumption (µJ)</td>
<td>432</td>
</tr>
<tr>
<td>Min SP consumption (µJ)</td>
<td>0.33</td>
</tr>
<tr>
<td>Execution time (ms)</td>
<td>243</td>
</tr>
<tr>
<td>Total System Energy (µJ)</td>
<td>9,310</td>
</tr>
<tr>
<td>N# of flits (10⁶)</td>
<td>10,443</td>
</tr>
</tbody>
</table>

The current work adopts 1 and 3 ms as the intra- and inter-cluster monitoring periods respectively. These values are adopted because they present the best tradeoff between workload distribution and energy consumption.
7.2 Workload distribution

Figure 9 presents the workload distribution for scenario 1 (similar results are observed for the other scenarios), where each rectangle contains the total energy consumed by each SP (processor and router). The manager PEs are not included in the result because they do not execute user applications. As illustrated in Figure 9(a), the LEC-DN produces an unbalanced workload distribution with several “hot” processors, spending more than 300 μJ. The “hot” processors are placed in the center of the clusters, in such a way to reduce the distance between communicating tasks, and hence minimize the communication energy. On the other side, the HEAT mapping (Figure 9(b)) produces a uniform energy distribution.

<table>
<thead>
<tr>
<th>SP</th>
<th>Energy (μJ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>184</td>
</tr>
<tr>
<td>138</td>
<td>376</td>
</tr>
<tr>
<td>32</td>
<td>205</td>
</tr>
<tr>
<td>LMP</td>
<td>39</td>
</tr>
<tr>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>125</td>
<td>432</td>
</tr>
<tr>
<td>0</td>
<td>260</td>
</tr>
<tr>
<td>GMP</td>
<td>112</td>
</tr>
</tbody>
</table>

(b) HEAT mapping

<table>
<thead>
<tr>
<th>SP</th>
<th>Energy (μJ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>122</td>
<td>196</td>
</tr>
<tr>
<td>228</td>
<td>147</td>
</tr>
<tr>
<td>116</td>
<td>111</td>
</tr>
<tr>
<td>LMP</td>
<td>185</td>
</tr>
<tr>
<td>197</td>
<td>148</td>
</tr>
<tr>
<td>193</td>
<td>190</td>
</tr>
<tr>
<td>225</td>
<td>171</td>
</tr>
<tr>
<td>GMP</td>
<td>185</td>
</tr>
</tbody>
</table>

Figure 9 – Workload distribution for scenario 1. Each rectangle is an SP, with the consumed energy in μJ.

Figure 10 presents the workload distribution histograms for scenarios 1 and 7, considering the number of SPs per energy interval. From the first histogram, Figure 10(a), it is possible to observe the non uniform load distribution produced by the heuristic that minimizes only the communication energy – LEC-DN. For scenario 1, 23 SPs consume less than 100 μJ, 15 SPs consume more than 240 μJ, and 22 SPs consume in the interval 100-240 μJ. The proposed HEAT heuristic has all 60 SPs consuming between 100 and 240 μJ, showing its ability to distribute the workload along the time. A similar distribution is observed for scenario 7.

![Histogram related to the energy distribution for scenarios 1 and 7 (x-axis: energy interval, y-axis: number of SPs for each interval).](image)

Table 5 evaluates all scenarios, with summarized results. Figure 11 plots results normalized to LEC-DN. The results in this Table shows:

- **Average consumed energy per SP.** Considering that the workload applied for both mapping heuristics is the same for each scenario, a small variation is expected. Excepting scenario 4 (it executes a computation
intensive application – DTW), the proposed HEAT heuristic increases the average number of executed instructions by 8.7%. This is explained by the fact more processors are assigned to execute tasks, leading to additional jkernel instructions execution. When a given processor is not executing any task, it enters in a hold state, dissipating only static power.

- **Total system energy**: this column considers the energy consumed by the processors and the routers. As the number of executed instructions increased, the proposed HEAT heuristic increased the consumed energy in average by 4.4% (worst-case: 12.3%, scenario 7). Note that the total energy consumption does not increase in the same proportion to the SPs because the static energy is accounted.

- **Workload distribution** (column STDDEV). This is the main cost function of the HEAT mapping. All scenarios presented expressive improvement in the workload distribution. As mentioned in the experimental setup, scenarios with identical applications (3-5) present the smaller standard deviation values. A smaller reduction is observed in scenario 6 because the load applied to it is lighter (smaller number of tasks per PE as shown in the last column of Table 2).

- **Maximum energy**. This result is a parameter related to the system reliability. The average reduction of the maximum consumption per SP is 32.2% (best-case: -57.2%, scenario 5).

- **Execution time**. Even if the goal is not to reduce the execution time, the average reduction in the execution time is 4.5%. This result is explained by the fact that more processors execute tasks, reducing the processor sharing induced by the LEC-DC heuristic.

- **Traffic in the NoC (column N# of flits)**. This column measures the number of flits (10^6) transferred through the NoC. As expected, LEC-DN, reduces the traffic in the NoC because the communication energy is the main goal of this heuristic. The proposed HEAT heuristic increased the number of transferred flits in average by 37.2% (worst case: 50.5%, scenario 2).

Table 5 – Evaluation of the 5 scenarios, considering the monitoring periods equal to 1ms/3ms.

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Avg. consumed energy per SP (µJ)</th>
<th>Total System Energy (µJ)</th>
<th>STDEV Energy - all SPs (µJ)</th>
<th>MAX Energy - all SPs (µJ)</th>
<th>Execution time (ms)</th>
<th>N# of flits (10^6)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LEC-DN HEAT LEC-DN HEAT LEC-DN HEAT LEC-DN HEAT LEC-DN HEAT LEC-DN HEAT LEC-DN HEAT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>155 167</td>
<td>11,922 12,412</td>
<td>19 31</td>
<td>432 234</td>
<td>243 234</td>
<td>10.443 15.666</td>
</tr>
<tr>
<td>2</td>
<td>77 83</td>
<td>6,036 6,444</td>
<td>63 29</td>
<td>217 158</td>
<td>130 133</td>
<td>5.330 8.023</td>
</tr>
<tr>
<td>3</td>
<td>37 39</td>
<td>3,007 2,975</td>
<td>43 17</td>
<td>152 78</td>
<td>68 59</td>
<td>2.159 2.870</td>
</tr>
<tr>
<td>4</td>
<td>66 64</td>
<td>4,523 4,414</td>
<td>34 10</td>
<td>101 84</td>
<td>65 64</td>
<td>4.473 5.135</td>
</tr>
<tr>
<td>5</td>
<td>73 81</td>
<td>5,921 6,064</td>
<td>79 21</td>
<td>304 130</td>
<td>134 115</td>
<td>4.259 5.797</td>
</tr>
<tr>
<td>6</td>
<td>36 44</td>
<td>11,816 12,81</td>
<td>36 25</td>
<td>141 126</td>
<td>69 66</td>
<td>12.979 17.708</td>
</tr>
<tr>
<td>7</td>
<td>73 86</td>
<td>23,711 26,622</td>
<td>64 31</td>
<td>238 192</td>
<td>134 139</td>
<td>26.366 36.843</td>
</tr>
</tbody>
</table>

HEAT/LEC-DN: +8.7% +4.4% -59.2% -32.2% -4.4% +37.2%

The column “all SPs STDDEV” of Table 5 reflects the cost function of the proposed heuristic: workload distribution. The energy is evenly distributed in the systems, with an important reduction in the number of hotspots, as shown in Figure 9(b) and column “all SPs MAX”. The column “N# of flits” reflects the traditional cost function of mapping heuristic: reduction of the NoC traffic. Even if the communication energy is reduced, processors are overloading, compromising in the long term the system reliability.

Finally, Figure 11 compares the proposed HEAT and LTF heuristics (both heuristics use as cost function the energy consumption as main metric), normalized to the LEC-DN mapping. The behavior of the proposed HEAT heuristic was previously discussed, using as reference Table 5. The LTF heuristic presents a similar trend: higher energy consumption (up to 38%), better workload distribution (all SPs STDDEV), similar execution time (excepting scenario 4), and a larger number of flits transmitted in the NoC.

The LTF heuristic presents worse results than the HEAT heuristic for two main reasons. The first one is related to its centralized approach: one single PE to make mapping decisions (this explains why scenarios 6 and 7 for LTF are not presented in Figure 11). The second issue is the fact the only energy is
considered to take mapping decisions. The number of hops between communicating tasks increases, leading to an excessive increase in the number of flits transferred through the NoC (almost 3 times). Note that LTF in scenario 4 increased the maximum SP utilization and the execution time (51%). This scenario has a computation intensive benchmark, resulting in tasks from different applications sharing the same PE, increasing the execution time.

![Figure 11 – Comparison of the proposed HEAT (scenario 1 to 7) and LTF (scenario 1 to 5) heuristics, normalized to the LEC-DN heuristic.](image)

8. CONCLUSION AND FUTURE WORKS

The features included in the HEAT mapping include scalability, runtime execution, workload distribution. The hierarchical management of the mapping approach, which comprises three steps, ensures scalability. The workload distribution is ensured by the energy monitoring approach, which guides the mapper to select the processors less used.

The proposed HEAT mapping achieved a better workload distribution, with minimal impact to energy consumption, and reduction in maximum processor energy. The NoC usage increases, being an expected result because the application tasks use more processors to execute the same job. An important feature of the proposal is its distributed nature, using several manager processors to map the tasks. Comparing our approach to a centralized approach, with a similar cost function, we observed that a centralized approach increases the total consumed energy and spread the tasks, increasing the NoC traffic. Consequently, this works enforces important features to consider in mapping heuristics: hierarchy, monitoring and multi-objective cost function (in our proposal accumulated energy and distance among communicating tasks).

Future works include: (1) integrate of a lifetime model to evaluate MTTF; (2) include a temperature model to guide the mapping; (3) extend the mapping heuristic to cope with power constraints (i.e. limit the usage of processors according to a power budget assigned to the system); (4) couple the approach to a DVFS approach acting over PEs when a given power constraint is violated.
ACKNOWLEDGMENTS

The Author Fernando Moraes is supported by CNPq - projects 472126/2013-0 and 302625/2012-7, and FAPERGS - project 2242-2551/14-8.

REFERENCES

[27] Das, A; et al. “Temperature aware energy-reliability trade-offs for mapping of throughput-constrained applications on multimedia MPSoCs”. In: DATE, 2014, pp. 1-6

Author’s Photos

Guilherme Castilhos

Marcelo Grandi Mandelli

Luciano Ost

Fernando Gehm Moraes

Author’s Biography
Guilherme Castilhos

Guilherme Castilhos received the M.Sc. degree (2012) in Computer Science from the Pontifical Catholic University of Rio Grande do Sul (PUCRS). He is currently a PhD student at the same University, and an associate professor at UNISC (Universidade de Santa Cruz do Sul). His main research interests include Multiprocessor Systems on Chip (MPSoC), power management techniques, and networks on chip networks (NoCs).

Marcelo Grandi Mandelli

Marcelo Grandi Mandelli received the M.Sc. degree (2011) and Ph.D. degree (2015) in Computer Science from the Pontifical Catholic University of Rio Grande do Sul (PUCRS). He is currently an associate professor at UNISC (Universidade de Santa Cruz do Sul). From 2013 to 2014, he made a PHD internship at LIRMM laboratory (Montpellier, France). His main research interests include Multiprocessor Systems on Chip (MPSoC), electronic system level design (ESL), and networks on chip networks (NoCs).

Luciano Ost

Luciano Ost is currently assistant professor at the University of Leicester. Dr. Ost received his PhD degree in computer science from PUCRS, Brazil in 2010. During his PhD, Dr. Ost worked as invited researcher at the Microelectronic Systems Institute of the Technische Universitaet Darmstadt. After the completion of his doctorate degree, he worked as a research assistant and then as assistant professor at the University of Montpellier in France, until joining the University of Leicester. His main research interests include adaptive and reliable multi/many-core embedded systems.

Fernando Gehm Moraes

Fernando Moraes received the Electrical Engineering and M.Sc. degrees from the Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil, in 1987 and 1990, respectively. In 1994 he received the Ph.D. degree from the Laboratoire d’Informatique, Robotique et Microélectronique de Montpellier (LIRMM), France. He is currently at PUCRS, where he has been an Associate Professor from 1996 to 2002, and Full Professor since 2002. From 1998 to 2000 he joined the LIRMM as an Invited Professor for 3 months each year. He has authored and co-authored 25 peer refereed journal articles in the field of VLSI design, comprising the development of networks on chip and telecommunication circuits. One of these
articles, “HERMES: an Infrastructure for Low Area Overhead Packet-switching Networks on Chip”, is cited by more than 500 other papers. He has also authored and co-authored more than 200 conference papers on these topics. He has advised 24 MSc and 6 PhD works. His primary research interests include Microelectronics, FPGAs, reconfigurable architectures, NoCs (networks on chip) and MPSoCs (multiprocessor system on a chip). SBC, SBMICRO and IEEE Senior Member.