INITIATION OF INSULIN GLARGINE THERAPY IN TYPE 2 DIABETES SUBJECTS SUB-OPTIMALLY CONTROLLED ON ORAL ANTIDIABETIC AGENTS: RESULTS FROM THE AT.LANTUS TRIAL

Melanie Davies MD¹, Fernando Lavalle-González MD², Fred Storms MD³, Ramon Gomis MD PhD⁴, on behalf of the AT.LANTUS Study Group*

¹University of Leicester, Leicester, UK; ²Universidad Autonoma de Nuevo Leon, Monterrey NL, Mexico; ³Mesos Diabetes Centrum, Utrecht, The Netherlands; ⁴Hospital Clínic Universitari, Barcelona, Spain

*The full list of investigators is given in the appendix to this manuscript.

Please forward all editorial correspondence to:
Professor Melanie Davies
Professor of Diabetes Medicine
Department of Cardiovascular Sciences,
University of Leicester
Leicester LE1 5WW
UK
Tel: +44 116 258 6481
Fax: +44 116 258 5344
Email: melanie.davies@uhl-tr.nhs.uk

Running title: Glargine initiation in insulin-naïve type 2 diabetes

Key words: type 2 diabetes, basal insulin analogs, insulin glargine, oral antidiabetic agents, titration, treatment algorithms

Clinicaltrials.gov: NCT00399724

Word count (abstract): 251
Word count (text): 3,821
Duality of interest

M.D. has acted in a consultancy capacity and as a speaker for Novartis, Novo Nordisk, sanofi-aventis, Eli Lilly and Merck Sharpe Dohme. M.D. has also received grants in support of investigator-led and internal trials from Servier, Novartis, Novo Nordisk, Pfizer and sanofi-aventis. R.G. has received financial support from sanofi-aventis. F.S. has served on advisory boards for sanofi-aventis.

AT.LANTUS: A Trial comparing LANTUS Algorithms to achieve Normal blood glucose Targets in subjects with Uncontrolled blood Sugar
ABSTRACT

Objective: For many patients with type 2 diabetes, oral antidiabetic agents (OADs) do not provide optimal glycemic control, necessitating insulin therapy. Fear of hypoglycemia is a major barrier to initiating insulin therapy. The AT.LANTUS study investigated optimal methods to initiate and maintain insulin glargine (LANTUS®; glargine) therapy using two treatment algorithms. This sub-group analysis investigated the initiation of once-daily glargine therapy in patients sub-optimally controlled on multiple OADs.

Research design and methods: This was a 24-week, multinational (59 countries), multicenter (611), randomized study. Algorithm 1 was a clinic-driven titration and Algorithm 2 was a patient-driven titration. Titration was based on target fasting blood glucose ≤100 mg/dL (≤5.5 mmol/L). Algorithms were compared for incidence of severe hypoglycemia (requiring assistance and blood glucose <50 mg/dL [<2.8 mmol/L]) and baseline-to-endpoint change in HbA1c.

Results: Of the 4961 patients enrolled in the study, 865 were included in this sub-group analysis: 340 received glargine plus 1 OAD; 525 received glargine plus >1 OAD. Incidence of severe hypoglycemia was <1%. HbA1c decreased significantly between baseline and endpoint for patients receiving glargine plus 1 OAD (–1.4%, p<0.001; Algorithm 1 –1.3% vs Algorithm 2 –1.5%; p=0.03) and glargine plus >1 OAD (–1.7%, p<0.001; Algorithm 1 –1.5% vs Algorithm 2 –1.8%; p=0.001).

Conclusions: This study shows that initiation of once-daily glargine with OADs results in significant reduction of HbA1c with a low risk of hypoglycemia. The greater reduction in HbA1c was seen in patients randomized to the patient-driven algorithm (Algorithm 2) on one or more than one OAD.
Achieving and maintaining tight glycemic control for patients with type 2 diabetes is essential to delay progression of micro- and macrovascular complications [1]. Targets for HbA1c have been set as <7.0%, 6.5–7.5% and <6.5% by the American Diabetes Association [2], National Institute for Health and Clinical Excellence in the UK [3] and the International Diabetes Federation [4], respectively. However, the majority of patients with type 2 diabetes are unable to reach target HbA1c levels [5,6].

Following diagnosis, patients are generally advised to make a number of lifestyle changes, focussed on increasing physical activity levels [7] and diet [8]. However, such programs are usually insufficient by this stage of the diabetes [9]. The progressive nature of T2DM, characterized by a decline in β-cell function [10,11] and deterioration in glycemic control [12], means that pharmacologic interventions are usually required [13]. Oral antidiabetic agents (OADs), for example, sulfonylureas, metformin and glitazones are therapeutic interventions used in monotherapy or in combination. However, to achieve and maintain good glycemic control, OADs, even in combination, are insufficient [14] and insulin therapy is often required [13].

Both patients and physicians may be reluctant to start insulin therapy [6,15,16]. The fear of hypoglycemia, needle anxiety and weight gain are among the reasons cited that actively discourage insulin therapy. Therefore, it is important that for insulin therapy to be effective in patients with type 2 diabetes, these barriers must be overcome.

Insulin glargine (LANTUS®, glargine) is the first clinically available basal analog with no pronounced peak in activity and a 24-hour duration of action following once-daily administration [17]. In type 2 diabetes, insulin glargine has at least equivalent glycemic control [18-20] with a lower incidence of hypoglycemia compared with NPH insulin [20-25]. Therefore, insulin glargine could potentially be used as part of a more intensive treatment regimen to achieve target HbA1c levels ≤7% with a lower risk of hypoglycemia. Combination
therapy of insulin glargine in conjunction with one or more OADs is an effective and simple regimen in patients with type 2 diabetes who have sub-optimal control on OADs alone [26,27].

Whilst little is known regarding the optimal titration regimen for initiating basal insulin therapy, the Treat-to-Target study [25] demonstrated that aggressive titration, in the context of an intensive and fully resourced clinical trial setting, can result in ~60% of patients achieving target HbA$_1c$ of ≤7%.

We recently showed that two treatment algorithms, one largely clinic-driven and the other primarily patient-driven, can be introduced to a large cohort of subjects [28]. Given the large-scale nature of the AT.LANTUS study (59 countries, 4961 patients) and the diversity of prior treatment, it has been possible to perform a number of post hoc sub-analyses on different sub-populations. One of the most likely clinical contexts in which basal insulin is initiated in type 2 diabetes is in those with sub-optimal glycaemic control on OADs; thus, results in this particular sub-group are of particular relevance. Here we report the findings of a sub-group analysis of insulin-naïve patients sub-optimally controlled with OADs who took part in the AT.LANTUS study.
RESEARCH DESIGN AND METHODS

Study design

This was a prospective, multinational (611 centers in 59 countries in Western and Eastern Europe, South America, Asia and Africa/Middle East), randomized controlled, parallel-design study of 24 weeks duration of 4961 type 2 diabetes patients. This study included only four mandatory clinical visits, similar to standard clinical practice. All patients gave informed consent in accordance with the Declaration of Helsinki and the study was performed in accordance with Good Clinical Practice. Full details are available elsewhere [28].

Inclusion criteria for the total population [28] included: subjects aged ≥18 years on antidiabetic treatment (any oral and/or insulin therapy) for >6 months; HbA1c levels >7.0% and <12.0%; body mass index (BMI) values <40 kg/m² and a willingness to perform self-monitored blood glucose. Additional sub-group analysis criteria included insulin-naïve patients sub-optimally controlled with >1 OAD. Exclusion criteria were in accordance with the manufacturer's prescribing information.

In this paper we discuss the sub-group analysis of subjects who were previously taking only OADs. At baseline, subjects were randomized (1:1) to receive insulin glargine according to Algorithm 1 (clinic-driven titration) or Algorithm 2 (patient-driven titration) (Table 1).

[Table 1 near here]

At baseline, the investigator decided whether to continue each OAD, in line with the prescribing information. Once it was decided whether the subject should take one or >1 OAD, the dose of OAD(s) remained fixed and stable for the duration of the study. As thiazolidinediones were not licensed for use in combination with insulin at the time this study was conducted, for any patients using a thiazolidinedione during screening, the investigators were asked to switch therapy, in line with the prescribing information.
Objectives

The primary objective of the full study was to compare the two treatment algorithms for the initiation and maintenance of insulin glargine based on the incidence of severe hypoglycemia, defined according to criteria used in the Diabetes Control and Complications Trial (DCCT) [29,30].

The primary outcome measure for this sub-group analysis was the comparison between algorithms for the incidence of severe, symptomatic and nocturnal hypoglycemia. Secondary outcomes included glycemic control (HbA1c and fasting blood glucose [FBG]) and change in insulin dose from baseline. The study endpoint was defined by the subject’s last observation (Visit 12 for those completing the study, or last clinic for those missing data on Visit 12). If a subject discontinued treatment permanently before the planned study end, the last evaluation before discontinuation was considered for the endpoint analysis.

Measurements and safety

At screening, biochemistry and hematology measurements were taken. HbA1c and weight were measured at screening, baseline and Weeks 12 and 24. Analyses of HbA1c were performed by the laboratory of each participating site, either according to the DCCT standard method or a DCCT-aligned method within a documented quality controlled system. FBG levels on 6 consecutive days before and on the day of a visit were measured by subjects weekly from baseline to Week 24. Glucose monitors were provided for self-monitored blood glucose. The glucose meters used a standardized platform for the entire study and reported results in whole blood. Data and calibration of blood glucose meters was verified at clinical visits.
Safety assessments in each treatment algorithm included adverse event (AE) reporting, excluding the primary and secondary outcomes. All AEs, including non-treatment emergent AEs were recorded.

Statistical methods

The statistical and reporting methods used in this sub-analysis were similar to those used in the main AT.LANTUS study [28]. In the full study population, the primary efficacy variable (frequency of severe hypoglycemia) was evaluated using a two-sided 90% confidence interval (CI) with equivalence declared if the 90% CI was contained in the pre-defined equivalence boundaries (−1.5; 1.5%). For analyses presented here, patients treated at baseline with more than one OAD were isolated and a descriptive analysis produced. Analyses were performed for two subgroups defined according to the number of OADs received at randomization (one or more than one OAD), and who remained on the same treatment regimen throughout the study. All analyses presented here were performed on an exploratory basis. The analyses were undertaken on non-randomized sub-groups of patients without adjustment for multiple testing, and were based on the per-protocol population. Changes from baseline in HbA$_{1c}$, FBG, body weight and insulin dose were analysed using analysis of covariance. Student’s t-test and the chi-square test were also used as appropriate. A p-value <0.05 was considered statistically significant. Statistical analyses were performed using SAS version 8 (SAS Inc, Cary, NC).

RESULTS

Results of independent audits performed in accordance with Good Clinical Practice concluded that the trial data was reliable, verifiable and retrievable. The results from the full study population (n=4961) can be found elsewhere [28]. A total of 865 subjects with type 2 diabetes, previously sub-optimally controlled on multiple OADs were included in this sub-group analysis; of these patients, 340 received insulin glargine plus 1 OAD and 525 received insulin glargine plus >1 OAD (intention-to-treat population of this sub-group). Of patients
receiving 1 OAD, 316 (170 Algorithm 1 and 146 Algorithm 2) completed the study to form the per-protocol population; reasons for discontinuation, Algorithm 1 versus Algorithm 2, were patient not followed to final visit (4 vs 8 subjects) and major protocol violations (6 vs 6 subjects). In patients receiving >1 OAD, 499 (256 Algorithm 1 and 243 Algorithm 2) completed the study to form the per-protocol population; reasons for discontinuation, Algorithm 1 versus Algorithm 2, were patient not followed to final visit (5 vs 7 subjects) and major protocol violations (8 vs 6 subjects).

Subject demographics and baseline characteristics were broadly similar between the two treatment groups and within each algorithm, although patients in the >1 OAD treatment group tended to have a longer duration of OAD treatment compared with patients in the 1 OAD treatment group (Table 2).

[Table 2 near here]

While data presented are based on the per-protocol analysis, full intention-to-treat analyses were performed. The results were virtually identical and, therefore, did not differ clinically or statistically and are not presented here.

Hypoglycemia

The incidence of severe, symptomatic and nocturnal hypoglycemia in patients receiving insulin glargine via either treatment algorithm plus either 1 OAD or >1 OAD is summarised in Table 3. The incidence of severe hypoglycemia was <1% in both treatment groups, with no significant difference between the treatment algorithms.

[Table 3 near here]
HbA\textsubscript{1c}

In subjects receiving insulin glargine plus 1 OAD, there was a significant baseline to endpoint decrease in HbA\textsubscript{1c} in both algorithms (Figure 1A). Algorithm 2 was associated with a greater reduction compared with Algorithm 1 (–1.5 vs –1.3%; p=0.03). Significant reductions in HbA\textsubscript{1c} from baseline to endpoint were also observed in patients receiving insulin glargine plus >1 OAD in both algorithms (Figure 1A). Algorithm 2 was associated with a greater reduction compared with Algorithm 1 (–1.8 vs –1.5%; p=0.001).

At endpoint, in subjects receiving insulin glargine plus 1 OAD, 24% had reached target HbA\textsubscript{1c} levels ≤7% with Algorithm 1 compared with 38% of subjects with Algorithm 2 (p=0.009) and in subjects receiving insulin glargine plus >1 OAD, 31% had reached target HbA\textsubscript{1c} levels ≤7% with Algorithm 1 compared with 43% of subjects with Algorithm 2 (p=0.007). Significantly more subjects achieved HbA\textsubscript{1c} levels ≤7% without experiencing either severe or nocturnal hypoglycemia in Algorithm 2 versus Algorithm 1 in subjects receiving both insulin glargine plus 1 OAD (33 vs 21%; p=0.02) and insulin glargine plus >1 OAD (37 vs 28%; p=0.03).

Fasting blood glucose

FBG decreased significantly from baseline to endpoint in all sub-groups (p<0.001; Figure 1B), but the reduction in FBG was significantly greater for subjects randomized to Algorithm 2 compared with Algorithm 1 for subjects receiving insulin glargine plus 1 OAD (–79.1±55.3 [4.4±3.1 mmol/L] vs 63.6±51.7 mg/dL [3.5±2.9 mmol/L], p=0.001) and subjects receiving insulin glargine plus >1 OAD (79.6±48.3 [4.4±2.7 mmol/L] vs –66.6±51.6 [3.7±2.9 mmol/L], p<0.001).
Insulin glargine dose

For patients receiving 1 OAD, the increases in insulin dose were significantly greater for patients randomized to Algorithm 2 (+33.9 U; range: −8 to +128 U [+0.39 U/kg]) compared with Algorithm 1 (+27.4 U, p=0.04; range: −2 to +104 U [+0.32 U/kg, p=0.03]; Figure 1C). For patients receiving >1 OAD, the increases in insulin dose were not significantly different in the patients randomized to Algorithm 1 (+19.9 U; range: −6 to +100 U [+0.23 U/kg]) or Algorithm 2 (+22.8 U, p=0.57; range: −16 to +114 U [+0.27 U/kg, p=0.20]; Figure 1C).

Body weight

In subjects receiving both 1 OAD and >1 OAD, there was a modest statistically significant (p<0.001) increase in body weight from baseline to endpoint with both Algorithm 1 (81.2±15.5 to 82.8±15.9 [mean change: +1.6±3.3] kg and 81.3±16.5 to 83.2±16.8 [+1.9±3.5] kg, respectively) and Algorithm 2 (82.1±15.3 to 83.5±15.5 [+1.4±3.4] kg and 78.5±15.7 to 80.6±16.2 [+2.1±3.3] kg, respectively). There was no significant difference in weight change between algorithms.

Safety

In the main study, treatment-emergent adverse events were reported in 48.7% of patients; their overall frequency was similar between the algorithms [28]. In this sub-group analysis, the incidence of adverse events was similar to that of the main study (data not shown).
CONCLUSIONS

The AT.LANTUS study is one of the largest randomized clinical studies (n=4961 patients) of glycemic management performed in subjects with type 2 diabetes, and the results will be applicable to many patients in a clinical setting [28]. This sub-group analysis, undertaken in 865 subjects, included all insulin-naïve patients who were previously sub-optimally controlled on multiple OADs. The results presented here demonstrate that two simple insulin initiation and treatment algorithms were highly effective in safely achieving and maintaining glycemic control. Furthermore, these results were achieved regardless of concomitant OAD therapy (+1 OAD or >1 OAD) along with a very low incidence of severe hypoglycemia.

We have previously published results from the overall population; changes in HbA1c were –1.08 and –1.22% for Algorithms 1 and 2, respectively [28]. Meanwhile, in this sub-group analysis, patient-driven titration of insulin dose achieved the greater improvement in HbA1c (+1 OAD: –1.5%; >1 OAD: –1.8%) compared with physician-driven titration (+1 OAD: –1.3%; >1 OAD: –1.5%). We also show that patient-driven titration of basal insulin with multiple OAD therapy is associated with the greatest improvement in HbA1c without an increased risk of symptomatic hypoglycemia. In separate sub-group analyses, initiation of insulin glargine achieved reductions of 0.8–0.9% in HbA1c for patients previously on NPH insulin [31] and 1.5% for patients previously on twice-daily premixed insulin plus OADs [32].

The fears of weight gain and hypoglycemia are significant barriers to the initiation of insulin therapy in type 2 diabetes [15,33]. In this sub-group analysis, weight gain was relatively modest (range: 1.4–2.1 kg over 24 weeks) in the context of significant improvement in glycemic control with 24–43% of patients reaching target HbA1c levels of ≤7.0%. This occurred with a comparatively low incidence of severe hypoglycemia. Furthermore, these benefits were seen regardless of concomitant OAD therapy. Therefore, therapy with basal insulin glargine plus OADs may provide the impetus to overcome the fears of hypoglycemia and weight gain.
In our study, no patients in the insulin glargine +1 OAD group experienced severe hypoglycemia and <1% of the patients in the >1 OAD group experienced severe hypoglycemia, which compares favorably with that reported by the UK Prospective Diabetes Study (UKPDS; 2.3% for patients treated with insulin) [34]. Furthermore, our study was of patients with long-standing type 2 diabetes, with a mean duration since diagnosis of 10 years and mean duration of OAD therapy of >7 years, whereas the UKPDS included only newly diagnosed (insulin and OAD naïve) patients.

In the Treat-To-Target trial [25], which used a forced titration schedule with doses monitored by clinical staff, 36.2% of patients achieved a target HbA1c ≤ 7.0% without an episode of documented nocturnal hypoglycemia. In our study, a similar proportion of patients achieved the target HbA1c ≤ 7.0% without experiencing nocturnal hypoglycemia. The proportion of patients who achieved target HbA1c without experiencing hypoglycemia was statistically superior in the patient-driven titration group, regardless of concomitant OAD therapy (28.3 and 37.3% for patients in Algorithm 1 and Algorithm 2, respectively; intent-to-treat population). This occurred in conjunction with larger reductions in HbA1c (1.9 vs 1.6%; intent-to-treat population). Furthermore, the patients in our study had a lower rate of hypoglycemia without including unlicensed thiazolidinedione use. In our study, the exclusion of thiazolidinediones may have limited the proportion of patients who achieved target HbA1c (≤7%). In the past, and increasingly now, thiazolidinediones in combination with insulin have demonstrated good reductions in HbA1c in type 2 diabetes [25,35,36]. A further reason for the lower proportion of patients reaching HbA1c <7% is that we did not force the titration of insulin glargine, whereas the Treat-to-Target study did. As a result, the rates of hypoglycemia were lower in our study. This suggests that titration of insulin glargine dose could be more aggressive, to better reach treatment targets, although this must be balanced against the inevitable risk of hypoglycemia.
While a shortcoming of the current study may be the lack of a placebo arm, the reduction in HbA1c (>1%) observed in this study is greater than might be expected as a result of a placebo effect.

The patients included in this analysis had relatively long-standing Type 2 diabetes (>9 years) and HbA1c >9% on average. It is evident that a change in therapy was warranted. The addition of once daily basal insulin to their oral antidiabetic regimen allowed led to clinically important improvements in glycemic control (including HbA1c and FBG) with low risk of hypoglycemia. Nevertheless, a number of patients had HbA1c levels above the recommended levels (i.e., ≤7%). One option would be to use a more aggressive titration regimen, which may have increased the proportion of subjects achieving target HbA1c ≤7%, as in the LANMET study [21], which is discussed below. Alternatively, the addition of one or several doses of a rapid-acting insulin at mealtime to the therapeutic regimen may be warranted for those patients who were not reaching target HbA1c levels once the basal insulin dose is fully optimized. Indeed, such an approach was also suggested in the American Diabetes Association/European Association for the Study of Diabetes consensus statement [37]. Nevertheless, this concept will need objective testing.

A further shortcoming of the present study, is that it was conducted as an exploratory analysis of a large sub-group (n=865) of patients from the original AT.LANTUS study (n=4961 patients). As such, the analyses were mainly descriptive. However, as a large proportion of patients from the original study were included in the analyses presented here and that the analysis includes a similar number of patients used in trials such as the Treat to Target study [25], one would expect that the results show a high degree of statistical power and support the need for confirmatory studies.

Whilst additional prospective randomized studies may be necessary to further confirm the results reported, it is evident that the current sub-analysis confirms the results of the Treat to
Target study. The distinguishing feature here is that patient-driven titration appears to achieve greater HbA$_{1c}$ benefits with more patients reaching target HbA$_{1c}$ at endpoint, twice the percentage of patients reaching target FBG (72% vs 36%) and a lower incidence of severe hypoglycemia, all in the absence of the use of thiazolidinediones.

Physicians currently face a number of options for transferring patients from combination OAD therapy to insulin, including multiple daily or basal injections and whether to continue or change OAD therapy. In a recent meta-analysis [38] of four trials comparing insulin glargine with NPH insulin in patients with type 2 diabetes [22,24,25,39], insulin glargine was associated with significantly lower incidence of hypoglycemia in conjunction with improved HbA$_{1c}$ and this occurred despite similar increases in dose from baseline to endpoint (20–28 weeks) from 21 to 38 U for insulin glargine and 21 to 37 U for NPH insulin. The relative merits of twice-daily premixed insulin versus once-daily basal insulin are often debated. One study has shown that once-daily insulin glargine plus metformin was more effective at lowering HbA$_{1c}$ than a twice-daily premixed insulin regimen, but a criticism was that metformin was discontinued in the premixed insulin arm, and a conventional premixed insulin was used [40]. In comparison, in two studies, where OADs were continued and comparing biphasic analog mixtures (Lispro Mix 75/25 or Aspart Mix 70/30) with insulin glargine, the premixed insulin regimens were associated with greater reductions in HbA$_{1c}$ [35,41]. However, the premixed insulin regimens were also associated with significantly higher incidence of hypoglycemia and greater weight gain compared with insulin glargine.

In the LANMET study [21], which investigated the addition of either insulin glargine or NPH insulin to metformin therapy, the percentage of patients in the insulin glargine group experiencing hypoglycemia were 46 and 43% during Weeks 0–12 and 13–24, respectively. By comparison, a smaller proportion of patients experienced symptomatic hypoglycemia in our study (<19%). This may be due to the titration methods used in the two studies, insulin doses reached ~60 U by Week 24 in the LANMET study, whereas in our study, the mean
insulin dose was <46 U for all sub-analysis groups. This balance between high insulin dose, change in HbA1c and risk of hypoglycaemia is trade-off that will need to be acceptable for the patient. In our study, we used algorithm based on avoidance of hypoglycaemia with allowances for decreasing insulin dose in the event of regular hypoglycaemia, thus limiting the extent to which insulin doses can be increased.

In a study investigating continued sulfonylurea and metformin with either insulin glargine or rosiglitazone (patients previously treated with sulfonylurea and metformin), insulin glargine was associated with significantly improved glycemic control (HbA1c and FBG) [27]. While the incidence of hypoglycemia was higher in the insulin glargine group, less weight gain and fewer adverse events occurred in the insulin glargine group.

In studies with insulin glargine [25,27,40,41], the starting dose of insulin glargine was typically 10–20 U. By endpoint (20–28 weeks), the dose had increased to 25–40 U. In our study, patients in both treatment algorithms with >1 OAD achieved similar doses at Week 24. However, those patients on 1 OAD achieved a greater increase in basal insulin dose when encouraged to self-titrate.

Effective and efficient use of scarce healthcare resources is an important aspect of care. An approach which increases patient-driven management is as effective and reduces the need for face to face contact with healthcare professionals is thus potentially a more effective use of healthcare resources. However, it has been reported that healthcare providers underestimate the proportion of patients who would be willing to take part in decision-making about their treatment [42].

The approach to insulin initiation and dose titration with a single injection of insulin titrated against a fasting blood glucose level [37], as used here, is a simple and consistent approach, which is conducive to being taught in a group setting, and has also been shown to
be a more effective use of healthcare professional time. Indeed, in a study by Yki-Jarvinen et al, were patients were encouraged to self-adjust their insulin dose, with education delivered either in a group or individual setting, improvements in HbA1c were similar in both arms (Group: 8.8 to 6.8%; Individual: 8.7 to 6.9%). However the time spent by the healthcare professional per patient was significantly less with Group than with Individual education (2.2 vs 4.2 hours; p<0.001) [43].

The findings presented here support those observed in the full cohort, that two simple, widely applicable titration algorithms (either patient- or physician-driven) for the initiation of glargine can be implemented in clinical practice with low incidence of hypoglycemia. We also show that patient-driven dose titration achieves more pronounced improvements in glycemic control compared with physician-driven titration, and this improvement is not associated with an increased risk of hypoglycemic episodes. Moreover, subjects with type 2 diabetes, sub-optimally controlled with OADs, can safely and effectively participate in the management of their treatment if given simple information and support, with the potential to significantly reduce the burden of care on healthcare professionals. Further intensification of the insulin regimen would be expected to help more patients reach their recommended treatment targets.
ACKNOWLEDGEMENTS

This study was sponsored by sanofi-aventis. Editorial support for this article was provided through the global publications group of sanofi-aventis.

We would like to thank all of the investigators and patients participating in AT.LANTUS.

REFERENCES

33 Cryer PE. Hypoglycaemia: the limiting factor in the glycaemic management of Type I and Type II diabetes. Diabetologia. 2002; 45: 937–948.

Table 1. Summary of the two treatment titration regimens for insulin glargine

<table>
<thead>
<tr>
<th>Mean FBG for the previous 3 consecutive days</th>
<th>Increase in daily basal insulin glargine dose (U)*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Algorithm 1†: titration at every visit;</td>
</tr>
<tr>
<td></td>
<td>Physician-driven</td>
</tr>
<tr>
<td></td>
<td>Algorithm 2†: titration every 3 days;</td>
</tr>
<tr>
<td></td>
<td>Subject-driven and reviewed by physicians at each</td>
</tr>
<tr>
<td></td>
<td>visit</td>
</tr>
<tr>
<td>Starting dose</td>
<td>10 U/day</td>
</tr>
<tr>
<td>≥100 and <120 mg/dL (≥5.6 and <6.7 mmol/L)</td>
<td>0–2</td>
</tr>
<tr>
<td></td>
<td>(at the discretion of the investigator)‡</td>
</tr>
<tr>
<td>≥120 and <140 mg/dL (≥6.7 and <7.8 mmol/L)</td>
<td>2</td>
</tr>
<tr>
<td>≥140 and <180 mg/dL (≥7.8 and <10 mmol/L)</td>
<td>4</td>
</tr>
<tr>
<td>≥180 mg/dL (≥10 mmol/L)</td>
<td>6–8</td>
</tr>
<tr>
<td></td>
<td>(at the discretion of the investigator)‡</td>
</tr>
</tbody>
</table>

*Target FBG ≤100 mg/dL (≤5.5 mmol/L); †Reviewed by physician at each visit, either in person or over the telephone, titration occurred only in the absence of blood glucose levels <72 mg/dL (<4.0 mmol/L); ‡Magnitude of daily basal dose was at the discretion of the investigator.

FBG=fasting blood glucose
Table 2 Baseline demographics and characteristics of the sub-group analysis subjects treated with insulin glargine by Algorithm 1 and Algorithm 2 (per-protocol population)

<table>
<thead>
<tr>
<th>Demographics and characteristics</th>
<th>Insulin glargine + 1 OAD (n=316)</th>
<th>Insulin glargine + >1 OAD (n=499)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Algorithm 1 (n=170)</td>
<td>Algorithm 2 (n=146)</td>
</tr>
<tr>
<td>Age (years)</td>
<td>57.9 ± 10.2</td>
<td>56.6 ± 11.0</td>
</tr>
<tr>
<td>Body mass index (kg/m²)</td>
<td>29.3 ± 4.6</td>
<td>29.2 ± 4.6</td>
</tr>
<tr>
<td>Sex:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male (%)</td>
<td>51.2</td>
<td>58.9</td>
</tr>
<tr>
<td>Female (%)</td>
<td>48.8</td>
<td>41.1</td>
</tr>
<tr>
<td>Age at onset of diabetes (years)</td>
<td>48.6 ± 9.5</td>
<td>46.8 ± 10.7</td>
</tr>
<tr>
<td>Diabetes duration (years)</td>
<td>9.3 ± 5.5</td>
<td>9.7 ± 6.5</td>
</tr>
<tr>
<td>Duration of OAD therapy (years)</td>
<td>7.9 ± 5.7</td>
<td>7.7 ± 5.8</td>
</tr>
<tr>
<td>HbA₁c (%)</td>
<td>9.1 ± 1.3</td>
<td>9.1 ± 1.3</td>
</tr>
<tr>
<td>Fasting blood glucose, mg/dL</td>
<td>180.7 ± 45.8</td>
<td>186.2 ± 55.3</td>
</tr>
<tr>
<td>(mmol/L)</td>
<td>(10.0 ± 2.5)</td>
<td>(10.3 ± 3.1)</td>
</tr>
</tbody>
</table>

Data are mean ± standard deviation unless otherwise stated. OAD=oral antidiabetic agent.
Table 3. Incidence of severe, symptomatic and nocturnal hypoglycemia

<table>
<thead>
<tr>
<th></th>
<th>Insulin glargine + 1 OAD (n=316)</th>
<th>Insulin glargine + >1 OAD (n=499)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Algorithm 1 (n=170)</td>
<td>Algorithm 2 (n=146)</td>
</tr>
<tr>
<td>Severe hypoglycemia (% <2.8 mmol/L)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Symptomatic hypoglycemia (%)</td>
<td>13.5</td>
<td>15.1</td>
</tr>
<tr>
<td>Nocturnal hypoglycemia (%)</td>
<td><1</td>
<td>2.1</td>
</tr>
</tbody>
</table>

OAD=oral antidiabetic agent; N/S=non significant
FIGURE LEGEND

Figure 1. (A) HbA\textsubscript{1c} levels at baseline (open bars) and endpoint (closed bars) in the per-protocol population receiving insulin glargine via Algorithm 1 or Algorithm 2 plus either 1 OAD or >1 OAD; *p<0.001 for baseline to endpoint change; †p=0.03 and ‡p=0.001 for difference between algorithms for baseline to endpoint change. The magnitude of change in HbA\textsubscript{1c} from baseline to endpoint for Algorithm 1 versus Algorithm 2 in the intent-to-treat population was 1.9 and 1.6%, respectively. (B) Fasting blood glucose levels at baseline (open bars) and endpoint (closed bars) in the per-protocol population receiving insulin glargine via Algorithm 1 or Algorithm 2 plus either 1 OAD or >1 OAD; *p<0.001 for baseline to endpoint change; †p=0.001 and ‡p<0.001 for difference between algorithms for baseline to endpoint change. (C) Insulin dose at baseline (open bars) and endpoint (closed bars) in the per-protocol population receiving insulin glargine via Algorithm 1 or Algorithm 2 plus either 1 OAD or >1 OAD; *p<0.001 for baseline to endpoint change; †p=0.04 and ‡p=0.03 for difference between treatment algorithms in baseline to endpoint change in daily total insulin dose (†) and daily total weight-adjusted insulin dose (‡). FBG=fasting blood glucose; OAD=oral antidiabetic agent
Figure 1A

[Bar chart showing changes in HbA1c (%) for Algorithm 1 (n=170) and Algorithm 2 (n=146) with insulin glargine + 1 OAD (n=316), and Algorithm 1 (n=256) and Algorithm 2 (n=243) with insulin glargine + >1 OAD (n=499).]

- Algorithm 1: Δ=-1.3%*
- Algorithm 2: Δ=-1.5%‡
- Algorithm 1: Δ=-1.5%*
- Algorithm 2: Δ=-1.8%‡
Figure 1B

Δ=-63.6 mg/dL*
(-3.5 mmol/L)

Δ=-79.1 mg/dL**†**
(-4.4 mmol/L)

Δ=-66.6 mg/dL*
(-3.7 mmol/L)

Δ=-79.6 mg/dL**‡**
(-4.4 mmol/L)

![Bar graph showing FBG (mg/dL) changes with different algorithms and treatments.](image-url)

- **Algorithm 1** (n=170)
 - Insulin glargine + 1 OAD (n=316)
- **Algorithm 2** (n=146)
- **Algorithm 1** (n=256)
 - Insulin glargine + >1 OAD (n=499)

- Baseline
- Endpoint
Figure 1C

![Bar chart showing changes in insulin levels for different algorithms and conditions.](image)

- Algorithm 1 (n=170) with Insulin glargine + 1 OAD (n=316): Δ=27.4 U* (0.32 U/kg*).
- Algorithm 2 (n=146) with Insulin glargine + 1 OAD (n=316): Δ=33.9 U† (0.39 U/kg†).
- Algorithm 1 (n=256) with Insulin glargine + >1 OAD (n=499): Δ=19.9 U* (0.23 U/kg*).
- Algorithm 2 (n=243) with Insulin glargine + >1 OAD (n=499): Δ=22.9 U* (0.27 U/kg*).
List of investigators by country

Uruguay: Cristina Belzarena, Rosario Bueno, Ana Maria Jorge, Maria Del Pilar Serra.

Venezuela: Luis Chacin, Samuel Chocron, Mariela Paoli, Humberto Valbuena.

Yugoslavia: Nebojsa Lalic, Katarina Lalic, Dragan Micic