Epicardial Adipose Tissue in Patients with End Stage Renal Disease on Haemodialysis

Graham-Brown MPM 1,2, McCann GP 3,4, Burton JO 1,2,4

1 John Walls Renal Unit University Hospitals Leicester NHS Trust,
2 Department of Infection, Immunity and Inflammation, University of Leicester, UK.
3 Department of Cardiovascular Sciences, University of Leicester, UK.
4 National Institute for Health Research Biomedical Research Unit in Cardiovascular Disease at the University Hospitals of Leicester NHS Trust and University of Leicester, UK.

Corresponding Author: Dr. James Burton
Department of Infection, Immunity & Inflammation
Medical Sciences Building
University Road
Leicester LE1 9HN, UK.
jb343@leicester.ac.uk
Tel: +44 (0)116 258 8043
Fax: +44 (0)116 252 5030

Disclosure(s) of funding:
Dr. Graham-Brown is funded by a National Institute for Health Research Academic Clinical Fellowship
Dr. McCann is funded by a National Institute for Health Research Career Development Fellowship
Dr. Burton is funded by a National Institute for Health Research Clinician Scientist Award.

No conflicts of interest.
Abstract

Purpose of review:
Epicardial adipose tissue (EAT) is the visceral fat of the heart, sharing many of the pathophysiological properties of other visceral fat depots. EAT is a metabolically active paracrine and vasocrine organ that causes local cardiac inflammation and is strongly implicated in the pathogenesis of coronary atherosclerosis. This article highlights the findings of recent observational studies in haemodialysis (HD) patients that link the quantity of EAT to increased rates of cardiovascular and coronary artery disease, reviews the proposed methods of pathogenesis and the possible role of EAT quantification to improve cardiovascular risk assessment.

Recent findings:
Increasing volumes of EAT in HD patients correlate with increased inflammatory mediators, higher rates of cardiovascular disease and coronary artery calcification, independent of general adiposity. EAT to be an independent predictor of mortality and is a potentially modifiable target for therapeutic interventions.

Summary:
EAT is likely to play a central role in the pathogenesis of cardiovascular disease in HD patients, adds incrementally to conventional cardiovascular risk stratification models and is a potential target for therapeutic intervention.

Keywords:
Epicardial adipose tissue, epicardial fat, haemodialysis, dialysis, cardiometabolic risk, coronary artery calcification
Introduction

Epicardial adipose tissue (EAT) is a metabolically active visceral fat deposit that covers 80% of the cardiac surface and accounts for approximately 20% of total cardiac weight. Like other white adipose tissues, EAT has endocrine functions with the ability to secrete hormones and inflammatory cytokines. The physiological function of EAT remains unclear, but is thought to include: regulation of local fatty acid homeostasis; provision of an immediate local energy source; assisting in coronary artery remodeling; and supporting coronary arteries against torsion from cardiac contraction and arterial pulse wave [1,2]. The expression and secretion of pro-inflammatory cytokines, such as interleukin-6 (IL-6), interleukin-1-beta (IL-1β), monocyte chemo-attractant protein 1 (MCP-1) and tumour necrosis factor-alpha (TNFα) are higher in the EAT of patients with coronary heart disease than in subcutaneous fat of the same individuals, and the pathological enlargement of EAT correlates significantly with increased cardiovascular disease (CVD) risk [3,4]. The importance of EAT in relation to the inflammatory burden in CVD is established [5,6] with paracrine and vasocrine secretion of pro-inflammatory adipokines. Adipokines are thought to contribute directly to myocardial inflammation, left ventricular hypertrophy (LVH), coronary artery disease (CAD) and myocardial dysfunction through generation of local reactive oxygen species (ROS), creating a pro-atherogenic state and as a direct local effect of inflammatory cytokines [4,7]. Whilst obesity and body mass index (BMI) are commonly used and easily obtainable figures to stratify patients’ cardiometabolic and atherosclerotic risk, they are far from perfect. There is good evidence from prospective, cross-sectional imaging and anthropometric studies that regional distribution of adipose tissue rather than an overall excess of body fat correlates with CVD and it's associated risk [8-10]. Furthermore, the association between EAT and CAD has been shown to be independent of BMI and diabetic status [3].

EAT and its relevance in the pathogenesis of CVD amongst patients with end stage renal disease (ESRD) on haemodialysis (HD) is a relatively under researched area. Chronic kidney disease (CKD) is a chronic inflammatory condition, as evidenced by increased circulating levels of acute phase proteins.
and pro-inflammatory cytokines, such as C-reactive protein (CRP), IL-6 and TNF-α [11]. Both inflammation and oxidative stress play central roles in the development of atherosclerosis in patients with CKD, and in functional CVD related outcomes, including pathogenesis of LVH, arterial stiffness and global cardiac function [12,13]. Recently the associations between increased EAT thickness, IL-6 and coronary artery calcification (CAC) in patients with CKD stage 3-5 [14] have been demonstrated. Additionally, increasing volumes of EAT in this patient population are associated with an increasing risk of cardiovascular events, independent of general adiposity, and are a better predictor of risk than abdominal visceral adipose tissue [15*]. This review summarises the role EAT may play in pathogenesis of CVD in patients on HD and whether imaging EAT may hold prognostic implications for cardiovascular events and mortality within this patient group.
Epicardial adipose tissue measurement

EAT can be measured in a number of different ways using different imaging modalities. The three commonly used methods are trans-thoracic echocardiography (ECHO), computerised axial tomography scanning (CT scanning) and cardiac magnetic resonance imaging (CMR). The relative strengths and weaknesses of these modalities are summarised in table 1. CMR and CT are three dimensional imaging techniques which allow calculation of total EAT volume whereas ECHO is primarily a two dimensional technique. Although ECHO is widely available and relatively inexpensive, views of the heart may be limited by obesity, small rib spaces and lung disease. The ability to differentiate adipose tissue from other tissues is also limited and operator dependent.

ECHO imaging studies have shown the mean EAT thickness at the right ventricular wall correlates significantly \((r = 0.840, P = 0.01)\) with volume measurements using CMR [16]. Unfortunately, EAT thickness is only a surrogate marker for EAT volume, making it a sub-optimal imaging modality for prospective studies and clinical trials where absolute quantification of EAT volume is required. In addition, the low spatial resolution and operator dependency of ECHO makes delineating EAT from pericardial fat (or fluid) difficult, resulting in lower reproducibility compared to CT and MRI [17]. Unlike ECHO, cardiac CT can give excellent, reproducible 3D images and volume measurements that can be obtained without the use of intravenous contrast. However, these are costly and expose patients to ionizing radiation, although with the new faster scanners the dose is considerably reduced. Magnetic resonance imaging (MRI) is the gold standard for the assessment of total body fat and the reference modality for analysis of ventricular mass and volume [17], making it the natural choice for measuring EAT. CMR is expensive and even more limited in its availability, but does not expose the patient to radiation or IV contrast media. Even in general populations, CMR and EAT studies have been done in only small samples of patients. How representative these patients are of the general population is questionable and consequently defining reference values has proved problematic. A recent systematic review, however, concluded that EAT volumes of >125ml or 68ml/m², or EAT thickness >5mm are abnormal
Epicardial adipose tissue measurement in haemodialysis patients

Several observational studies have looked at the thickness or volumes of EAT in HD patients compared to matched control groups. These are summarised in table 2. Altun et al were the first to demonstrate in an ECHO study of 62 HD patients and 40 healthy controls that EAT thickness was significantly larger in HD patients compared to controls (matched for age, sex, smoking status, BMI, cholesterol and triglyceride levels) and correlated positively with HD vintage [18**]. A further ECHO study by Atakan et al of 71 HD patients to 65 controls corroborated these findings, with controls in this study additionally matched for glucose levels [19**]. The first multi-directional CT (MDCT) study of EAT in HD patients was undertaken by Tonbul et al, who demonstrated EAT volume was significantly larger in diabetic patients on HD than in both healthy controls and patients on HD without diabetes [20], suggesting diabetic status may be the overriding driver behind EAT enlargement. However, a subsequent study using unenhanced coronary CT, by Turkmen et al found that EAT volumes were significantly higher in patients with ESRD on dialysis compared to matched controls independent of diabetic status. In the same study, although EAT volumes tended to be higher in patients on peritoneal dialysis (PD) compared to HD, this did not reach statistical significance [21].

A recent ECHO study by Colak et al showed that EAT thickness was significantly greater in patients on HD compared to patients who had a renal transplant (matched for BMI, body surface area, glucose, cholesterol, triglycerides, age and sex) but who were of a similar dialysis vintage prior to transplantation [22**]. The EAT thickness in the renal transplant group in this study was also similar to age and gender matched controls which may suggest there is something about the pro-inflammatory state of HD particularly that increases EAT thickness over and above the uraemic and inflammatory milieu associated with CKD alone.

All of these studies are observational and relatively small in size, nevertheless the data available suggests that EAT volumes are larger in HD patients compared
to controls. There are currently no CMR studies that have assessed EAT in HD patients
Epicardial adipose tissue and cardiovascular disease risk factors in haemodialysis patients

HD patients display hugely elevated rates of cardiac mortality [24], accounting for 43% of all cause deaths in this group [25]. Although the prevalence of traditional risk factors of CVD is higher in HD patients the increased rates of CVD are largely driven by non-traditional risk factors [26]. Several studies have reported significant associations between markers of CVD and EAT in HD patients. These are summarised in table 3. A cross-sectional study by Erdur et al showed that EAT volume (measured by MDCT) and atherogenic index of plasma (AIP), a logarithmic ratio of triglycerides to high density lipoprotein (HDL), were significantly higher in patients with ESRD on HD and PD than in healthy controls [23]. In addition there were significant correlations between EAT, BMI and AIP, with no correlation between EAT and AIP in healthy controls. An interventional pilot study by Wilund et al [27] showed that intra-dialytic exercise not only significantly reduced EAT thickness but also serum lipid peroxidation (a marker of oxidative stress), suggesting a relationship between the two. This is the only interventional study looking at the effects of exercise on EAT in HD patients. Gaus et al demonstrated in an observational study that EAT thickness measured using ECHO correlated well with BMI, smoking and age [28], and in a study of 191 prevalent HD patients, Turan et al found that EAT volume (assessed by MDCT) correlated significantly with older age, female gender, BMI, higher total cholesterol and triglyceride content, and in adjusted models, older age, BMI and total cholesterol continued to associate with increased EAT volume [29]. An echocardiographic study by Colak et al demonstrated that inflammatory markers (including CRP and IL-6) and cardiac volume indices (including left atrium index, left atrium diameter and inferior vena cava-collapsing index) were significantly raised in HD patients and correlated significantly with EAT thickness when compared to both renal transplant and control patients. No such association was found between EAT thickness and these markers in the transplant patients [22**].

Turkmen [21], found significant relationships between EAT volume (assessed with MDCT) and increasing components of the malnutrition, inflammation and
atherosclerosis/calcification (MIAC) syndrome. The MIAC syndrome is defined as the interaction between pro-inflammatory cytokines, malnutrition and atherosclerosis in ESRD [30,31], which has been shown to be strongly associated with exceptionally high cardiovascular morbidity and mortality in patients with ESRD [32]. The same study by Turkmen et al also confirmed that increased volumes of EAT correlated positively with increasing age and BMI. It should be noted that the study population included patients with ESRD on HD and PD.
Epicardial adipose tissue and coronary artery disease in haemodialysis patients

EAT has been strongly associated with both the existence and severity of coronary artery disease (CAD) [33-35]; even patients with asymptomatic CAD have been found to have increased EAT volumes [36]. A meta-analysis in 2012 of 2872 patients with CAD concluded that on the available evidence EAT is an effective biomarker for the prediction of CAD [35].

The body of evidence for HD patients is somewhat smaller, but there are good observational data available. Atakan et al found with an echocardiographic study that EAT thickness correlated inversely with coronary flow reserve (CFR) in HD patients [19**]. CFR is a measure of how much coronary blood flow can increase and in the absence of epicardial disease reflects microvascular function. CFR has been used as a method for detecting endothelial dysfunction (ED) in non-renal populations and subsequent subclinical atherosclerotic CAD [37-39]. ED has also been shown to be a non-traditional risk factor for CAD and CVD morbidity and mortality in patients with ESRD [40,41]. Although the study by Atakan et al [19] is observational it demonstrates a clear association between EAT and ED and suggests the need for studies to look at causality.

Coronary artery calcification (CAC) is part of an extended state of vascular calcification that is detectable early in patients with ESRD and thought to contribute to both premature CVD and increased mortality [42]. The evidence for an association between EAT and CAC, is conflicting. In an observational study of 93 HD patients EAT assessed by echocardiography did not correlate with (CAC) except in younger patients [28]. However, an MDCT study of 60 HD patients and 20 matched controls found CAC to be associated with EAT volume in both diabetic patients and non-diabetic patients with ESRD [20]. Similarly, Turkmen et al found CACS and EAT volumes measured by CT were significantly higher in ESRD patients on HD and PD compared to healthy subjects and that there was a statistically significant relationship between EAT and CACS in all ESRD patients [21]. Further prospective studies are required to assess this relationship.
D'Marco et al [43] demonstrated through post-hoc analysis of the RIND trial [44] that EAT volume was an independent predictor of mortality in incident HD patients with a follow up period of around four years. Multivariate analysis demonstrated that for each 10cc increase in EAT volume there was a 6% increase in risk of death during follow-up. This is the first study to describe a significant association between EAT and mortality in HD patients, and corroborates the previously shown association of EAT with markers of vasculopathy such as CAC.
Clinical applications of epicardial adipose tissue in haemodialysis patients

EAT measurement has the potential to add value to CVD risk stratification in patients with ESRD. In non-renal groups EAT has been shown to be a good predictor of CAD [35]. In CKD patients not on dialysis, Cordeiro et al showed that EAT accumulation predicted the likelihood of cardiovascular events independently of general adiposity [15*]. Similarly, a cross-sectional study of non-diabetic HD patients by Ulusal Okyay et al [45*] demonstrated a robust association between EAT thickness, body fat accumulation, LV hypertrophy, dyslipidaemia, insulin resistance and delivered dialysis dose. Further prospective studies are required to confirm whether there is any added value to current CVD screening tools from EAT measurement in HD patients.

An interesting study by Karohl et al looked at the use of hybrid myocardial imaging for risk stratification prior to kidney transplantation [46]. This was a retrospective study of 411 patients with CKD 4-5D, 284 of which were on HD. The study used positron emission tomography (PET-CT) or single photon emission computed tomography (SPECT-CT) to assess myocardial perfusion and quantify CAC and EAT. Myocardial perfusion defects were present in only 10% of all patients evaluated, and on multivariate logistic regression EAT and CAC were independent predictors of abnormal myocardial perfusion, whilst presence of diabetes showed only a borderline association with the stress test result (p=0.08). EAT added incrementally to CAC for the prediction of an abnormal myocardial perfusion stress test, in a model including age, CAC, and diabetes mellitus (AUC 0.73 (95% CI 0.64-0.81) to 0.76 (95% CI 0.68-0.84, p=0.02) and was the best single predictor of abnormal myocardial perfusion. Although a retrospective study, this does suggest that EAT measurement may add some benefit to predicting myocardial perfusion defects in patients undergoing assessment for renal transplant. Further prospective studies are required and it should be noted that not all patients in this study had selective angiography, so confirmatory studies that include selective angiography are needed.

Two studies have shown EAT is potentially modifiable in HD patients. Wilund et al [27] showed EAT thickness could be reduced with a programme of
intradialytic exercise and Colak et al [22**] showed EAT thickness was significantly reduced in renal transplant patients who had previously been on HD compared to well-matched patients who were still on HD. Interventional studies that specifically target EAT reduction are needed, with mortality and cardiovascular events as end-points. Additionally, prospective studies that define the relationships between EAT and other risk factors, including silent and overt CAD, are required.
Conclusions
EAT is a metabolically active tissue which is increased in volume in dialysis patients and likely has a role in the pathogenesis of CVD in HD patients. We predict that EAT will have a role in the stratification of CV risk for dialysis patients and those considered for renal transplantation. This is not only because it is a predictor of mortality in HD patients but also because it improves sensitivity for predicting CV events. Finally, EAT is modifiable and may well be an attractive target for future interventional randomised controlled trials.
Key points

- EAT is likely to play a key role in the pathogenesis of CVD and CAD in HD patients through direct paracrine and vasocrine secretion of pro-inflammatory and pro-atherogenic cytokines into the myocardium.
- EAT measurement is likely to have a role in cardiovascular and cardiometabolic risk stratification for HD patients.
- EAT has been shown to be modifiable and as it potentially drives LVH, myocardial inflammation, endothelial dysfunction and coronary artery calcification it is an attractive therapeutic target.
Acknowledgements
All three authors are supported by the National Institute for Health Research Biomedical Research Unit in Cardiovascular Disease at the University Hospitals of Leicester NHS Trust and University of Leicester.
References

Papers of particular interest have been highlighted as:

* of special interest
** of outstanding interest

2. Wronska A, Kmiec Z. Structural and biochemical characteristics of various white adipose tissue depots: Acta Physiol (Oxf) 2012; 205:194-208
 Epicardial adipose tissue accumulation in patients with CKD increases the risk of CV events independent of general adiposity
 Key study showing EAT is significantly thicker in HD patients than controls, correlating positively with HD vintage and CIMT.
 Key study showing that EAT is significantly higher in HD patients than healthy controls. Also demonstrate a clear inverse correlation between EAT and coronary flow reserve (a surrogate for endothelial dysfunction).
20. Tonbul HZ, Turkmen K, Kayikcioglu H, et al. Epicardial adipose tissue and

Key study showing that the EAT thickness of renal transplant patients, who had previously been HD patients, regress to being similar to those found in a healthy, matched, population and significantly thinner than matched patients HD who remained on HD

34. Toth PP. Epicardial steatosis, insulin resistance, and coronary artery disease. Heart Fail Clin. 2012; 8: 671-678

 Homeostasis model assessment for insulin resistance (HOMA-IR) and hemodialysis dose by single-pool urea clearance index (spKt/V) are independent predictors of EAT. EAT was also significantly associated with body fat measures, cardiovascular risk predictors, and dialysis dose in HD patients
Table 1: Strengths and weaknesses of the imaging modalities commonly used to measure epicardial adipose tissue

<table>
<thead>
<tr>
<th>Strengths</th>
<th>Trans Thoracic Echocardiography</th>
<th>Cardiac Computerized Axial Tomography</th>
<th>Cardiac Magnetic Resonance Imaging</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strengths</td>
<td>• Low cost</td>
<td>• Total EAT volume measured</td>
<td>• Total EAT volume measured</td>
</tr>
<tr>
<td></td>
<td>• Widely available</td>
<td>• Highly reproducible</td>
<td>• Excellent tissue characterization</td>
</tr>
<tr>
<td></td>
<td>• No radiation</td>
<td>• Simultaneous CAC assessment</td>
<td>• No radiation or IV contrast</td>
</tr>
<tr>
<td>Weaknesses</td>
<td>• Operator dependent</td>
<td>• Expensive</td>
<td>• Expensive</td>
</tr>
<tr>
<td></td>
<td>• Limited acoustic windows</td>
<td>• Radiation exposure</td>
<td>• Time consuming</td>
</tr>
<tr>
<td></td>
<td>• Low spatial resolution</td>
<td>• Not widely available</td>
<td>• Certain contraindications to scanning</td>
</tr>
<tr>
<td></td>
<td>• Tissue characterization limited</td>
<td>• May require intravenous contrast</td>
<td>• Expertise required in image acquisition and interpretation</td>
</tr>
<tr>
<td></td>
<td>• Two dimensional</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

EAT, epicardial adipose tissue; IV, intravenous; CAC, coronary artery calcification
Table 2: Studies comparing EAT volumes and thickness in HD patients with matched controls. Numbers of patients in each study group are given with control numbers in parentheses. Similarly, EAT measurements are given for each group with control values in parentheses. HD, haemodialysis; EAT, epicardial adipose tissue; ECHO, echocardiography; MDCT, multi-detector computerised tomography; ESRD, end stage renal disease.

<table>
<thead>
<tr>
<th>Author</th>
<th>Year</th>
<th>Patient Groups</th>
<th>Number of patients</th>
<th>Imaging Modality Used</th>
<th>EAT Thickness or Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>Altun [18**]</td>
<td>2014</td>
<td>HD patients</td>
<td>62 (40)</td>
<td>ECHO</td>
<td>6.98±1.67mm (3.84±0.73mm) p<0.001</td>
</tr>
<tr>
<td>Atakan [19**]</td>
<td>2014</td>
<td>HD patients</td>
<td>71 (65)</td>
<td>ECHO</td>
<td>6.53±1.01mm (5.79±1.06mm) p<0.001</td>
</tr>
<tr>
<td>Tonbul et al [20]</td>
<td>2011</td>
<td>HD patients with diabetes; HD patients without diabetes</td>
<td>17, 43 (20)</td>
<td>MDCT</td>
<td>215.5±126.5-271.2cm³; 116.0±91.6-139.4cm³ (104.0±87-134cm³) p<0.001</td>
</tr>
<tr>
<td>Turkmen [21]</td>
<td>2011</td>
<td>ESRD patients</td>
<td>80 (27)</td>
<td>MDCT</td>
<td>160±76cm³ (121.5±37.5cm³) p=0.02</td>
</tr>
<tr>
<td>Colak [22**]</td>
<td>2015</td>
<td>HD patients; Renal transplant recipients</td>
<td>43, 45 (36)</td>
<td>ECHO</td>
<td>8.8±2.0mm; 5.6±1.4mm (5.0±0.3mm) p<0.001</td>
</tr>
<tr>
<td>Erdur [23]</td>
<td>2013</td>
<td>ESRD patients</td>
<td>76 (42)</td>
<td>MDCT</td>
<td>160±76cm³ (104±48cm³)</td>
</tr>
</tbody>
</table>
Table 3: Associations between EAT in HD patients and markers of cardiovascular disease and/or metabolic dysfunction. Number of patients in each study group are given with control numbers in parentheses. EAT, epicardial adipose tissue; HD, haemodialysis; PD, peritoneal dialysis; AIP, atherogenic index of plasma; BMI, body mass index; CIMT, carotid intimal media thickness; MDCT, multidimensional computed tomography; CACS, coronary artery calcification score; ESRD, end stage renal disease; MIAC, malnutrition inflammation atherosclerosis calcification syndrome; Hs-CRP, highly sensitive C-reactive protein; IL-6, interleukin-6; HOMA-IR, homeostasis model assessment for insulin resistance; spKt/V, hemodialysis dose by single-pool urea clearance index.

<table>
<thead>
<tr>
<th>Author</th>
<th>Year</th>
<th>Patient Groups</th>
<th>Number of patients</th>
<th>Imaging Modality</th>
<th>Significant Associations with EAT and risk marker</th>
</tr>
</thead>
<tbody>
<tr>
<td>Erdur et al [23]</td>
<td>2013</td>
<td>ESRD patients</td>
<td>76 (42)</td>
<td>MDCT</td>
<td>EAT volume and AIP were significantly higher in patients with ESRD on HD and PD than in healthy controls, with significant correlations between EAT, BMI and AIP (r=0.42, p<0.001 and r=0.25, p=0.028, respectively). No correlation between EAT and AIP in healthy controls (r=0.19, p=0.21)</td>
</tr>
<tr>
<td>Gaus et al [28]</td>
<td>2014</td>
<td>HD patients</td>
<td>93</td>
<td>MDCT</td>
<td>EAT volume was found to correlate significantly with BMI and age. It also correlated with CACS in patients under 55 years of age.</td>
</tr>
<tr>
<td>Turan et al [29]</td>
<td>2013</td>
<td>HD patients</td>
<td>191</td>
<td>MDCT</td>
<td>EAT was found to correlate positively with carotid artery intima-media thickness (r=0.229, p=0.001), presence of carotid plaque (r = 0.152, p = 0.03) and pulse wave velocity (r = 0.220, p = 0.002). EAT volume was not different between patients with and without diabetes (61.9 ± 26.9 versus 66.5 ± 26.2 cm³/m², respectively, p = 0.31). Age, BMI and total cholesterol were independent predictors of EAT on adjusted analysis (r=0.29, p=0.003, r=0.21, p=0.01 and r=0.24, p=0.01 respectively)</td>
</tr>
<tr>
<td>Colak et al [22**]</td>
<td>2015</td>
<td>HD patients; Renal transplant recipients</td>
<td>43, 45 (36)</td>
<td>ECHO</td>
<td>EAT thickness significantly higher in HD patients than transplant patients of similar dialysis vintage prior to transplant and than to matched controls. In HD patients, EAT was positively correlated with age (r=0.329, p=0.038), BMI (r=0.438, p=0.002), dialysis vintage (r=0.339, p=0.032), Hs-CRP (r=0.486, p=0.001), IL-6</td>
</tr>
</tbody>
</table>
(r=0.465, p=0.002), left atrial index (r=0.402, p=0.010) and left ventricular mass index (r=0.329, p=0.39), and inversely correlated with inferior vena cava collapse index (r=-0.460, p=0.003).

<table>
<thead>
<tr>
<th>Study</th>
<th>Year</th>
<th>Participants</th>
<th>Method</th>
<th>EAT and CACS Correlation</th>
<th>EAT and Other Parameters Correlation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turkmen et al [21]</td>
<td>2011</td>
<td>ESRD patients</td>
<td>MDCT</td>
<td>Positive correlation between EAT and CACS in all ESRD patients (r=0.48, p<0.001). EAT increased significantly as number of MIAC components increased.</td>
<td></td>
</tr>
<tr>
<td>Altun et al [18**]</td>
<td>2014</td>
<td>HD patients</td>
<td>ECHO</td>
<td>EAT correlated positively with HD duration (r=0.592) and with CIMT (r=0.7). On multivariate regression, age, HD duration and CIMT were independent predictors of EAT</td>
<td></td>
</tr>
<tr>
<td>Atakan et al [19**]</td>
<td>2014</td>
<td>HD patients</td>
<td>ECHO</td>
<td>Coronary flow reserve was significantly reduced in HD patients (p<0.001) and correlated inversely with EAT thickness (r=-0.287, p=0.02)</td>
<td></td>
</tr>
<tr>
<td>Tonbul et al [20]</td>
<td>2011</td>
<td>HD patients with diabetes; HD patients without diabetes</td>
<td>MDCT</td>
<td>EAT volumes significantly higher in HD patients with diabetes compared to HD patients without diabetes. Positive correlation between EAT and CACS in all ESRD patients (r=0.48, p<0.001)</td>
<td></td>
</tr>
<tr>
<td>D'Marco et al [43]</td>
<td>2013</td>
<td>HD patients</td>
<td>MDCT</td>
<td>Demonstrated that a 10 cc increase in EAT volume was associated with a significant 6% increase in the risk of death during follow-up [hazard ratio: 1.060; 95% CI: 1.013-1.109; P-value = 0.012]. EAT also correlated positively with age, BMI, triglycerides, CRP, CACS and aortic calcium, and negatively correlated with systolic and diastolic blood pressure, serum high density lipoprotein (HPL) cholesterol and serum phosphate (all p<0.05)</td>
<td></td>
</tr>
<tr>
<td>Ulusal Okyay et al [45*]</td>
<td>2015</td>
<td>HD patients</td>
<td>ECHO</td>
<td>EAT thickness showed significant associations with BMI (β = 0.590, P < 0.001), waist circumference (β = 0.572, P < 0.001), body fat mass (β = 0.562, P < 0.001), percentage of body fat mass (β = 0.408, P = 0.003), percentage of lean tissue mass (β = -0.421, P = 0.002), LV mass (β = 0.426, P = 0.002), CIMT (β = 0.289, P = 0.042), triglyceride/high-density lipoprotein cholesterol ratio (β = 0.529, P = 0.001), LV mass (β = 0.426, P = 0.002), CIMT (β = 0.289, P = 0.042), triglyceride/high-density lipoprotein cholesterol ratio (β = 0.529, P = 0.002)</td>
<td>25</td>
</tr>
</tbody>
</table>

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

P < 0.001), 1/HOMA-IR (β = -0.386, P = 0.006), and spKt/V (β = -0.311, P = 0.028)