
DOI: http://dx.doi.org/10.14236/ewic/ICS2016.15

Towards a Distributed Runtime Monitor for
ICS/SCADA Systems

Andrew Wain, Stephan Reiff-Marganiec
Department of Computer Science

University of Leicester
Leicester, UK

{ajbw1,srm13}@le.ac.uk

Kevin Jones
Airbus Group Innovations

Newport, UK
kevin.jones@airbus.com

Helge Janicke
Software Technology Research Laboratory

De Montfort University
Leicester, UK

heljanic@dmu.ac.uk

Industrial Control Systems (ICS) and SCADA (Supervisory Control and Data Acquisition) systems are typically
used in industries such as electricity generation and supply, gas supply, logistics, manufacturing and
hospitals and are considered critical national infrastructure. The evolution of these systems from isolated
environments into internet connected ones, in combination with their long service life and real-time nature
have raised severe security concerns in the event of a cyber-attack. In this paper, we review the current
literature surrounding the threats, vulnerabilities, exploits and existing approaches to securing vulnerable
SCADA systems. We then focus specifically on the development of a distributed online runtime monitor to
detect violations of safety properties. We conclude with suggestions for further research needed to progress
the state of the art in the area of distributed online runtime verification of SCADA systems.

SCADA, ICS, cyber, security, distributed, run-time, monitoring

1. INTRODUCTION

ICS and SCADA systems are typically used for the
control of systems used in electricity generation
and supply, gas supply, logistics, manufacturing and
hospitals. Their uninterrupted and safe operation
is critical to the safety of human lives and a
nation’s security. Typically these systems operate
continually and have lifespans measured in decades.
Whilst cyber attacks against SCADA systems are
rare, occurrences are on the increase and the
consequences can be severe. Let us consider just
the following examples:

In 2009 a hospital security guard installed malware
on hospital machines and took control of the systems
controlling heating and air conditioning (Nicholson
et al. 2012).

In 2010 the Stuxnet worm was discovered in Iran’s
power plants. The worm had been introduced on
removable media and propagated from the corporate
network to the SCADA network where it searched for
specific models of PLC and rewrote the program logic
to alter centrifuge timings to decrease their service
life (Falliere et al. 2011).

In December 2015, the Ukrainian power grid suffered
a cyber attack which caused 225,000 customers

to lose power for several hours while the SCADA
systems were manually restored (E-ISAC 2016).

Current efforts in SCADA security focus on the
development of more secure architectures, message
logging for offline analysis, encryption and firewall
improvements. We find that current methods offer
limited protection for ‘semantic attacks’ where the
system continues to operate but in a subtly different
way – as was the case with the 2010 Stuxnet
attack. We therefore propose to pursue distributed
online runtime monitoring as offering an additional
layer of protection for vulnerable SCADA systems
by inspecting and verifying states of distributed
components at runtime. There are several crucial
requirements associated with runtime monitoring
which are particular to ICS/SCADA including the
limited bandwidth available for communication thus
not allowing heavy control protocols, the time critical
nature of observing issues and addressing them, and
the expected incomplete understanding of system
configuration and implementation details.

The rest of this paper introduces the history
and typical problems with SCADA systems in
section 2, considers common efforts to securing
SCADA systems in section 3 and then turns it is
attention to where we believe progress is required:
the distributed monitoring of ICS/SCADA systems

© Wain et al. Published by
BCS Learning & Development Ltd. 132
Proceedings of the 4th International Symposium for ICS & SCADA Cyber Security Research 2016

Towards a Distributed Runtime Monitor for ICS/SCADA Systems
Wain • Reiff-Marganiec • Jones • Janicke

(Section 4). We conclude the paper with a vision
of the research aspects to be addressed to achieve
effective protection at runtime.

2. HISTORIC DEVELOPMENT AND TYPICAL
CONCERNS

Traditional SCADA systems centred around central
mainframe computer which communicated with field
devices such as Programmable Logic Controllers
(PLCs), Remote Terminal Units (RTUs), Intelligent
Electronic Devices (IEDs) and HMI (Human Machine
Interface) workstations. Local devices communicated
over a serial bus, whilst remote devices communi-
cated via telephone lines or radio technology. These
early systems relied on physical security and each
implementation used proprietary protocols offering
‘security by obscurity’ (Nicholson et al. 2012).

Through the 1980s and 1990s, SCADA architectures
followed the trend of general information systems
towards a distributed architecture in order to balance
reliability across nodes and to take advantage the
increasing computational power across the network.
This led to the adoption of ‘standard’ network
protocols such as TCP/IP to provide LAN and
WAN communications with the existing proprietary
protocols laid on top.

In the new millennium the overlap between traditional
information systems and SCADA has continued.
The introduction of open standards and off-the-
shelf hardware, reduced the effect of ‘security by
obscurity’. Where there had once traditionally been
an ‘air gap’ between the standard corporate network
and the SCADA network, these are often connected
such that the SCADA databases can be read from
or cloned in the corporate network for reporting,
monitoring and remote management purposes.

The increased use of standard PC hardware,
operating systems and infrastructure reduced cost
but opened the system to new threats as they were
then exposed to the vulnerabilities common to these
general computer systems (Worms, Viruses, Trojans
spear phishing attacks etc.). This allows unique
exploits due to the combination of the insecure nature
of the proprietary protocols and the connected nature
of the systems (Nicholson et al. 2012; Cárdenas et al.
2008). We explore these vulnerabilities in Section 2.3.

2.1. Threats

The threats to reliable and safe SCADA operation can
originate from (1) operator or programming error from
lack of training or experience, (2) malicious access to
process communication channels leading to potential
loss of intellectual property, (3) malicious alteration
of process engineering data whilst it traverses the

network or (4) flooding the network with malformed
or spurious messages(Giani et al. 2009).

2.2. Attackers

Nicholson et al. (2012) highlight the following
potential attackers of a SCADA system: (1) State
sponsored cyber-warfare, (2) Terrorist Organisations,
(3) Hackers / Organised Crime, (4) Employees /
Inside attacks (5) ‘Script kiddies’ and Hobbyist
Hackers and (6) Hacktivists.

In the case of cyber-warfare and terrorist organisa-
tions, the motivation is to cause as much disruption
as possible. A state sponsored attack has almost
unlimited resources and funding. Organised criminals
are more likely to be motivated by the theft of insider
knowledge or to include a SCADA attack in part of a
larger criminal activity. This could include espionage
from other companies with the motivation to give them
a competitive advantage. Such an attack is likely to
be more subtle and current techniques are less likely
to offer quick detection.

Hackers and ‘script kiddies’ probably have less inside
knowledge of the plant they are attacking but will
be seeking known exploits and weaknesses such
as default passwords and known yet unpatched
vulnerabilities. They could be motivated either to
cause disruption to the plant or for the personal
challenge. Hacktivists could be motivated to attack
critical infrastructure to draw attention to their goals
and to cause disruption, for example an anti-
nuclear energy protest disabling a nuclear power
station.

Some attacks may be unmotivated, but instead
caused by accidents as a result of lack of employee
training or system faults which result disruption to
normal operations of the SCADA facility.

2.3. Vulnerabilities

Due to the nature of SCADA systems, they operate
continuously with infrequent maintenance windows.
Test and/or development environments are not
available and depending on the nature of the system
there may be a strict certification process required
before changes can be implemented. This means
that whilst robust procedures may be established
for installing patches and updates in the corporate
network segment, it is very common for the SCADA
segment to remain unpatched for a significant
amount of time. (Cárdenas et al. 2008). As the
complexity of the systems increases so does
the occurence of bugs, and hence the need for
patching. Cárdenas et al. (2008) indicate that flexible
configuration options such as remote management
via a web server increase the surface area for attack.

133

Towards a Distributed Runtime Monitor for ICS/SCADA Systems
Wain • Reiff-Marganiec • Jones • Janicke

Traditional SCADA systems were physically isolated
from the internet, hence physical security was
considered to be adequate protection. Now that these
systems which were designed to be isolated, are
connected to the internet, this approach no longer
offers adequate protection (Cárdenas et al. 2008;
Vukovic et al. 2012; Cárdenas et al. 2008). Worse
still, older devices using open protocols cannot easily
be upgraded to include authentication or encryption,
they must either be replaced or augmented with
additional hardware. However, this would require
taking the systems offline for an unacceptable period
of time and be prohibitively costlyTsang Smith (2008).

SCADA systems historically used proprietary ad-
hoc protocols: even the same models of equipment
deployed by the same engineers could vary between
implementations. This caused problems during
maintenance and prompted the development of more
standardised protocols such as ELCOM-90, Modbus,
DNP, Fieldbus and ASCII (Kalapatapu 2004). Whilst
this enables interoperation to occur between vendors
of SCADA equipment, the use of open protocols also
makes it easier for a would-be attacker to familiarise
themselves with the system. The open design
does however allow for the easier identification and
correction of bugs 1, which could go undetected
(but therefore unexploited) for years in a proprietary
system (Cárdenas et al. 2008). Adopting the use
of commodity IT extends further to hardware and
operating systems, so that SCADA systems inherit
the vulnerabilities of these components (see e.g.
(Cárdenas et al. 2008)).

Many of the systems still in use today were designed
before the strong need for encryption and due to
their low computing power are unable to handle the
additional complexity. Also where a SCADA system
is currently in use or widely distributed, retrofitting
encryption must be done in an incremental approach
as it is infeasible to upgrade the entire system
concurrently (Dawson et al. 2006). This leaves such
systems vulnerable to eavesdropping, man-in-the-
middle and replay attacks.

SCADA systems operate within strict timing con-
straints which must be observed to ensure safe
operation. Many of these network links are running
at peak load and cannot cope with the additional
overhead introduced by the use of authentication
headers and encryption which could effectively act
as a denial-of-service attack against nodes unable to
cope with the additional computation.

Rule sets used for intrusion detection work well
in a standard corporate network where the attack
patterns are common and are relatively easy to

1Assuming the relevant patches are deployed, see 2.3

identify. In a SCADA environment the attacks are
infrequent and likely to be unique to the specific
environment under attack, therefore rule sets built
from the analysis of one attack are unlikely to detect
future attacks (Hadžiosmanović et al. 2014).

Existing intrusion detection systems (IDS) inspect
network traffic on a corporate network which is
using common protocols such as TCP/IP, SMTP,
POP3, IMAP, FTP, HTTP, HTTPS etc. They do not
deeply inspect the SCADA traffic and are unable to
identify messages which are semantically invalid, for
example the activations of the heating element in a
water heater when no water is present. This kind
of semantic violation was the basis for the Stuxnet
attack (Janicke et al. 2015).

It is suggested by Cárdenas et al. (2008), that
one of security challenges that separates SCADA
security from general ICT security is that SCADA
systems interact with the physical world in ways that
general ICT security measures are not designed to
consider. This is further aggravated by the need
to locate RTUs and IEDs in remote and hostile
locations (electrical substations or pumps on arctic oil
pipelines for example), so physical security remains
an issue, Retrofit security technologies to all these
nodes concurrently while the system remains active
throughout, the ability for mixed operation and
to secure the infrastructure in stages is required
(Dawson et al. 2006). These matters also apply to
the fledgling Internet of Things (IoT) domain which
will benefit from the considerations in this paper
while possibly offering some low cost options for
additional monitoring in SCADA if an appropriate
secure monitoring solution can be found.

3. SECURING ICS/SCADA

We shall now proceed to discuss some related
works from the literature with a focus on, identifying
techniques for the security of ICS/SCADA systems.

3.1. New Architectures

Many new architectures have been proposed which
increase the resilience and security of SCADA
systems. Whilst these could be applicable to newly
developed control systems, they do not address
vulnerabilities in systems which will continue to be
operational for decades to come. Some examples of
these architectures include:

A modified version of fieldbus including a GPS
receiver for time synchronisation and the use of
a Hamming encoding to allow for the detection
and correction of bit-level errors with a predictable
correction rather than requiring the data to be
retransmitted (Erdner Halang 2004).

134

Towards a Distributed Runtime Monitor for ICS/SCADA Systems
Wain • Reiff-Marganiec • Jones • Janicke

A combination of Wireless Sensor Networks, Mobile
Ad-Hoc Networks and the internet to produce a
secure attack-resistant architecture (Kumar et al.
(2014)) which they benchmarked against the
existing techniques: Vukovic et al. (2012)’s NAMDIA
(Network-Aware Mitigation of Data Integrity Attacks),
Morris Pavurapu (2010)’s Retrofit IDS (Intrusion
Detection System), and Fovino et al. (2012)’s CSBF
(Critical State-Based Filtering).

The use of an agent-based decision support system
for the automation of control decisions in large and
complex control processes has been suggested in
(Prayati et al. 2007). A new agent-based architecture
to allow for greater configuration and adaptability on
production lines where the products to be produced
are customisable / change frequently Dionisio Rocha
et al. (2015) follows similar premises.

The use of Component Oriented Programming (COP)
as opposed to Object Oriented Programming (OOP)
in large-scale and distributed SCADA systems. This
has the advantage of distributing the requirements
of resources and provides examples of automated
discovery. However, it is not clear how this could be
applied or integrated with existing infrastructures and
how timing constraints could be guaranteed due to
the discovery process (Anh Chau 2009).

3.2. Message Logging

Message logging can be used for offline analysis
of the network and to identify traffic patterns during
normal operation as well as highlighting traffic
deviations from normal. Morris Pavurapu (2010),
propose a data logger for serial communication
based on MODBUS and DNP3 which can be
retrofitted to existing applications.

Tupakula Varadharajan (2014), suggest adding a
Virtual Machine based Attack Detection Agent
(ADA) and Attack Detection Servers (ADS) to the
infrastructure to monitor and detect anomalies in the
control system. However, their monitor validates the
the runtime state of the system “at random intervals”,
which raises the question of whether the monitor
may miss unsafe states. Detection rules are initially
manually configured, requiring detailed knowledge
of the process under observation and they are later
manually refined by log file analysis.

3.3. Encryption

Several attempts have been made to implement
encryption between components of SCADA networks
and also in efficient key management.

The security of unattended remote stations cannot be
assumed and techniques such as Wright et al. (2004)
and Tsang Smith (2008) could be thwarted bcause

messages could be injected into the encrypting
device (Giani et al. 2009). However, if physical access
to a remote station is gained then “greater disruption
and damage can be caused by other means” (Wright
et al. 2004).

Key management is crucial for all encryption
approaches. Beaver et al. (2002) present a
cryptographic key management algorithm for SCADA
systems which uses a combination of symmetric
and public keys, the mechanism differs between
master-controller and peer-to-peer links. Dawson
et al. (2006) builds on the work of Beaver et al. (2002),
by providing both a unified communication technique
for master-controller and peer-to-peer connections
using only symmetric keys instead of public keys in
order to to reduce network traffic load. Choi et al.
(2009) present a solution to the problem of broadcast
communications, to be used in the event of, for
example broadcasting alarm states. Lee et al. (2008)
integrate Choi et al. (2009) with the Iolus framework
(Mittra 1997) to break down key distribution into
hierarchies to ensure efficient distribution of new keys
and revocation of expired keys, whilst still supporting
broadcast messages.

PiÃ¨tre-CambacÃ©dÃ¨s Sitbon (2008); Pal et al.
(2009), provide overviews of the constraints and
requirements for key management and current key
management practices and their applicability to
SCADA.

3.4. Firewall and Intrusion Detection Systems

The move to standard PCs and network hardware
and connection to the corporate network opens
vulnerable SCADA systems to the internet. Firewalls
are generally deployed at the boundaries between
the internet, corporate network and SCADA network,
however they are not typically designed to inspect
SCADA-specific protocols and offer limited protection
for the SCADA network. There have been previous
works on incorporating SCADA traffic monitoring into
firewalls and IDS (Intrusion Detection Systems), such
as the VIKING project by Giani et al. (2009), which
suggests using an application-level module in the IDS
to detect data anomalies and suspicious traffic.

Hadžiosmanović et al. (2014) used a network tap
to capture and inspect raw network packets at the
PLC interface. Their approach inspects the content
of messages and categorised them as (1) control, (2)
reporting, (3) measurement and (4) program state.
Variables in program state are then categorised as (a)
changing continuously, (b) changing gradually over
time, (c) attribute data from a fixed set of values, or
(d) never change. Statistical models are then used
to ensure that messages do not deviate from their
observed categorisation. This assumes that the traffic

135

Towards a Distributed Runtime Monitor for ICS/SCADA Systems
Wain • Reiff-Marganiec • Jones • Janicke

offers a true representation of state; that messages
have not been forged or manipulated and that all
behaviour is observed and categorised, which may
not be the case for alarm triggers and recovery
operations.

Monitoring is also required at a semantic level,
as otherwise ordinary messages could occur in
dangerous sequences. For example, the activation of
a heating element in a water heater whilst it is empty.
It is therefore important to monitor in a way that is
aware of the current state of multiple components
throughout the system.

In the event of a Stuxnet style semantic attack,
where the traffic is altered in subtle ways to affect
the process under control (Janicke et al. 2015),
knowledge of the content of messages is essential
in order to protect the SCADA system from attack.
Due to the proprietary nature of the protocols still
in operation and the need to tailor the protection
rules specifically for the system in question, it is
unlikely that a one-size-fits-all set of firewall rules
would offer the same level of protection as a
monitor capable of checking the state of various
components of the system with rules governing safe
operations.

4. RUNTIME VERIFICATION

Existing IDS techniques are unlikely to identify a
semantic attack where the messages are valid
according to the SCADA protocol, but the content
of the message has been altered in a way which
causes the overall system to behave incorrectly, as
in the case of Stuxnet. Runtime verification offers the
opportunity to build a safety monitor which is capable
of monitoring system states in real-time in order to
detect and react to safety violations.

Runtime verification differentiates itself from formal
model checking and theorem proving in that
properties of a program are checked by execution
instead of analysing the source or compiled code
to prove safety and security properties Leucker
Schallhart (2009). Runtime verification can also be
applied either where no system model exists, or
to complement formal model checking by verifying
the implementation matches the specification. The
disadvantage of runtime verification is that it can
only verify observed behaviour, that is to say that
it cannot be used to reason about the system
as a whole unless every possible state occurs
Leucker Schallhart (2009); Malakuti et al. (2011)
during the execution. Runtime verification leads
to the potential for a system to react and raise
alarms or take corrective action before faults become
failures.

Runtime verification can either be performed online
whilst the target system is running, examining
program output during execution, or offline by
examining logs files and traces Leucker Schallhart
(2009).

In the following we investigate the previous work in
runtime verification for embedded control systems in
general (4.1), SCADA systems (4.2), and distributed
systems (4.3).

4.1. Runtime Verification of Embedded Control
Systems

Embedded systems are constrained by low resources
and computational power, with requirements for real-
time and reliable operation. They are often deployed
in harsh environments and must accept input from
unreliable sensors yet they must provide reliable
real-time operation. In order to achieve this, runtime
verification has been given some attention in the
context of embedded systems.

Runtime verification is presented in the context
of ultra-critical embedded systems by Pike et al.
(2011), who define an ultra critical system as an
embedded system which senses and/or controls
the physical world within fixed and time-critical
constraints. Runtime verification of these systems
must account for hardware faults and random failures,
in addition to software design faults. The identified
requirements are: (1) Functionality (the presence
of RV technique cannot change the behaviour of
the target system), (2) Certifiability (the RV system
must not require the re-certification of the target
system), (3) Timing (the RV technique must not affect
the timing of the monitored system) and (4) Size,
Weight, Power (the RV system must not exceed these
tolerances).

These constraints prohibit the use of traditional run-
time verification techniques such as instrumentation
of the target system for additional monitoring out-
put. Watterson Heffernan (2008) present a method
for using the formal Java-MaC runtime verification
method to monitor a Java control system using in-
strumentation: The control system and monitor are
implemented in a JOP (Java Optimised Processor)
software processor, embedded in an FPGA (field
programmable gate array) and run alongside the
control system

Neukirchner et al. (2012) investigate the monitoring
the timing of activation patterns for tasks at
runtime with verification against a timing model.
Uncharacteristically long or short activation times for
a task could be indicative of a fault or tampering
with the system. Gu et al. (2014) combat the high-
overhead of control flow checkers (CFCs) by using

136

Towards a Distributed Runtime Monitor for ICS/SCADA Systems
Wain • Reiff-Marganiec • Jones • Janicke

partial instrumentation to ensure that the worst-
case execution time (WCET) is acceptable in the
embedded environment.

TyTAN is proposed by Brasser et al. (2015), as
a secure architecture for low-resource embedded
systems supporting dynamic loading of secure tasks,
secure inter-process communication and real-time
guarantees.

Despite not being SCADA specific, these techniques
are of interest as the runtime monitoring of timings
could be indicative of interference e.g. short delays
between packets in the case of a replay attack.
However, in order to thoroughly monitor the activity
in the system we must be able to examine variable
values for semantic correctness.

4.2. Runtime Verification of SCADA

CASPER was developed by Barbosa et al. (2012),
to monitor network traffic and uses Complex
Event Processing and Hidden Markov Models to
predict failures in distributed safety-critical systems.
The experiments monitored: (1) round trip time,
(2) message rate and (3) number of requests without
a reply. The Topology Detector Component builds
a graph representing the network by monitoring
network traffic sources and destinations. This is a
useful technique in re-discovery of topology in large
and complex SCADA systems, where a traditional
network scanner can cause PLC failure in the form
of a DOS attack.

Mao et al. (2015) built a non-intrusive monitor for the
runtime behaviour of open SCADA systems. Their
technique involved a Virtual Machine Monitor (VMM)
to capture network traffic travelling between the PLC
and the HMI. Messages are modelled and marked
with guard suffixes to identify messages which cannot
occur concurrently. At runtime the Sort network
monitor is used to capture all IP traffic, filtering for
specific packets relating to SCADA protocols. The
main stages of their monitor are (1) Event Extraction,
(2) Semantic Reconstruction, (3) State Refinement
and (4) Behaviour Checking. They do not discuss the
performance characteristics of the monitor and their
model is restricted to concurrency and dependency
relationships of messages, they do not appear to
model or verify the message content, timeliness or
source/destination of the message.

Janicke et al. (2015) developed a low-cost monitoring
solution based upon an Arduino Yun and Tempura,
an executable subset of Interval Temporal Logic
Moszkowski (1984); Cau et al. (2009); Hale (1988).
Their solution was tested using a Siemens S7-1200
PLC with the Arduino connected to the Profinet
interface. The advantage of the ITL-based monitor is

that ITL allows for a much richer specification of the
monitor, allowing for the specification of conditions
based upon the next state, sometimes true, always
true, never true and upon the number of states
between conditions. The solution allows inspection
of the PLC registers, as represented in the network
traffic, in order to identify subtle violations of safety
conditions.

Tupakula Varadharajan (2014) present a virtual
machine monitor (VMM) based technique to detect
anomalies in network traffic and the state of
virtual machines operating the HMI, Historian
and current databases, and SCADA servers for
anomalous behaviour. The architecture is based on
the assumption that these servers are based on a
virtualisation technology, which is not necessarily the
case in existing SCADA systems especially in strict
real-time environments.

TAIGA (Franklin et al. 2014), is a system-on-chip
(SoC) solution which is installed between the network
or serial controllers of the PLC. It is capable of
capturing network traffic and program updates to
ensure that formal safety and liveness specifications
are not violated. Being an embedded system,
TAIGRA introduces minimal latency, however each
module only protects the single PLC in which is it
installed.

In the context of monitoring SCADA/ICS safety
and security, online runtime verification is the most
valuable technique as it allows violations to be caught
and alarms triggered in real-time. However, this
approach requires great care not to violate fragile
timing and functional constraints of the system under
observation.

4.3. Runtime Verification of
Distributed Systems

The approaches discussed in the previous section
were tested on small-scale SCADA systems, typically
on a single PLC. For practical runtime SCADA
monitoring at industrial scale, the model and
verification must cater for many PLCs in a distributed
environment. From our review of the literature,
little work appears to have been conducted in
this area, therefore this section will summarise the
current literature on runtime verification of distributed
systems in general, with a view to their application to
SCADA.

Malakuti et al. (2011), use static code analysis
techniques to build a causal model of distributed Java
RMI (Remote Method Invocation) calls by wrapping
remote calls with a unique identifier. On top of these,
a model of the expected behaviour of the application
is imposed. In the context of SCADA, their solution

137

Towards a Distributed Runtime Monitor for ICS/SCADA Systems
Wain • Reiff-Marganiec • Jones • Janicke

does not address the timing constraints of a safety-
critical system and utilises instrumentation in the form
of Aspect Oriented Programming (AOP). As stated
previously, instrumentation is not a desirable solution
in a safety-critical system due to the risk of changing
a previously certified system.

Past Time Distributed Temporal Logic (PT-DTL) and
DIANA (DIstributed ANAlysis) (Sen et al. 2004) are
presented as an efficient way to monitor safety in
distributed systems. They focus on a peer-based
decentralised approach where each node is aware of
other processes’ remote states where necessary, but
there is no single node with knowledge of the state of
the entire system. Therefore their formalism, PT-DTL
deals with ‘the last known state’ of remote processes.
Linear Temporal Logic (LTL) is extended into PT-
LTL by the inclusion of constructs for “previously”,
“eventually in the past”, “always in the past” and
“since”. Sen et al. (2004) then extend PT-DTL further
by including temporal formulae which refer to the
observed states of remote nodes. They identify the
following as guidance for efficient distributed runtime
monitoring: (1) monitoring should be fast enough to
be executed online, (2) local monitors should operate
with as little memory overhead as possible and (3) the
number of additional messages sent for the purpose
of monitoring should be minimal.

DIANA, their implemented monitor would not be
directly applicable to an embedded control system as
it requires instrumentation of Java bytecode in order
to: (1) invoke monitors, (2) track internal variable
changes, (3) send messages and (4) respond
to messages by updating the local variables
representing external variables. This instrumentation
would pose challenges to in critical systems as
it may violate the requirements for Functionality,
Certifiability and Timing as identified in Pike et al.
(2011), as previously discussed in ??. The current
solution in Sen et al. (2004) deals only with safety
properties not liveness properties. Additionally, the
formal safety requirements must be defined upfront
manually by an expert.

5. A DISTRIBUTED RUNTIME MONITOR FOR
ICS/SCADA

Based upon our review of the literature, we see
the following areas of interest to advancing the
state of the art in distributed runtime verification in
an ICS/SCADA context. In particular we see three
intertwined aspects which bring understanding of
desired behaviour and runtime information together
in the physical setting of ICSs to bring more security
to the fore. The three parts are a model (the aspect
that attempts to capture the desired behaviour),
data sources (the runtime information) and hardware

and interfaces (influencing the location of solutions
technologies).

5.1. Model

Runtime monitoring examines an actual execution of
a system and compares this to some formal model
to determine whether the behaviour matches that
defined in the model – and needs to alert if there
is a mismatch as undesired (or at least unexpected)
behaviour has occurred.

For SCADA monitoring, this model must be specified
in a formal language which allows for the definition of
safety properties in a distributed fashion. A number
of formal modelling notations has been proposed
(typically some form of temporal or spatial logic). Well
known challenges exist in establishing the model. At
a basic level an expert could manually define safety
constraints. The coverage of this type of model would
be limited by the time / knowledge constraints of the
expert.

Alternatively, the model could be learned from
the behaviours of the system under observation
using either artificial intelligence or statistical
analysis techniques to learn what ‘normal operating’
behaviour is. This assumes that the system is
currently operating correctly and is limited in that only
the states encountered will be learned. It may trigger
false alarms or miss safety events during critical error
and recovery states which have not previously been
learned by the system. Such monitoring is still useful
in the detection of subtle semantic attacks leading to
a general degradation of equipment such as in the
Stuxnet attack. Additionally, they may also be able to
detect other kinds of attack such as a DOS attack
caused by increased traffic on the network.

A third approach would be to reverse engineer
the program logic in each PLC into a formal logic
which could be used to generate the monitor. This
would allow the monitor to ‘lock in’ the current logic,
assuming that logic is already correct.

A combination of the first and second approach
allows for a model which covers the core safety
concerns whilst also offering the extra coverage of
learning behaviours of which the expert may be
unaware. Combining the first and third approach
would allow the current program to be extracted and
abstracted such that it could be to presented to an
engineer to reason about the program and even allow
for model checking / theorem solving techniques
to validate the safety of the model for runtime
verification. A combination of all three approaches
would provide the most robust model, it would cater
for ‘obvious’ safety concerns defined by an expert,
analyse trends to identify anomalous behaviour and

138

Towards a Distributed Runtime Monitor for ICS/SCADA Systems
Wain • Reiff-Marganiec • Jones • Janicke

allow for static model check of the current program to
ensure that it meets it’s current safety specifications.

However, the anticipated solution needs to go beyond
this in that it needs to allow to combine local
understanding, generated by a mix of the above
methods, with global (i.e. component overarching)
understanding to address the complexity of today’s
SCADA systems. In particular it will need to cope
with missing information (not all code could be
re-engineered; experts are not all-knowing) and
imprecision (some parts of the overall system will
be better understood than others) – thus really
challenging current logic based models.

5.2. Data Sources

The models allow to understand the system, but
for monitoring purposes they depend on availability
of real-time data. One possible source of data is
analysis of the network traffic itself, by inserting
monitors in between the PLCs and the HMI in order
to intercept and extract data from the traffic. This is
the approach most frequently taken in the literature.
Potential issues with this approach are that: (1) it
assumes that the network traffic is trustworthy, (2) the
monitor can intercept and relay traffic without violating
real-time constraints (3) the necessary values appear
in network traffic (some values may exist only within
the PLC). This approach would also need to cater for
different network protocols which may be in use.

A second approach to investigate is the possibility
of using a diagnostic port on the PLC to examine
the registers directly. A feasibility analysis would be
required to ensure that (1) such a diagnostic port
features on a sufficient number of PLC models and
(2) that the usage of the port does not incur any
performance penalty in the operation of the PLC.

A third approach examines values in the two central
databases, the first is frequently called the ‘current’
database which stores the last observed state of
registers from the PLC and is used to drive the HMI.
The second database is known as the ‘historian’
and stores historical values for trend analysis and
reporting. Since these databases are located closest
(and often mirrored in) the corporate network and
contain values passed from sensors via the PLC.
Therefore whilst they are the easiest to access, they
can be considered the least trustworthy option.

The needed solution will access data from different
sources, needs to aggregate this in a way that allows
to capture a certainty about its correctness and is
open to auditing on this account. It further needs to
be able to derive conclusions with certainty in the
absence of some detailed information as bandwidth

limitations or inaccessibility of PLCs might make it
impossible to obtain all the data one wants.

5.3. Hardware and Interfaces

A final consideration is the physical hardware of
the monitors. Examples from the literature include
various embedded solutions built upon FPGA
technology, as well as low-cost hobbyist devices
such as those in the Raspberry Pi and Arduino
families. If our monitors are intended to be deployed
alongside the PLC hardware then concerns need to
be addresses surrounding (1) cost, (2) powering the
devices, (3) networking them and (4) trust, in terms of
both reliability and that the devices themselves have
not been compromised.

Here we foresee that the ultimate solution will
be interfacing with existing components and add
hardware to others where possible, but will likely need
to make certain decisions remotely while others need
to be made locally (quite close to the PLC) and both
the models and data source questions raised before
need to support such a distributed observation,
aggregation and decision making structure.

6. CONCLUSIONS

In this paper, we have reviewed the current
literature surrounding the threats, vulnerabilities and
existing approaches to securing vulnerable SCADA
systems. We then reviewed the literature surrounding
current approaches to securing SCADA systems and
specifically into usage of a distributed online runtime
monitoring approach to detect violations of safety
properties. We conclude with suggestions for further
research needed to progress the state of the art in
the area of online runtime monitoring of a distributed
SCADA system.

Having considered the current setting, state-of-the-
art and demands and directions of development of
ICS/SCADA Systems it seems clear that attacks
will be more nuanced and smarter and that only
distributed run-time monitoring which provides an
overall view of the controlled system (and possibly
some of its context) can successfully identify and
resolve threats as needed. Much work has been
done on individual aspects that can be combined and
integrated to move this agenda forward. A further
opportunity presents itself in adopting part of the
IoT offering (which in turn can gain many benefits
from ICS/SCADA work). However, the challenges are
manifold and particularly lie in the strong requirement
of traceability and accountability in a very distributed
system operating in a very hostile environment with
very limited resources and spare capacity.

139

Towards a Distributed Runtime Monitor for ICS/SCADA Systems
Wain • Reiff-Marganiec • Jones • Janicke

REFERENCES

Anh, P. D. and Chau, T. D. (2009) Component-
oriented architecture for SCADA system. In:
Industrial Informatics, 2009. INDIN 2009. 7th IEEE
International Conference on, 422–427.

Association, A. G. et al. (2005) Cryptographic
protection of SCADA communications part 1:
Background, policies and test plan. Technical
Report AGA Report.

Barbosa, R. R. R., Sadre, and R. Pras, A. (2012).
A first look into SCADA network traffic. In:
Network Operations and Management Symposium
(NOMS), 2012 IEEE, 518–521.

Beaver, C. et al. (2002) Key management for SCADA.
Cryptog. Information Sys. Security Dept., Sandia
Nat. Labs, Tech. Rep. SAND2001-3252. Available
from http://www.smartgridinformation.info/pdf/
4646_doc_1.pdf

Brasser, F. et al. (2015) Tytan: Tiny trust anchor
for tiny devices. In: 52nd ACM/EDAC/IEEE Design
Automation Conference (DAC), 1–6.

Cárdenas, A. A., Amin, S. Sastry, S. (2008)
Research challenges for the security of
control systems. In: HotSec. Available from
https://www.usenix.org/legacy/events/hotsec08/
tech/full_papers/cardenas/cardenas_html/
hotsecHTML.html

Cau, A. (2009). Interval temporal logic. Available from
http://www.antonio-cau.co.uk/ITL/

Choi, D., Kim, H., Won, D., and Kim, S. (2009).
Advanced key-management architecture for se-
cure SCADA communications. IEEE Transactions
on Power Delivery, 24(3), 1154–1163.

Dawson, R. et al. (2006) SKMA: A key
management architecture for SCADA systems.
In: Proceedings of the 2006 Australasian
Workshops on Grid Computing and e-
Research - Volume 54’, ACSW Frontiers ’06,
Australian Computer Society, Inc., Darlinghurst,
Australia, Australia, 183–192. Available from
http://dl.acm.org/citation.cfm?id=1151828.
1151850

Dionisio Rocha, A., Peres, and R. Barata, J. (2015).
An agent based monitoring architecture for plug
and produce based manufacturing systems. In:
Industrial Informatics (INDIN), 2015 IEEE 13th
International Conference on, 1318–1323.

E-ISAC. (2016) Analysis of the cyber attack on
the ukrainian power grid. Electricity Information
Sharing and Analysis Center, Tech. Rep.

Erdner, T. and Halang, W. A. (2004) A fault tolerant
control and sensor network with predictable real
time qos. In: AFRICON, 2004. 7th AFRICON
Conference in Africa, 2, 1229–1234.

Falliere, N., Murchu, L. O., and Chien, E. (2011) W32.
stuxnet dossier. White Paper, Symantec Corp.,
Security Response, 5.

Fovino, I. N., Coletta, A., Carcano, A. Masera,
M. (2012). Critical state-based filtering system
for securing SCADA network protocols. IEEE
Transactions on Industrial Electronics, 59(10),
3943–3950.

Franklin, Z. R., Patterson, C. D., Lerner, L. W., and
Prado, R. J. (2014). Isolating trust in an industrial
control system-on-chip architecture. In: Resilient
Control Systems (ISRCS), 2014 7th International
Symposium on, 1–6.

Giani, A., Sastry, S., Johansson, K., and Sandberg, H.
(2009). The viking project: An initiative on resilient
control of power networks. In: Resilient Control
Systems, 2009. ISRCS ’09. 2nd International
Symposium on, 31–35.

Gu, Z., Wang, C., Zhang, M., and Wu, Z. (2014)
WCET-aware partial control-flow checking for
resource-constrained real-time embedded sys-
tems. IEEE Transactions on Industrial Electronics,
61(10), 5652–5661.

Hadžiosmanović, D., Sommer, R., Zambon, E.,
and Hartel, P. H. (2014), Through the eye
of the PLC: Semantic security monitoring
for industrial processes. In: Proceedings
of the 30th Annual Computer Security
Applications Conference ACSAC ’14, ACM,
New York, NY, USA, 126–135. Available from
http://doi.acm.org/10.1145/2664243.2664277

Hale, R. W. S. (1988) Programming in temporal logic.
PhD thesis, University of Cambridge.

Janicke, H., Nicholson, A., Webber, S., and Cau,
A. (2015) Runtime-monitoring for industrial control
systems. Electronics, 4(4), 995. Available from
http://www.mdpi.com/2079-9292/4/4/995

Kalapatapu, R. (2004) SCADA proto-
cols and communication trends. In:
ISA2004.

Kumar, N. R., Mohanapriya, P., and Kalaiselvi,
M. (2014) Development of an attack-
resistant and secure SCADA system using
WSN, MANET, and Internet. International
Journal of Advanced Computer Research,
4(2), 627.

140

Towards a Distributed Runtime Monitor for ICS/SCADA Systems
Wain • Reiff-Marganiec • Jones • Janicke

Lee, S., Choi, D., Park, C., and Kim, S. (2008)
An efficient key management scheme for secure
SCADA communication. In: Proceedings of world
academy of science, engineering and technology,
35, Citeseer.

Leucker, M. Schallhart, C. (2009) A brief account
of runtime verification. The Journal of Logic and
Algebraic Programming, 78(5), 293–303.

Malakuti, S., Aksit, M., and Bockisch, C. (2011)
Runtime verification in distributed computing.
Journal of Convergence, 2(1), 1–10.

Mao, Y. F., Zhang, Y., Hua, Q., Dai, H. Y., and Wang,
X. (2015), A non-intrusive solution to guarantee
runtime behavior of open SCADA systems. In:
2015 IEEE International Conference on Web
Services (ICWS), 739–742.

Mittra, S. (1997) IOLUS: A framework for scal-
able secure multicasting. SIGCOMM Comput.
Commun. Rev., 27(4), 277–288. Available from
http://doi.acm.org/10.1145/263109.263179

Morris, T. and Pavurapu, K. (2010) A retrofit
network transaction data logger and intrusion
detection system for transmission and distribution
substations. In: Power and Energy (PECon), 2010
IEEE International Conference on, 958–963.

Moszkowski, B. (1984) Executing temporal logic
programs. In: Seminar on concurrency. Springer,
111–130.

Neukirchner, M., Michaels, T., Axer, P., Quinton,
S., and Ernst, R. (2012), Monitoring arbitrary
activation patterns in real-time systems. In: Real-
Time Systems Symposium (RTSS), 2012 IEEE
33rd, 293–302.

Nicholson, A., Webber, S., Dyer, S., Patel, T.,
and Janicke, H. (2012). SCADA security
in the light of cyber-warfare. Computers &
Security, 31(4), 418–436. Available from
http://www.sciencedirect.com/science/article/pii/
S0167404812000429

Pal, O., Saiwan, S., Jain, P., Saquib, Z., and Patel, D.
(2009) Cryptographic key management for SCADA
system: An architectural framework. In: Advances
in Computing, Control, Telecommunication Tech-
nologies, 2009. ACT ’09. International Conference
on, 169–174.

Pike, L., Niller, S., and Wegmann, N. (2011) Runtime
verification for ultra-critical systems. In: Runtime
Verification. Springer, 310–324.

Piétre-Cambacédès, L. and Sitbon, P. (2008) Cryp-
tographic key management for SCADA systems-
issues and perspectives. In: Information Security
and Assurance, 2008. ISA 2008. International Con-
ference on, 156–161.

Prayati, A., Stathaki, A., Furusjo, E., and King, R. E.
(2007) A decision support system with distributed
agents for large-scale process control. In: Control
Automation, 2007. MED ’07. Mediterranean Con-
ference on, 1–6.

Sagala, A., Lumbantoruan, D. P., Manurung, E.,
Situmorang, I., and Gunawan, A. (2015) Secured
communication among HMI and controller using
RC-4 algorithm and raspberry pi. TELKOMNIKA
Indonesian Journal of Electrical Engineering,
15(3), 526–532.

Sen, K., Vardhan, A., Agha, G., and Rosu, G.
(2004) Efficient decentralized monitoring of safety
in distributed systems. In: Software Engineering,
2004. ICSE 2004. Proceedings. 26th International
Conference on, 418–427.

Tsang, P. P. and Smith, S. W. (2008) YASIR: A low-
latency, high-integrity security retrofit for legacy
SCADA systems. In: Proceedings of The IFIP
TC 11 23rd International Information Security
Conference. Springer, 445–459.

Tupakula, U. and Varadharajan, V. (2014) Techniques
for detecting attacks on critical infrastructure.
In: Computing, Networking and Communications
(ICNC), 2014 International Conference on, 48–52.

Vukovic, O., Sou, K. C., Dan, G., and Sandberg, H.
(2012) Network-aware mitigation of data integrity
attacks on power system state estimation. IEEE
Journal on Selected Areas in Communications,
30(6), 1108–1118.

Watterson, C. and Heffernan, D. (2008) A runtime
verification monitoring approach for embedded
industrial controllers. In: Industrial Electronics,
2008. ISIE 2008. IEEE International Symposium
on, 2016–2021.

Wright, A. K., Kinast, J. A., and McCarty, J. (2004)
Low-latency cryptographic protection for SCADA
communications. In: Applied Cryptography and
Network Security. Springer, 263–277.

141

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

