Nociceptin/orphanin FQ receptor ligands and translational challenges: focus on cebranopadol as an innovative analgesic.

1G. Calo’ and 2D. G. Lambert

1Section of Pharmacology, Department of Medical Sciences, and National Institute of Neurosciences, University of Ferrara, Italy.
2Department of Cardiovascular Sciences, University of Leicester, Division of Anaesthesia, Critical Care and Pain Management, Leicester Royal Infirmary, UK.

Details of authors contributions: GC wrote the first draft of the article and DGL critically revised it. GC and DGL approved the final version of the article.

Declaration of interests: GC and DGL have both received in the past small research grants from Grunenthal, the company that is developing cebranopadol. G Calo’ is one of the inventors of the patents covering Rec 0438 and PWT-N/OFQ and derivatives and one of the founders of the University of Ferrara spin off company UFPeptides s.r.l., the assignee of such patents.

Funding: Research activities of the laboratory of GC are funded by the University of Ferrara (FAR grant) and the Italian Ministry of University and Research (PRIN2015 grant 2015WX8Y5B). Research on N/OFQ in the laboratory of DGL is funded by Biotechnology and Biological Sciences Research Council (BBSRC) and British Journal of Anaesthesia.

Corresponding author:
Girolamo Calo’, MD PhD
Department of Medical Sciences,
Section of Pharmacology,
University of Ferrara,
Via Fossato di Mortara 19,
44121 Ferrara, Italy
g.calo@unife.it
Abstract

Opioids are characterized as classical (mu, delta, and kappa) along with the non-classical nociceptin/orphanin FQ (N/OFQ) receptor or NOP. Targeting NOP has therapeutic indications in control of the cardiovascular and respiratory system along with control of micturition and a profile as an antidepressant; in all of these indications there is translational human data. Opioids such as morphine and fentanyl (activating the mu receptor) are the mainstay of pain treatment in the perioperative period, despite a challenging side effect profile. Opioids in general have poor efficacy in neuropathic pains. Moreover, longer term use is associated with tolerance. There is good evidence for an interaction between opioid receptors and co-activation can reduce side effects without compromising analgesia; this is particularly true for mu and NOP co-activation. Recent pharmaceutical development has produced a mixed opioid/NOP agonist cebranopadol. This new chemical entity is effective in animal models of nociceptive and neuropathic pain with greater efficacy in the latter. In these animal models there is little evidence for respiratory depression and tolerance (compared to morphine) only develops after substantial treatment periods. There is now early phase clinical development in diabetic neuropathy, cancer pain and low back pain where cebranopadol displays significant efficacy. In 1996 N/OFQ was formally identified with an innovative analgesic profile, ~20 years later, cebranopadol as a clinical ligand is advancing through the human trials process.

Keywords: opioids, NOP receptor ligands, cebranopadol, pain, analgesia
Introduction

The neuropeptide nociceptin/orphanin FQ (N/OFQ) \(^1\), \(^2\) has been identified as the endogenous ligand of the opioid receptor like 1 receptor now referred to as N/OFQ peptide receptor (NOP). N/OFQ as well as the NOP receptor display high structural homology with peptides and receptors of the opioid family. In addition, the NOP receptor is a 7TM receptor coupled with G\(_i\) proteins thus its transduction mechanisms are similar to those of classical opioid receptors e.g. reduction of cAMP levels, stimulation of potassium currents and inhibition of calcium conductance \(^3\). Despite these similarities the pharmacological profile of the NOP receptor is completely distinct from that of classical opioid receptors; for instance the action of N/OFQ (as well as those of selective NOP agonists) are resistant to naloxone the universal opioid receptor antagonist (for a detailed analysis of the NOP pharmacological profile see \(^4\))

The NOP receptor and the N/OFQ prepropeptide (ppN/OFQ) are widely expressed in the central and peripheral nervous system; accordingly N/OFQ via selective stimulation of the NOP receptor controls several biological functions including pain transmission, locomotor activity, stress and anxiety, emotional states, learning and memory, food intake, drug reward, gastrointestinal, cardiovascular and immune functions, the cough and micturition reflex \(^3\). This broad spectrum of actions stimulated the interest of academic and industrial researchers and generated a large panel of NOP receptor ligands useful for target validation studies (see Table 1). Among NOP peptide ligands the partial agonist SER100 (alias ZP120 \(^5\)) the full agonist Rec 0438 (alias UFP-112 \(^6\)) and the antagonist UFP-101 \(^7\) are worthy of mention. As far as NOP non peptide ligands are concerned, the most well used compounds are the agonists Ro 65-6570 \(^8\), Ro 64-6198 \(^9\), MCOPPB \(^10\), and AT-403 \(^11\) and the antagonists J-113397 \(^12\), SB-612111 \(^13\), and C-24 \(^14\). Moreover, crystal structure of the NOP receptor in complex with the two latter compounds has been recently solved \(^15\), \(^16\). The availability of these structures may be used in the future for the rational structure based design of innovative NOP ligands. In parallel, genetic models have been developed for investigating the biology of the N/OFQ-NOP receptor system including mice \(^17\) and rats \(^18\), \(^19\) knockout for the NOP receptor gene (NOP(-/-)), mice knockout for the ppN/OFQ gene \(^20\), and more recently mice knockin for the NOP-eGFP fusoprotein in place of the native NOP \(^21\). Based on a large body of evidence coming from preclinical studies performed using the above tools, NOP receptor agonists have been proposed as innovative drugs for treating anxiety, drug abuse, cough, and urinary incontinence \(^3\), \(^22\), \(^23\), while NOP selective antagonists as novel treatments for Parkinson disease \(^24\) and depression \(^25\).
(see Table 2). For some of these indications of NOP ligands preclinical findings were confirmed by clinical studies that are briefly described in the following section.

NOP receptor ligands and potential therapeutic indications (non-pain studies)

i) Cardiovascular dysfunction - The NOP partial agonist SER100 has been designed and tested in preclinical studies as an aquaretic.\(^{26,27}\) The compound also elicits hypotensive and vasorelaxant actions that are more pronounced in spontaneously hypertensive rats.\(^{28}\) SER100 displayed an acceptable safety profile in patients with isolated systolic hypertension and produced significant lowering of systolic blood pressure.\(^{29}\) This proof of concept study generated encouraging results for the further development of NOP receptor (partial) agonists for the treatment of hypertension.

ii) Micturition - A series of preclinical studies reviewed in\(^{30}\) demonstrated that N/OFQ elicits profound inhibitory effects on the micturition reflex in rats. Based on this evidence the effects of N/OFQ were evaluated in patients suffering from overactive bladder. A first proof of concept study\(^{31}\), a second randomized, placebo controlled, double blind study\(^{32}\), and a third study in which 1 mg N/OFQ for 10 days was given intravesically once a day for 10 days\(^{33}\) demonstrated a large increase in mean bladder capacity and volume threshold for the appearance of detrusor hyperreflexia only in patients assigned to the N/OFQ group. Interestingly, recent findings demonstrated that NOP receptor expression in nerve fibres within the bladder suburothelium is increased by several fold in detrusor overactivity patient specimens.\(^{34}\) Thus these findings strongly support the use of NOP receptor agonists as a therapeutic approach for controlling detrusor overactivity incontinence.

With the aim of increasing N/OFQ potency and duration of action different chemical modifications were combined in the same molecule generating Rec 0438.\(^{6}\) Rodent studies reviewed in\(^{35}\) demonstrated that Rec 0438 behaves as potent and selective NOP agonist and is able to mimic in vivo N/OFQ actions producing longer lasting effects. This has been confirmed in a series of experiments performed in Recordati laboratories (P Angelico, personal communication) in rats where Rec 0438 produced a dose dependent and SB-612111 sensitive increase of the volume of saline infused into the bladder necessary to induce detrusor contraction followed by micturition. A Phase I clinical study with Rec 0438 was recently completed in normal subjects as well as in patients with an overactive bladder, demonstrating that intravesical infusion of Rec 0438 is well tolerated and there is no leakage to the systemic circulation. A Phase II study is now ongoing; if the
encouraging results obtained with N/OFQ are confirmed with Rec 0438 a novel possibly well tolerated and highly effective option will be soon available for treating these patients.

iii) Respiratory system and cough - N/OFQ has a potential role to play in the aetiopathogenesis of asthma where its immunomodulatory and bronchodilatory actions in an animal model of asthma offer advantages over beta-adrenergic agonist and steroid combinations. The animal data perfectly match observational studies in ex vivo human tissue and tissues samples. Use of nebulized N/OFQ is an interesting possible indication. N/OFQ demonstrated antitussive effects in experimental cough models in Guinea pigs and cats via selective stimulation of the NOP receptor. With the aim of identifying a drug like molecule for this indication, Schering-Plough researchers developed a large series of non-peptide NOP agonists and SCH 486757 was selected for further development. After oral administration, SCH 486757 dose-dependently suppressed cough in guinea pigs and cats. SCH 486757 was also evaluated in patients with subacute cough in comparison with placebo and codeine. However, there were no significant changes in average cough severity scores from baseline to treatment either between SCH 486757 and placebo or between codeine and placebo. There were some hints of possible limited antitussive efficacy with SCH 486757 but the dose used was limited by its tendency to produce somnolence. Development of NOP receptor agonists as antitussive agents can only advance after finding molecules with a therapeutic window larger than SCH 486757. It is worthy of mention at this regard that are now several non-peptide NOP agonists (such as MCOPPB and AT-403) available that are more potent and much more selective than SCH 486757 (see for a direct comparison of the basic pharmacological profile of these molecules).

iv) Antidepressant actions - In the mouse forced swimming test, NOP receptor antagonists produced antidepressant like effects. This initial finding was later confirmed using different antagonists, animal species, and behavioral assays. Converging evidence has been obtained in genetic studies since NOP(-/-) mice and rats displayed an antidepressant like phenotype. More recent studies investigating lipopolysaccharide induced depression and learned helplessness in mice confirmed previous findings and further corroborated the antidepressant like activity of NOP antagonists. Researchers at Eli Lilly discovered the potent and selective NOP receptor antagonist LY2940094 that displayed antidepressant-like behavioral effects in the forced-swimming test in mice, an effect absent in NOP(-/-) animals. This compound was used in a proof of concept, double-blind, placebo-controlled trial that evaluated its therapeutic potential as a novel oral medication for the treatment of patients with major depressive disorder. Once daily oral dosing of
LY2940094 at 40 mg for 8 weeks vs placebo provided evidence for an antidepressant effect based on the change from baseline to week 8 in the GRID-Hamilton Depression Rating Scale-17 item total score. LY2940094 was safe and well tolerated 50. Preclinical findings were confirmed by this first human data providing evidence that blockade of NOP receptor signaling represents a promising strategy for the treatment of depression.

NOP receptor ligands and pain

As far as pain transmission is concerned the effects of N/OFQ and NOP selective agonists are complex depending on multiple factors including: i) dose, at very low doses (pmol range) intrathecal N/OFQ facilitates pain transmission in the spinal cord while at higher doses (nmol range) robust antinociceptive effects have been consistently reported; ii) site of action, in rodents N/OFQ elicits antinociceptive effects both after local and spinal injection while intracerebroventricular N/OFQ promotes a pronociceptive action and is able to counteract the analgesic effect of opioid drugs such as morphine; iii) animal species, as mentioned before at supraspinal level N/OFQ has a pronociceptive action in mice and rats, however recent evidence 51 demonstrated that in non-human primates an antinociceptive effect is measured in response to supraspinal N/OFQ; iv) pain modality, non-peptide NOP agonists (e.g. Ro 65-6570) given systemically do not affect nociceptive pain while they display antinociceptive effects in models of inflammatory and neuropathic pain (for related references see 52 4, 53). This complex picture clearly made the development of selective NOP agonists as analgesics difficult. However, consistent results have been reported in the literature regarding the analgesic potential associated to the simultaneous activation of NOP and opioid (particulary mu) receptors. In rodents spinal N/OFQ increased systemic and spinal morphine analgesia 54, 55. Moreover, isobolographic analysis demonstrates a supraadditive interaction between NOP and mu activation at the spinal level in the rat chronic constriction injury model 55 and subthreshold doses of morphine and Ro 64-6198 elicited robust analgesic effects in the mouse hot plate test when given together 56. These rodent findings were confirmed and corroborated by studies performed in non-human primates where spinal N/OFQ 57 or Rec 0438 58 strongly potentiated morphine analgesia and systemic NOP and opioid receptor agonists produced supradditive analgesic effects 59. Collectively this evidence strongly suggests that mixed NOP/opioid receptor agonists may have therapeutic potential as novel analgesics. Some compounds with the above pharmacological profile have been reported in the literature including the peptides [Dmt1]N/OFQ(1-13)-NH2 60 and its tetrameric derivative PWT-[Dmt1]N/OFQ(1-13) 61, DeNo (a dermorphin-N/OFQ chimeric peptide) 62 and some non-peptide compounds SR16435,
SR16507, and SR14150 (reviewed in 4) that display variable potency and efficacy at NOP and mu receptors. Moreover, BU08028 is a buprenorphine derivative that displayed high affinity for NOP and opioid receptors 63. After spinal administration in mice BU08028 was more potent than morphine in attenuating nerve injury-induced tactile allodynia and inflammation-induced thermal hyperalgesia; antagonist experiments demonstrated the involvement of NOP and opioid receptors in the action of BU08028 64. BU08028 has also been evaluated in non-human primates where after systemic administration it produced a dose dependent and long-lasting antinociceptive and antiallodynic effects. These effects were blocked by both mu and NOP receptor antagonists. Importantly, BU08028 at antinociceptive doses did not cause respiratory depression and did not promote physical dependence 65. Collectively these findings provide a strong rationale for mixed NOP/opioid receptor agonists as analgesic drugs.

Cebranopadol preclinical studies

In order to identify and optimize novel compounds acting as mixed NOP/opioid selective agonists a large series of structure activity studies were performed by Grunenthal researchers 66, 67. These efforts led to the identification of cebranopadol (trans-6′-fluoro-4′-9′-dihydro-N,N-dimethyl-4-phenyl-spiro[ciclohexane-1,1′ (3′H)-pyrano[3,4-b]indol]-4-amine, see chemical structure in Figure 1). An alternative, robust and easy method for the synthesis of cebranopadol has also been recently reported in literature 68.

In receptor binding studies cebranopadol displayed high affinity for NOP (0.9 nM) and opioid (0.7, 2.6, and 18 nM for mu, kappa and delta, respectively) receptors. In agonist stimulated [35S]GTPγS binding experiments cebranopadol displayed high potency and efficacy at NOP and mu receptor while it showed reduced potency at the delta and reduced potency and efficacy at the kappa receptors 69. This basic pharmacological profile has been confirmed in an independent study performed measuring calcium mobilization in cells co-expressing NOP or classical opioid receptors and chimeric G proteins 70. The same study also evaluated the ability of cebranopadol to promote NOP and mu receptor interaction with G protein and β-arrestin2. This study demonstrated that cebranopadol behaves as a biased agonist toward G protein; the degree of the bias was modest for the mu receptor while very large for the NOP receptor 70. G protein biased agonism (see box 1) is clearly an advantageous feature for a mu receptor ligand; in studies performed in β-arrestin2 knockout mice the analgesic properties of morphine are strongly associated with G protein
dependent signaling while tolerance liability, respiratory depression and constipation are more dependent on β-arrestin2. This suggests that mu receptor agonists biased toward G protein may be developed as safer analgesics. Preclinical and clinical findings recently obtained with the G protein biased agonist oliceridine (alias TRV130) seem to confirm this proposal. In contrast, the possible biological implications of the large G protein bias displayed by cebranopadol at NOP receptors is at present unknown. Indeed, functional selectivity studies in the NOP receptor field are still in their infancy; thus further investigations e.g. evaluation of the actions of N/OFQ and NOP selective ligands in mice knockout for β-arrestin2 and discovery and testing of NOP ligands with large bias toward G protein and toward β-arrestin2 are needed to understand the possible role of functional selectivity in the development of NOP agonists as analgesics.

The pharmacokinetic parameters of cebranopadol in rats have been investigated in detail (see table 3 in 69). Cebranopadol was extensively distributed with a half-life of 4.5 h; its oral bioavailability was of 13–23%. Cebranopadol displayed dose-dependent and potent antinociceptive effects both when given per os and intravenously in models of nociceptive, inflammatory and neuropathic pain in mice and rats. Compared to morphine, cebranopadol was more than 100 fold more potent and produced longer lasting effects. These results were confirmed in other laboratories and extended to chemotherapy-induced neuropathic pain, Freund's adjuvant induced arthritic pain, and to painful conditions of the trigeminal territory. Importantly the antinociceptive action of cebranopadol are due to the simultaneous activation of NOP and opioid receptors as consistently demonstrated in antagonist studies. Both naloxone and NOP selective antagonists (J-113397, or SB-612111) were able to counteract the effects of cebranopadol.

Interestingly, when compared to morphine, that displayed similar potency in various assays, cebranopadol was more potent in models of chronic neuropathic than acute nociceptive pain. This has been confirmed by Rizzi et al where fentanyl displayed similar potency in the tail withdrawal and formalin test, the NOP selective agonist Ro 65-6570 was active in the latter but not the former assay, and cebranopadol was active in both the assays but was approximately 10 fold more potent in the formalin test. Collectively these findings are in line with previous results briefly discussed in the introduction suggesting that NOP receptor agonists are much more efficacious in models of inflammatory and neuropathic pain than nociceptive pain (also reviewed in 53). This may be explained, at least in part, by an upregulation of NOP receptors in dorsal root ganglia and nerve fibres which has been reported during neuropathic and inflammatory conditions.
A separate study investigated the site of action of cebranopadol; experiments performed in different models of chronic neuropathic pain demonstrated that cebranopadol exerts potent and efficacious antihyperalgesic, antiallodynic, and antinociceptive effects after local/peripheral, spinal, and supraspinal administration.

These initial studies demonstrated that cebranopadol not only promoted highly potent and efficacious analgesic effects in various pain models but also displayed a favorable side effect profile. Cebranopadol did not modify animal performance in the rotarod test, even at doses several fold higher than its maximal analgesic dose while a small but consistent reduction of animal performance on the rod was already measurable at maximal analgesic doses of morphine. Disruption of motor behavior is a typical feature of selective NOP agonists at full doses and for this reason the dose response curve to Ro 65-6570 in the formalin assay could not be completed. Thus in terms of ratio between disruption of motor activity and analgesic doses, cebranopadol is not only superior to NOP selective agonists but also to classical opioid drugs. Another dose limiting and potentially life-threatening acute side effect of opioids is respiratory depression. This has been investigated in detail in a recent study in which antinociceptive and respiratory depressant effects of cebranopadol and fentanyl were compared in rats. At maximally effective analgesic doses, cebranopadol did not produce significant effects on arterial carbon dioxide tension while the ratio of fentanyl potencies for increasing carbon dioxide tension and for analgesic effects were less than 3. Importantly, the NOP antagonist J-113397 potentiated the respiratory depressant effects of cebranopadol that were, as expected, fully sensitive to naloxone. These findings suggest that NOP activation by cebranopadol counteracts mu receptor dependent respiratory depression making the therapeutic index (in terms of analgesia vs respiratory depression) larger for cebranopadol than for the mu selective agonist fentanyl.

Among the issues associated with the use of opioid drugs in chronic pain, analgesic tolerance and the development of physical dependence are perhaps the most important. As far as tolerance is concerned, it is worthy of note that 26 days were needed to obtain complete tolerance to the analgesic action of cebranopadol while under the same experimental conditions an equieffective dose of morphine became completely inactive after only 11 days of treatment. The reasons underlying the reduced tolerance liability of cebranopadol are far from obvious. It can be speculated that, since tolerance is a function of the amount of receptor stimulation and since the analgesic action of cebranopadol derives from the activation of two different receptors (NOP and the mu), is somewhat expected that tolerance liability of cebranopadol is lower than that of morphine whose
analgesic effects solely depends on mu receptor activation. However it should be borne in mind that NOP receptor signaling may play a role in controlling the development and/or expression of tolerance to the analgesic action of opioid drugs and at this regard conflicting results have been reported in the literature. A single study reported beneficial effects of NOP receptor stimulation on morphine tolerance89 while several studies reported beneficial effects of NOP receptor blockade13, 90-93. Clearly further studies are needed to understand the mechanism(s) responsible for the reduced tolerance liability of the analgesic action of cebranopadol. As far as physical dependence is concerned, this aspect has been specifically evaluated in a recent study94. In a naloxone-precipitated withdrawal assay, mice treated with morphine within the analgesic dose range displayed clear withdrawal symptoms while animals treated with cebranopadol (even exceeding the analgesic dose range) showed very little withdrawal symptoms. Similar results were obtained in rats both investigating spontaneous and naloxone-precipitated withdrawal94. These results suggest a lower potential of cebranopadol to produce physical dependence in rodents than morphine and the authors of the study speculated that this may derive from the ability of cebranopadol to stimulate the NOP receptor. This is certainly an attractive hypothesis that should be validated experimentally by testing cebranopadol in similar experiments in the absence and presence of selective NOP receptor antagonists and/or in wild type and NOP(-/-) mice or rats.

Finally, very recent studies95, 96 demonstrated that cebranopadol is worthy of development as treatment for drug addiction. Cebranopadol prevented cocaine self-administration, escalation of intake and reinstatement in rats. Importantly this action of cebranopadol derives from its ability to simultaneously activate NOP and mu receptors being prevented only by the coadministration of SB-612111 (NOP antagonist) and naltrexone (opioid antagonist).

Cebranopadol clinical studies

As previously discussed in an editorial in this journal97, cebranopadol is now in clinical development for analgesic indications. According to a clinicaltrial.org search performed at the end of 2017, 9 studies on cebranopadol have been completed in patients suffering from different painful conditions including diabetic polyneuropathy (3), bunionectomy, chronic low back pain, osteoarthritis of the knee (2), and cancer (2); some of these are outlined in Table 3. The following section summarizes the published information relative to these trials.
The basic pharmacokinetic properties of cebranopadol were assessed in phase I and phase II clinical trials. After oral administration, cebranopadol displayed a late time to reach maximum plasma concentration (4-6 h), a long half-life (14-15 h), and a terminal phase half-life in the range of 62-96 h. After multiple once-daily dosing in patients, an operational half-life of 24 h was calculated. In summary, cebranopadol displayed basic pharmacokinetic features compatible with a once-daily regimen that is a convenient treatment option for patients with chronic pain, this is an advantage over the commonly used analgesics in this patient population.

A phase 1 clinical trial was performed aimed at the quantification of cebranopadol respiratory effects in healthy subjects. 0.6 mg of cebranopadol per os induced typical opioid-like effects including miosis, analgesia, and respiratory depression. However, compared to its analgesic effects the respiratory depression induced by cebranopadol was moderate and short lasting. This is in line with preclinical studies that demonstrated in receptor antagonist experiments a protective role of NOP receptor stimulation on mu receptor induced respiratory depression. Thus these findings suggest that compared to classical opioid drugs cebranopadol has lower propensity to depress respiratory function.

Christoph et al conducted the first phase II, randomized, double-blind, placebo- and active-controlled trial, evaluating the analgesic efficacy, safety, and tolerability of cebranopadol in patients with low back pain. This is a common pain phenotype with both nociceptive and neuropathic components fitting well with the pre-clinical profile described above. Patients were treated for 14 weeks with cebranopadol (0.2, 0.4, or 0.6 mg) once daily, tapentadol (200 mg) twice daily, or placebo. Cebranopadol and tapentadol demonstrated analgesic efficacy, with statistically significant and clinically relevant improvements over placebo. Beneficial effects of cebranopadol were also reported regarding physical functioning and sleep disturbance. Cebranopadol treatment was safe, with higher doses leading to higher treatment discontinuations mostly during the 2 week titration phase. The incidence rate of most frequently reported adverse events (constipation, dizziness, fatigue, hyperhidrosis, nausea, vomiting, and somnolence) during maintenance phase was ≤10%. Interestingly and in line with preclinical findings, discontinuation of cebranopadol after 14 weeks of treatment was not followed by clear withdrawal symptoms and only few cases of mild to moderate withdrawal symptoms were reported. Therefore, slow tapering off of the cebranopadol treatment seems not required. This study demonstrated that cebranopadol is a new drug candidate for the treatment of patients with low back pain. Moreover, further studies aimed at optimizing the
titration scheme to find the optimal dose for each patient may probably contribute to increase cebranopadol tolerability.

From the clinical trials register it is possible to extract some highlight data in (i) diabetic neuropathy and (ii) cancer pain. In patients with diabetic neuropathy 0.6 mg of cebranopadol produced significant analgesia when compared to placebo. In cancer pain 0.2-1 mg of cebranopadol (by patient titration) produced significant analgesia (CORAL trial). This study was extended to 26 week safety (CORAL XT); side effect profile of a typical opioid was reported.

Conclusions

Current opioid based analgesic options are effectively limited to activation of mu receptors with drugs such as morphine, fentanyl or with pharmacokinetic advantage; remifentanil. Despite their utility there are a wide range of side effects including respiratory depression and the induction of tolerance. Tolerance can lead to a vicious circle of dose escalation and increasing side effects. In the ~20 year period since formal identification of N/OFQ as the endogenous ligand for the NOP receptor and a role in pain processing, data confirming interaction with mu are emerging. Indeed, activation of NOP and mu receptors produces analgesia at the expense of reduced side effects. This evidence coming from animal experiments has been confirmed in the first generation clinical studies with cebranopadol. Clearly further clinical investigation is needed to firmly establish the place in therapy of mixed NOP/opioid agonists as innovative analgesics. It is however worthy of mention that in just two decades the research work in the field of N/OFQ-NOP receptor system has been translated into significant clinical development, with cebranopadol, and important indications in particularly challenging pains like those of neuropathic origin.

References

18 Homberg JR, Mul JD, de Wit E, Cuppen E. Complete knockout of the nociceptin/orphanin FQ receptor in the rat does not induce compensatory changes in mu, delta and kappa opioid receptors. *Neuroscience* 2009; 163: 308-15

24 Arcuri L, Mercatelli D, Morari M. Parkinson's disease: no NOP, new hope. Oncotarget 2017; 8: 8995-6

25 Gavioli EC, Calo G. Nociceptin/orphanin FQ receptor antagonists as innovative antidepressant drugs. Pharmacol Ther 2013; 140: 10-25

44 Woodcock A, McLeod RL, Sadeh J, Smith JA. The efficacy of a NOP1 agonist (SCH486757) in subacute cough. Lung 2010; 188 Suppl 1: S47-52

45 Redrobe JP, Calo G, Regoli D, Quirion R. Nociceptin receptor antagonists display antidepressant-like properties in the mouse forced swimming test. Naunyn Schmiedebergs Arch Pharmacol 2002; 365: 164-7

52 Zeilhofer HU, Calo G. Nociceptin/orphanin FQ and its receptor--potential targets for pain therapy? J Pharmacol Exp Ther 2003; 306: 423-9

56 Reiss D, Wichmann J, Tekeshima H, Kieffer BL, Ouagazzal AM. Effects of nociceptin/orphanin FQ receptor (NOP) agonist, Ro64-6198, on reactivity to acute pain in mice: comparison to morphine. European journal of pharmacology 2008; 579: 141-8

59 Cremeans CM, Gruley E, Kyle DJ, Ko MC. Roles of mu-opioid receptors and nociceptin/orphanin FQ peptide receptors in buprenorphine-induced physiological responses in primates. *J Pharmacol Exp Ther* 2012; **343**: 72-81

64 Sukhtankar DD, Zaveri NT, Husbands SM, Ko MC. Effects of spinally administered bifunctional nociceptin/orphanin FQ peptide receptor/mu-opioid receptor ligands in mouse models of neuropathic and inflammatory pain. *J Pharmacol Exp Ther* 2013; **346**: 11-22

74 Siuda ER, Carr R, 3rd, Rominger DH, Violin JD. Biased mu-opioid receptor ligands: a promising new generation of pain therapeutics. *Current opinion in pharmacology* 2017; **32**: 77-84

75 DeWire SM, Yamashita DS, Rominger DH, et al. A G protein-biased ligand at the mu-opioid receptor is potently analgesic with reduced gastrointestinal and respiratory dysfunction compared with morphine. *J Pharmacol Exp Ther* 2013; **344**: 708-17

82 Salat K, Furgala A, Salat R. Evaluation of cebranopadol, a dually acting nociceptin/orphanin FQ and opioid receptor agonist in mouse models of acute, tonic, and chemotherapy-induced neuropathic pain. *Inflammopharmacology* 2017

85 Chen Y, Sommer C. Nociceptin and its receptor in rat dorsal root ganglion neurons in neuropathic and inflammatory pain models: implications on pain processing. *Journal of the peripheral nervous system : JPNS* 2006; **11**: 232-40

86 Briscini L, Corradini L, Ongini E, Bertorelli R. Up-regulation of ORL-1 receptors in spinal tissue of allodynic rats after sciatic nerve injury. *European journal of pharmacology* 2002; **447**: 59-65

87 Tzschentke TM, Linz K, Frosch S, Christoph T. Antihyperalgesic, Antiallodynic, and Antinociceptive Effects of Cebranopadol, a Novel Potent Nociceptin/Orphanin FQ and Opioid Receptor Agonist, after Peripheral and Central Administration in Rodent Models of Neuropathic Pain. *Pain practice : the official journal of World Institute of Pain* 2017; **17**: 1032-41

88 Linz K, Schroder W, Frosch S, Christoph T. Opioid-type Respiratory Depressant Side Effects of Cebranopadol in Rats Are Limited by Its Nociceptin/Orphanin FQ Peptide Receptor Agonist Activity. *Anesthesiology* 2017; **126**: 708-15

89 Lutfy K, Hossain SM, Khaliq I, Maidment NT. Orphanin FQ/nociceptin attenuates the development of morphine tolerance in rats. *British journal of pharmacology* 2001; **134**: 529-34

91 Chung S, Pohl S, Zeng J, Civelli O, Reinscheid RK. Endogenous orphanin FQ/nociceptin is involved in the development of morphine tolerance. *J Pharmacol Exp Ther* 2006; **318**: 262-7

93 Ueda H, Yamaguchi T, Tokuyama S, Inoue M, Nishi M, Takeshima H. Partial loss of tolerance liability to morphine analgesia in mice lacking the nociceptin receptor gene. *Neuroscience letters* 1997; **237**: 136-8
94 Tzschtentke TM, Kogel BY, Frosch S, Linz K. Limited potential of cebranopadol to produce opioid-type physical dependence in rodents. *Addiction biology* 2017

95 Shen Q, Deng Y, Ciccocioppo R, Cannella N. Cebranopadol, a Mixed Opioid Agonist, Reduces Cocaine Self-administration through Nociceptin Opioid and Mu Opioid Receptors. *Frontiers in psychiatry* 2017; 8: 234

103 Murphy NP, Lee Y, Mairment NT. Orphanin FQ/nociceptin blocks acquisition of morphine place preference. *Brain research* 1999; 832: 168-70

Table 1. NOP receptor ligands

<table>
<thead>
<tr>
<th>compound name</th>
<th>chemical nature</th>
<th>pharmacological activity</th>
<th>references</th>
</tr>
</thead>
<tbody>
<tr>
<td>N/OFQ</td>
<td>peptide</td>
<td>endogenous agonist</td>
<td>1, 2</td>
</tr>
<tr>
<td>Rec 0438</td>
<td>peptide</td>
<td>full agonist</td>
<td>6</td>
</tr>
<tr>
<td>Ro 65-6570</td>
<td>non peptide</td>
<td>full agonist</td>
<td>8</td>
</tr>
<tr>
<td>Ro 64-6198</td>
<td>non peptide</td>
<td>full agonist</td>
<td>9</td>
</tr>
<tr>
<td>MCOPPB</td>
<td>non peptide</td>
<td>full agonist</td>
<td>10</td>
</tr>
<tr>
<td>AT-403</td>
<td>non peptide</td>
<td>full agonist</td>
<td>11</td>
</tr>
<tr>
<td>SER 100</td>
<td>peptide</td>
<td>partial agonist</td>
<td>5</td>
</tr>
<tr>
<td>UFP-101</td>
<td>peptide</td>
<td>antagonist</td>
<td>7</td>
</tr>
<tr>
<td>J-113397</td>
<td>non peptide</td>
<td>antagonist</td>
<td>12</td>
</tr>
<tr>
<td>SB-612111</td>
<td>non peptide</td>
<td>antagonist</td>
<td>13</td>
</tr>
<tr>
<td>C-24</td>
<td>non peptide</td>
<td>antagonist</td>
<td>14</td>
</tr>
<tr>
<td>LY2940094</td>
<td>non peptide</td>
<td>antagonist</td>
<td>48</td>
</tr>
<tr>
<td>Therapeutic indication</td>
<td>NOP ligand</td>
<td>Pivotal study/review</td>
<td>Clinical evidence</td>
</tr>
<tr>
<td>------------------------</td>
<td>-------------------------</td>
<td>----------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>anxiety</td>
<td>agonists</td>
<td>101</td>
<td>no</td>
</tr>
<tr>
<td>drug abuse</td>
<td>agonists</td>
<td>102 103</td>
<td>no</td>
</tr>
<tr>
<td>cough</td>
<td>agonists</td>
<td>104</td>
<td>yes 104</td>
</tr>
<tr>
<td>overactive bladder</td>
<td>agonists</td>
<td>30</td>
<td>yes 31-33</td>
</tr>
<tr>
<td>hypertension</td>
<td>partial agonists</td>
<td>28</td>
<td>yes 29</td>
</tr>
<tr>
<td>depression</td>
<td>antagonists</td>
<td>25, 45</td>
<td>yes 29</td>
</tr>
<tr>
<td>Parkinson disease</td>
<td>antagonists</td>
<td>105</td>
<td>no</td>
</tr>
<tr>
<td>memory deficits</td>
<td>antagonists</td>
<td>106</td>
<td>no</td>
</tr>
<tr>
<td>pain</td>
<td>mixed NOP/opioid agonists</td>
<td>69</td>
<td>yes 100</td>
</tr>
</tbody>
</table>
Table 3: Significant clinical trial information.

<table>
<thead>
<tr>
<th>Trial</th>
<th>Started/CTR entry</th>
<th>Pain type</th>
<th>#Patients</th>
<th>Primary End Point</th>
<th>Secondary End Point</th>
</tr>
</thead>
<tbody>
<tr>
<td>KF6005/08</td>
<td>27/9/13;27/4/16</td>
<td>Neuropathic-Diabetes</td>
<td>314</td>
<td>Pain Int vs Placebo Cebranopadol 600ug<sup>1</sup></td>
<td>None</td>
</tr>
<tr>
<td>KF6005/07</td>
<td>29/10/13;30/9/16</td>
<td>Cancer</td>
<td>200</td>
<td>Morphine rescue Cebranopadol 200-1000ug by patient titration<sup>3</sup></td>
<td>#Patients with relevant pain reduction Similar # to Morphine group (no stats)</td>
</tr>
<tr>
<td>KF6005/09</td>
<td>18/12/13;29/1/17</td>
<td>Cancer – 26w safety patients completed</td>
<td>76</td>
<td>Incidence TEAE 64/76 (no stats)</td>
<td>(i) Intensity TEAE 42%-serious,83%-non serious<sup>2</sup></td>
</tr>
<tr>
<td>KF6005/06</td>
<td>30/11/12;25/2/16</td>
<td>Chronic low back</td>
<td>637</td>
<td>(i) Change baseline pain NRS Cebranopadol 200/400/600ug Vs Placebo<sup>6</sup> ALL SIGNIFICANT</td>
<td>(ii) Change baseline pain NRS 0.8 (Ox no pain, no stats)</td>
</tr>
</tbody>
</table>

¹ Diabetes trial – opioid typical AE. Cebranopadol 600/Placebo group 6.5/3.2 and 84/69% incidence serious and non-serious AE.
² Cancer trial – tumour progression and opioid typical AE. Cebranopadol/Morph group 21.5/18.0 and 80/79% incidence serious and non-serious AE.
³ Cancer trial – death, tumour progression and opioid typical AE.
⁴ Back pain trial – opioid typical AE. Cebranopadol 600/Placebo group 1.6/1.6 and 90/63.5% incidence serious and non-serious AE.
Figure 1, chemical structure of cebranopadol.
Box-1: Functional selectivity or biased agonism

Receptor selectivity is particularly important in drug design and as a concept simply describes the propensity of a ligand to bind exclusively to the desired target; a ligand with 100 fold selectivity will produce off target effects at 100x the dose required for its therapeutic indication. In other words receptor selectivity indicates the ability of a synthetic ligand to discriminate some of the biological actions of a receptor family based on the receptor type involved. In the past more effective and/or better tolerated drugs have been generated by identifying highly selective receptor ligands i.e. β_1 selective antagonists, β_2 selective agonists, H_2 selective antagonists, and so on. Recent findings indicated that receptors may signal via activation of different effectors, i.e. G proteins and arrestins, and that synthetic agonists for a given receptor may display different ability to stimulate one effector pathway (e.g. G protein) vs the other (e.g. arrestin). Functional selectivity also known as biased agonism describes the propensity of an agonist to promote signaling via selective activation of one signaling pathway. Thus in the future more effective and/or better tolerated drugs can be generated not only based on the receptor type involved (receptor selectivity) but also by selecting only some specific pathways among those associated to the activation of that specific receptor type (functional selectivity). To give a practical example, as mentioned in the text, there is a large and elegant set of experimental evidence to indicate that the analgesic response to opioids depends on mu receptor / G protein signaling while some important side effects of these drugs (respiratory depression, constipation, tolerance) mainly depend on mu receptor / arrestin signaling (see the following scheme). Thus mu receptor agonists biased toward G protein might maintain the analgesic effects of opioids but display reduced respiratory depression, constipation and tolerance liability therefore acting as safer analgesics.