On the impact of anti-discrimination legislation

Stephen Pudney
Public Sector Economics Research Centre,
Department of Economics,
University of Leicester

February 1998, revised December 1998

Abstract
This paper presents a partial equilibrium model of ethnic or gender pay differentials, in the presence of anti-discrimination policy. Policy consists of legislation allowing workers to take legal action against the discriminating employer. It is shown that legislation on fair recruitment has an unambiguous effect in reducing pay differentials, whereas legislation against unequal pay and unfair dismissal has an ambiguous effect and may in some circumstances even produce the perverse consequence of widening pay differentials in some cases.

KEYWORDS: racial discrimination, sex discrimination, anti-discrimination policy, pay

JEL CLASSIFICATION: J7

1. Introduction
There is an enormous applied literature attempting to measure the impact of race and sex discrimination in the labour market (see Cain (1986) for a survey), and also well-known theoretical work on the sources of discrimination (Becker (1971), Cain (1986)). A considerable body of research has also examined the impact of
anti-discrimination legislation introduced from the 1960s onwards in many countries. Most authors have concluded that the introduction of anti-discrimination legislation caused a permanent reduction in pay differentials between males and females and between majority and minority ethnic groups (see Freeman (1973), Card and Krueger (1989) for the USA and Zabalza and Tzannatos (1985) for the UK). There has been some dispute about the size of the policy effect, since other factors such as welfare reform, income policy and changes in industrial structure also occurred around the same time (Butler and Heckman (1977), Borooah and Lee (1985), Chipkin, Curran and Parsley (1980)), but the consensus view is that legislation was effective.

However, although the empirical literature indicates that legislation may have raised the female/male and black/white pay ratios by as much as 10 percentage points, it also demonstrates that substantial differentials remain, even after accounting for differences in relative endowments of education and skills, and that there has not been the steady reduction in differentials that we might expect from effective anti-discrimination policy. The reason for this may lie in the nature of the legislation. In the USA, explicit sex discrimination in pay was made illegal by the 1963 Equal Pay Act, and more broadly defined discrimination on grounds of sex, race, colour, religion or national origin was made illegal in pay, promotion, hiring and firing by the 1964 Civil Rights Act. In Britain, policy developed in a similar way. The 1970 Equal Pay Act (not implemented until 1975) made forms of sex discrimination in collective pay bargains illegal. This was followed by the 1975 Sex Discrimination Act and 1976 Race Relations Act, with a broad scope very similar to the American Civil Rights Act. The British Equal Opportunities Commission and Commission for Racial Equality, and the system of Employment Tribunals, perform an enforcement function similar to that of the Equal Employment Opportunity Commission in the USA. Interestingly, in view of the arguments we present below, some of the clearest evidence (Leonard 1984, 1989) of the effectiveness of anti-discrimination policy relates to the employment effects during the 1970s of affirmative action implemented by US executive orders, which put pressure on government contractors to meet targets for the employment of disadvantaged groups (see Leonard (1985) for an interesting analysis of the behaviour of the US government body charged with policing these orders – the Office of Federal Contract Compliance Programs).

1 Employment Tribunals were known as Industrial Tribunals prior to August 1998; see Bourne and Whitley (1996) for an account of British law and its similarities with American legislation.
There are clearly two phases of policy here. The first, and simpler, phase dealt with openly discriminatory practices that could be ended by means of a simple court or tribunal order (or by the threat of such an order). The bulk of these clear-cut examples of discrimination were almost certainly ended within a short time of the legislation being enacted, and they account for the sharp permanent reduction of pay differentials that we observe in time-series data at that time. After this first phase, most remaining discriminatory practices are indirect or disguised in some way, and come within the scope of the broader definitions of discrimination used by the later legislation (and which hinge on ill-defined concepts like comparable worth). In this phase of policy, disputes relate mostly to discriminatory treatment which may be received by individual employees, within an ostensibly non-discriminatory system of management practices adopted by their employers. Thus judgments tend to deal more with arguable individual cases than with explicit contractual terms affecting large numbers of workers, and, when successful, they are more likely to involve individual redress and compensation than the simple banning of discriminatory practices. From the employer's point of view, anti-discrimination policy has therefore become more an issue of an additional (and uncertain) potential cost, than a direct constraint on possible employment practice.

In general, attempts to analyse the effects of anti-discrimination policy have not been backed by any theoretical analysis of the way that different forms of anti-discrimination legislation might affect the behaviour of employers. Our aim in this paper is to give an analysis of these effects. We interpret policy in the second-phase sense described above, so that the primary consequences to the employer of successful anti-discrimination action are viewed as additional costs linked to the individual complainant, rather than direct intervention in general employment practice. These costs can be substantial. The rate of application to Industrial Tribunals (and the corresponding success rate) under the UK legislation have been rather lower than in the USA, and the potential penalties for employers were also relatively low up to 1995, when the limit on compensation amounts (previously $11,000) was removed. Even so, in a 1992 survey of cases (Department of Employment, 1994), the median total cost to an employer of a tribunal case (including time, fees and compensation) amounted to $1500 and $2300 for sex and race discrimination cases respectively, compared to only $49 as the median cost to an employee. These figures considerably underestimate the true costs, since they exclude the costs of preliminary internal grievance procedures, the cost of
cases that do not reach tribunal, and intangible costs associated with adverse publicity and loss of reputation. Moreover, potential costs to employers are rising over time, as tribunals make increasing use of high compensation orders.

For analytical purposes, we need to identify three separate channels of policy. One is equal pay policy, which aims to penalise any arrangement involving different rates of pay for work of "comparable worth" supplied by members of different gender/racial groups. The second and third are fair recruitment policy and fair dismissal policy, which penalise any attempt to favour particular groups in hiring and firing respectively. In practice, these three strands of policy may be implemented simultaneously within a single piece of legislation, but in terms of their economic effects they are potentially quite different.

2. A simple model

Our model is almost the simplest possible. There is a single firm, operating as a monopsonist in the labour market, and seeking to maximise profits. All workers are assumed identical except for their race or gender characteristics and purely random productivity variations. In terms of the demographic characteristics, workers fall into two groups: the "advantaged" and "disadvantaged". The model deals with partial equilibrium, in the sense that interactions with other firms and strategic behaviour are not considered. We are not especially concerned here with the sources of discrimination between the two groups, and a range of different models is available in the literature for rationalising discriminatory behaviour by employers (Cain, 1986). We allow for two possibilities, chosen mainly for their simplicity. Other approaches (such as Becker’s (1971) managerial utility model) will lead to more complex analysis but qualitatively similar results. Our conclusions will have force in any model where costs are a major element of employment and wage-setting decisions.

The first source of discriminatory behaviour in our model is a possible difference in labour supply elasticities between the two groups. The conventional

2 This is not an important restriction. If there are several classes of worker with different productivity characteristics, then each forms a separate labour market which can be analysed in the same way.

3 There is no obvious reason why our conclusion should be affected by strategic interactions between firms, and indeed Pudney and Shields (1999) establish closely related results in a different context, using a model with Cournot-Nash oligopolist firms.
theory of price discrimination then suggests that the group with the lower supply elasticity will tend to receive lower wage offers in the absence of fully effective anti-discrimination policy. A second source of discrimination is misperception of average levels of individual productivity in the two groups. We assume that members of each group in fact have identical levels of productivity on average, but that the management of the \(m \) may be prejudiced, in the sense that they believe that there is a systematic productivity differential between the two groups. Wage differences stemming from such perceptions would tend to be eliminated in the long run (Arrow, 1972) unless there are either significant adjustment costs or technological difficulties in identifying the productive contribution of individuals and thus refuting mistaken perceptions. These are both plausible reasons for the persistence of this type of prejudice.

The \(m \) is assumed to operate under the simplest possible fixed-coefficient technology. On average, each worker produces a fixed expected output \(q \) per period and requires a fixed set of complementary inputs costing an amount \(c \) per period. The employer is prejudiced in the sense that he believes the average levels of productivity are \(q \) and \(q^* \) for members of the advantaged and disadvantaged groups respectively, where \(q > q^* \). There may be between-individual wage variations reflecting variations in perceived individual productivity, but on average the wage rates offered by the \(m \) to the advantaged and disadvantaged groups are \(w \) and \(w^* \) respectively. Supplies of labour to the \(m \) are given by the functions \(s(w) \) and \(s^*(w^*) \). The coefficient of pay discrimination (Becker, 1971) is \(\beta = \frac{w}{w^*} - 1 \), and we also define a coefficient of employment discrimination as \(\alpha = \frac{1 - \beta}{\beta}; \frac{1}{2}; \) where \(l \) and \(l^* \) are the \(m \)'s levels of employment from the two groups and \(\frac{1}{2} \) is the size ratio of these two groups in the relevant part of the working population.

Thus, in the absence of anti-discrimination policy, the \(m \) believes that its optimal policy would be the following:

\[
\max_{l, l^*; w, w^*} \left[l[q - c - w] + l^*[q^* - c - w^*]\right]
\]

subject to \(l \leq s(w) \) and \(l^* \leq s^*(w^*) \). Provided \(q \) and \(q^* \) are both greater than \(c \), and the two labour supplies are strictly positive at suitably low values of \(w \) and \(w^* \), the optimum will involve mixed employment, with the labour supply constraints holding as strict equalities. The optimum can then be represented as the following maximisation problem:

\[
\max_{w, w^*} \left[s(w) [q - c - w] + s^*(w^*) [q^* - c - w^*]\right]
\]
The optimal wage levels then solve the following first-order conditions:

\[²(w) = \frac{w}{q \cdot c \cdot w} \]
\[²(\tilde{w}) = \frac{\tilde{w}}{q \cdot c \cdot \tilde{w}} \]

where \(² \) and \(²\tilde{w} \) are the supply elasticity functions.

In the presence of anti-discrimination policy, if a firm does choose to practise discrimination, then there will be some probability that action is taken or threatened under the anti-discrimination law. Whether it involves external legal action or is restricted to internal grievance processes, and whether successful or not, such action would be costly to the firm, so the expected level of this cost is an additional element in the firm's cost function. Equal pay policy is assumed to penalise deviations of \(\tilde{w} \) from 0, and fair recruitment and dismissal policies penalise deviations of \(\tilde{w} \) from 0. The firm is assumed to be risk-neutral, so these uncertain penalties enter the firm's expected profit objective as additional expected costs.

We are concerned here only with outcomes involving a potential case-specific cost (although the argument can be extended to cover the possibility that judgments may apply to more than one employee). We are not concerned with the small minority of cases where tribunals are able to identify and correct discrimination fully by decree. We now turn to the problem of modelling the discrimination costs introduced by legislation.

2.1. Equal pay policy

An equal-pay action against the firm proceeds in stages: first the worker must bring his or her grievance to the firm's attention; at this stage it may or may not be resolved. The next stage is a formal application to an industrial tribunal involving a mandatory conciliation phase; this involves a new set of legal costs for the firm. Finally, the case may or may not proceed to judgment; if successful, the judgment will impose further costs. We will work with a specification that does not depict this complex process in detail, but our specification is consistent with the complex sequential nature of the legal process, provided the probabilities of action and the cost consequences of those actions are dependent on the actual degree of pay discrimination, \(\tilde{w} \), practised by the firm. We write the expected cost of such action as an amount \(P(\tilde{w}) \) per worker. Since every employee from the
disadvantaged group has this associated cost, the addition to the \(\bar{m} \)'s expected total costs produced by equal pay legislation is:

\[
\text{Cost addition} = \bar{\ell} \left[\mu P \left(\cdot \right) \right] \tag{2.5}
\]

where \(\mu \in [0;1] \) is an artificial variable introduced to represent the severity of equal pay enforcement. The assumption here is that the impact of all stages of the grievance procedure are scaled up in proportion as enforcement severity rises from \(\mu = 0 \) (complete neglect, equivalent to an absence of legislation) to \(\mu = 1 \) (full enforcement). Note that the cost addition (2.5) is proportional to \(\bar{\ell} \) and thus equal pay policy penalises the disadvantaged group in the sense that it imposes a cost \(\mu P \left(\cdot \right) \) on the employment of an additional worker from the disadvantaged group, with no analogous cost for the advantaged group. The anti-discriminatory intention of the policy stems from the fact that \(P \left(\cdot \right) \) increases with the degree of pay discrimination. Note that, in practice, equal pay legislation treats the advantaged and disadvantaged groups symmetrically, so that cases may also be brought by members of the advantaged group. However, such cases are relatively rare, and to simplify the analysis (at no essential cost in terms of generality), we assume that there is a zero probability of actions being initiated by members of the advantaged group.

2.2. Fair recruitment policy

Assume that the \(\bar{m} \) has a random process of labour turnover, at a uniform expected rate of \(\ell \) separations per job per year. We postpone to section 3 consideration of the possibly more realistic case where discrimination has a distortionary effect on turnover rates. Every time a vacancy is filled by a member of the advantaged group, there is some probability that a protest or legal action will be lodged. We assume that the strength of such cases (and thus the costs of these actions) is related to the coefficient of employment discrimination, \(\bar{\ell} \), for the \(\bar{m} \)’s. Thus the total additional expected costs stemming from fair recruitment policy are:

\[
\text{Cost addition} = \text{expected no.of vacancies filled} \\
\times \text{proportion filled from advantaged group} \\
\times \text{expected cost of action per vacancy}
\]
where $C_r(¹)$ is the expected cost per relevant vacancy. If we define the function $R(¹) = \frac{C_r(¹)}{l+ l_¤}$ and introduce a factor \hat{A} representing the severity of enforcement, the resulting cost addition is:

$$\text{Cost addition} = l[\hat{A} R(¹)]$$ (2.6)

Fair recruitment policy differs from equal pay policy, since the additional cost element tends to penalise employment from the advantaged rather than disadvantaged group.

2.3. Fair dismissal policy

Assume that workers have to be dismissed randomly (on disciplinary or redundancy grounds, say) at a uniform average rate $\frac{1}{4}$, but that complaints for unfair dismissal on grounds of discrimination are only made by members of the disadvantaged group. Again, the strength of such complaints and the consequent cost is assumed to depend on the degree of apparent employment discrimination, $¹$, practised by the firm. Thus:

$$\text{Cost addition} = \frac{\text{expected no. of dismissals}}{\text{proportion of dismissals from disadvantaged group}} \cdot \frac{\text{expected cost of action per dismissal}}{l + l_¤} \cdot \frac{l_¤}{l+ l_¤} \cdot \frac{l}{1+ l_¤} \cdot \frac{1}{l+ l_¤} \cdot C_d(¹)$$

where $C_d(¹)$ is the expected cost per relevant dismissal. Now define the function $D(¹) = \frac{C_d(¹)}{l+ l_¤}$ and introduce a factor \hat{A} representing the severity of enforcement. The resulting cost addition is:

$$\text{Cost addition} = \frac{l_¤}{l+ l_¤} \cdot \frac{l}{1+ l_¤} \cdot \frac{1}{l+ l_¤} \cdot \hat{A} D(¹)$$ (2.7)

Like equal pay policy, fair dismissal policy imposes an additional marginal cost on employment from the disadvantaged group.
2.4. Optim al wage-setting under anti-discrimination policy

Putting these additional costs into the profit function, the (misperceived) level of expected profit for the individual firm is:

\[\Pi = s(w) [c_i \times w_i \times \bar{A} \times \bar{R}(1)] + s^d(w^a) [c_i \times w^a \times \mu \times \bar{P}(\cdot) \times \bar{A} \times \bar{D}(1)] \]

(2.8)

which is to be maximised with respect to \(w \) and \(w^a \), subject to the identities \(w = \frac{w^a}{1} \) and \(\bar{r} = \bar{r}^a \).

It is evident from (2.8) that the additional costs imposed by anti-discrimination legislation are complex in their effect. Equal pay and fair dismissal legislation introduce new per capita costs \(\mu \bar{P} + \bar{A} \bar{D} \) associated with any increase in employment from the disadvantaged group - tending to reduce demand for labour from that group and thus reduce \(w^a \) and worsen the pay differential. On the other hand, these additional costs decline as \(w^a \) and \(\bar{r}^a \) are raised, thus giving an offsetting direct incentive in favour of equal pay. The position is modified by fair recruitment policy, which tends to offset further the decline in demand for "disadvantaged" labour produced by the introduction of \(P \) and \(D \).

The first-order conditions for profit maximisation are:

\[\frac{\partial \Pi}{\partial w} = s^0(w) [c_i \times w_i \times \bar{A} \times \bar{R}(1)] + (1 + \frac{1}{2}) \bar{A} \bar{R}_0(1) \]

(2.9)

\[\frac{\partial \Pi}{\partial w^a} = s^d(w^a) [c_i \times w^a \times \mu \bar{P}(\cdot) \times \bar{A} \bar{D}(1)] + \bar{A} \bar{R}_0(1) \]

(2.10)

The solution of equations (2.9) and (2.10) determines the firm's profit-maximising wage offers, \(w^a \) and \(w^a \), to the advantaged and disadvantaged groups respectively. We now consider how the optimal degree of pay and employment discrimination, \(\bar{e} = \frac{w^a}{w^a} \) and \(\bar{e} = \frac{w^a}{w^a} \), respond to increasing degrees of severity of the three types of policy, starting from an initial position of no policy (\(\mu = \bar{A} = \bar{A} = 0 \)).
For equal pay policy, the following comparative statics derivatives are of interest:

\[
\frac{d\bar{e}}{d\mu} = \frac{1}{\bar{w}^\alpha} \left(\bar{e} + 1 \right) \frac{d\bar{w}^\alpha}{d\mu} + \bar{e} \bar{w} \frac{d\bar{w}}{d\mu} = \frac{1}{\bar{w}^\alpha} \left(\bar{e} + 1 \right) \frac{d\bar{w}^\alpha}{d\mu} + \bar{e} \bar{w} \frac{d\bar{w}}{d\mu}
\]

(2.11)

\[
\frac{d\bar{e}}{d\mu} = \frac{1}{\bar{w}^\alpha} \left(\bar{e} + 1 \right) \frac{d\bar{w}^\alpha}{d\mu} + \bar{e} \bar{w} \frac{d\bar{w}}{d\mu} = \frac{1}{\bar{w}^\alpha} \left(\bar{e} + 1 \right) \frac{d\bar{w}^\alpha}{d\mu} + \bar{e} \bar{w} \frac{d\bar{w}}{d\mu}
\]

(2.12)

where \(\alpha = \bar{e}_w \bar{w}_w \bar{w} \) is a strictly positive determinant, and subscripted terms like \(\bar{e}_w \bar{w} \) are cross derivatives of the profit function. The terms \(\bar{e}, \bar{w}, \bar{e}_0 \) and \(\bar{w}_0 \) are the values of the supply functions and their derivatives, evaluated at the optimum. Similar expressions to (2.11) and (2.12) apply to fair recruitment and dismissal policy. Note that, in general, it is possible for \(\bar{e} \) and \(\bar{w} \) to vary in opposite directions, if the two groups have very different labour supply responses.

To examine the effects of introducing anti-discrimination policy, we need to evaluate \(\frac{d\bar{e}}{d\mu} \) and \(\frac{d\bar{w}}{d\mu} \) at the point \(\bar{\mu} = \bar{\bar{A}} = 0 \). Differentiation establishes the following results:

\[
\bar{e}_w = \bar{e}_0 \left[i \bar{c} \bar{w} \right] 2\bar{e}_0 < 0 \quad (2.13)
\]

\[
\bar{e}_w = 0 \quad (2.14)
\]

\[
\bar{e}_w = \bar{e}_0 \left[i \bar{c} \bar{w} \right] 2\bar{e}_0 < 0 \quad (2.15)
\]

\[
\bar{e}_w = \bar{e}_0 \frac{r^0}{i \bar{c}} \frac{p^0}{(e)} < 0 \quad (2.16)
\]
\[
\begin{align*}
\ell_{w^\mu} &= \ell^0 \mathcal{P}(\bar{\ell}) + \frac{\ell}{\mathcal{W}} \mathcal{P}^0(\ell) (1 + \cdot) \quad (2.17) \\
\ell_{wA} &= \ell^0 [\mathcal{R}(\bar{e}) + (\bar{e} + \frac{1}{2}) R^0(\bar{e})] < 0 \quad (2.18) \\
\ell_{wA} &= \ell^0 (\bar{e} + \frac{1}{2})^2 R^0(\bar{e}) > 0 \quad (2.19) \\
\ell_{wA} &= \ell^0 D^0(\bar{e}) < 0 \quad (2.20) \\
\ell_{wA} &= \ell^0 [(\bar{e} + \frac{1}{2}) D^0(\bar{e}) ; D (\cdot)] \quad (2.21)
\end{align*}
\]

Taking the signs of the cross-derivatives (2.13)–(2.21) in conjunction with the comparative statics derivatives (2.11)–(2.12) for \(\mu, A \) and \(\bar{A} \), we have the following results:

Fair recruitment policy: \(d\ell = d\mu = d\bar{A} \) and \(d\ell = d\bar{A} \) are negative; in other words, the degrees of both pay and employment discrimination are unambiguously reduced by the (marginal) introduction of fair recruitment policy.

Equal pay and fair dismissal policy: \(d\ell = d\mu, d\ell = d\bar{A}, d\ell = d\bar{A}, \) and \(d\ell = d\bar{A} \) cannot be unambiguously signed, so the introduction of equal pay and fair dismissal policies may either reduce or increase pay and employment differentials. The reason for the ambiguity of these effects is that \(\ell_{wA} = \ell_{wA} \) and \(\ell_{wA} = \ell_{wA} \) cannot be signed. Consider the latter. There are two counteracting terms: \(\ell^0(\bar{e} + \frac{1}{2}) D^0(\bar{e}) \) is a positive differential effect stemming from the fact that the dismissal cost \(D (\cdot) \) increases with the degree of discrimination; the second term is \(\ell^0 D (\cdot) \) which is a negative level effect stemming from the fact that the marginal disadvantaged employee brings an extra cost of \(D (\cdot) \). The relative sizes of the level and gradient of \(D (\cdot) \) (and similarly of \(P (\cdot) \)) determine which of these counteracting terms is dominant. This is an issue involving the detailed design and implementation of legal processes and penalties.

These are also important implications for the policy mix. Equal pay and fair dismissal policies are relatively easy to implement, since they affect workers who are already employees of the firm, and therefore have good access to the kind of information required to support a complaint of discrimination. The drawback is their possible ineffectiveness or even perverse effects. In contrast, actions under fair recruitment policy are clearly anti-discriminatory, but in practice they require
individuals who have not been hired by the firm to make a complaint. As outsiders, such individuals are generally in a much weaker position to produce evidence to support their complaints.

2.5. A numerical example

We have demonstrated that, even in this simple model, no unambiguous result on the impact of equal pay and fair dismissal policy is available. To show that this ambiguity is more than a theoretical curiosity, we illustrate the result with a simulation based on a particular specification of the supply and cost relationships. Parameter values are intended to be plausible, but are essentially arbitrary. The results have not been found to be very sensitive to anything but the specification of \(P(\cdot) \), \(R(\cdot) \), and \(D(\cdot) \).

The level of individual productivity, \(q \), is set at 1, and the perceived productivity differential, \((q - q^*) = q \); is 10%. Non-labour unit cost is \(c = 0.1 \). Labour supplies are:

\[
s(w) = w^{2.5} \quad (2.22)
\]

\[
s^*(w^*) = 0.1w^{2} \quad (2.23)
\]

and the population demographic ratio is \(s/s^* = 8 \) (approximately equal to the ratio \(s=s^* \) in an equilibrium where pay equality is imposed exogenously). We use two variants of the model, based on alternative forms for the functions \(P, R \) and \(D \). Each of these is specified as a probit for the probability of anti-discrimination action, multiplied by a specified form for the expected cost to the firm per action. We make two alternative functional forms assumptions, differing in terms of the responsiveness of the costs to the cost clients of discrimination, and \(\mu \).

(i) Flat costs

\[
P(\cdot) = 12 \circ (\gamma_0 + \gamma_1 \cdot) \quad (2.24)
\]

\[
R(\cdot) = 12 \circ (\gamma_0 + \gamma_1 \cdot) \quad (2.25)
\]

\[
D(\cdot) = 0.2 \circ (\gamma_0 + \gamma_1 \cdot) \quad (2.26)
\]

(ii) Steep costs

\[
P(\cdot) = 5 \circ (\gamma_0 + \gamma_1 \cdot) \quad (2.27)
\]

\[
R(\cdot) = 5 \circ (\gamma_0 + \gamma_1 \cdot) \quad (2.28)
\]
\[
D^{(1)} = 0.5 \left[\Phi(-0) + \Phi(-1) \right]
\]
(2.29)

where \(\Phi(-0) = 0.5\) and \(\Phi(-1) = 0.5\); \(\Phi(\cdot)\) is the standard normal distribution function and \([x] \) denotes \(\max\{x; 0\}\).

The simulation involves numerical optimisations over a grid of values for \(\mu\), \(\hat{\beta}\) or \(\hat{\gamma}\), to maximise the profit function. This is done separately for each in turn, with the other two enforcement parameters set to zero. The shapes of the cost and steep expected cost curves are shown in Figure 1, which plots \(P(\cdot)\). The \(\mu\) locus resulting from the simulation is plotted in Figure 2, and the \(\hat{\beta}\) locus in Figure 3. Plots for \(\hat{\beta}\) rather than \(\mu\) are qualitatively similar, and plots for \(\hat{\gamma}\) are similar to those for \(\mu\); they are not presented here. Flat and steep costs clearly give rise to qualitatively different effects of policy on actual discrimination. If the costs to the firm of dealing with discrimination complaints are steeply rising with the degree of discrimination, then equal pay and fair dismissal policy will tend to diminish the practice of discrimination. On the other hand, if costs are significant even at low levels of discrimination and relatively insensitive to the magnitude of discrimination, such policy may be largely ineffective, or even have the perverse effect of increasing pay and recruitment differentials. On the other hand fair recruitment policy is unambiguous in its tendency to reduce the optimal degree of discrimination.

Note that simulations (not reported here) in which \(\mu\), \(\hat{\beta}\) and \(\hat{\gamma}\) are restricted to be equal (so that all three types of policy are used together and enforced to the same degree) also display divergent effects of enforcement on pay and employment discrimination between the cases of flat and steep costs.

3. Externality and turnover effects

It is quite reasonable to expect discrimination to have some impact on quit rates. A worker who perceives himself or herself to be unfairly treated may quit rather than stay on and fight a discrimination case - in other words use the "exit" rather than "voice" route (Freeman 1980). We have taken account of this to some degree already, since the labour supply function \(s^2(w^1)\) reflects the effect of the lower wage offered to members of the disadvantaged group. However, there may be two further effects. One is an externality in labour supply, with the supply of labour to the firm from the disadvantaged group being reduced as a direct consequence of discrimination: thus \(\pi^1 = s^2(w^1; \cdot; \cdot)\), where \(s^2\) is increasing in \(w^0\) but decreasing in \(\gamma\) and \(\beta\). A second possible effect is on turnover rates. An
employer may be able to sustain a steady-state average number of employees at \(I^a = s^a (w^a; 1; ,) \) by offering a wage \(w^a \) to members of the disadvantaged group, but this might also be associated with a higher rate of turnover than for workers from the advantaged group. The assumption here is that if workers perceive themselves to be discriminated against, they may consequently have a weaker attachment to the firm and thus have a lower expected job tenure. This in turn raises the average level of hiring and training costs for members of the disadvantaged group.

Assume as before that there is a uniform turnover rate \(\zeta \) (equal to the reciprocal of expected job tenure) for workers from the advantaged group. Workers from the disadvantaged group have a turnover rate of \(\zeta + \xi (1; ,) \), where \(\xi \) is some increasing function of the two indices of discrimination, satisfying the condition \(\xi (0; 0) = 0 \). Let the hiring/training costs per head be \(h \) and redefine the cost \(c \) to include baseline turnover cost \(h_\xi \). Then expected profit is:

\[
\Pi = s(w) [q^1 - c^1 - w^1 \mu P (1)] + s^a (w^a; 1; ,) [q^a - c^a - w^a \mu P (1) - D (1) - h (1; ,)] \tag{3.1}
\]

There are three new effects here: (i) labour supply from the disadvantaged group is decreased, tending to push up the wage and reduce the degree of discrimination; (ii) there is an additional turnover cost element associated with the employment of a member of the disadvantaged group, thus tending to reduce labour demand and increase the degree of discrimination; (iii) this additional turnover cost declines as the degree of discrimination is reduced, thus giving an additional incentive to reduce the degree of discrimination. There are again offsetting factors to be considered, and the effect of differential turnover may be either to reduce or increase the optimal degree of discrimination, depending on the steepness of the labour supply and differential turnover functions \(s^a (1; 1; ,) \) and \(\xi (1; ,) \).

The extension of the comparative statics analysis of section 2.4 to this case is straightforward but very tedious. Rather than repeat the analysis here, we instead illustrate the robustness of our earlier conclusions by extending the numerical example to include externality and turnover effects. The model used here is identical to (2.22)-(2.29) except for the labour supply and turnover cost functions which now become:

\[
s^a (w^a; 1; ,) = 0.1 \mu 1 \frac{i}{2} w^a \tag{3.2}
\]

\[
h (1; ,) = 0.01 (1 + \, \,) \tag{3.3}
\]
The results for equal pay policy is plotted in Figure 4. Although the externalities in supply and differential turnover costs have the effect of reducing the simulated degree of discrimination (from 20.5% to 10.2% in the absence of enforcement), there remains a sharp qualitative difference between the "at" and "steep" cost specifications, in terms of the implied relationship between the optimum degree of pay discrimination and the severity of policy enforcement. It remains at least theoretically possible for equal pay and fair dismissal policy to have perverse effects.

4. Conclusion and implications for policy design

Our main conclusion is that the impact of equal pay and fair dismissal policy on the optimum degree of discrimination for an employer depends critically on the way the legal system works. If the costs to the firm of dealing with discrimination complaints rise steeply with the degree of discrimination, then equal pay and fair dismissal policy will tend to reduce the extent of discrimination. On the other hand, if costs are significant even at low levels of discrimination and relatively insensitive to the magnitude of discrimination, such policy may be largely ineffective, or even have the perverse effect of increasing pay and recruitment differentials. This "at cost" case is a real possibility. In Britain over the period 1976-95, only 7.5% of discrimination cases brought before industrial tribunals resulted in a judgement in favour of the complainant and, even allowing for out-of-court settlements and errors in tribunal decisions, this suggests that even non-discriminatory employers run some risk of costly anti-discrimination action being taken against them. The theoretical possibility of non-effectiveness of equal pay and fair dismissal policy is also consistent with the findings of much of the empirical literature, at least for the second phase of policy following the initial legislative impact. In terms of policy design, there is strong support in our results for the use of a generally cheap and permissive legal system which nevertheless has the power to award high levels of compensation in cases of extreme discrimination. Thus, in the UK, the removal of the $11,000 compensation limit which was imposed on industrial tribunals prior to 1995 seems a sensible reform, providing tribunals resort to high compensatory awards only in the most serious cases.

Our second finding is the unambiguous nature of the effect of fair recruitment policy. Public support and assistance for complainants on grounds of unfair recruitment is unambiguously anti-discriminatory, although difficult to make ef-
fective. It is tempting to go further than this, and claim support from our results for affirmative action based on employment quotas. By pushing the employer towards the target employment ratio, such policy would clearly decrease pay differentials in our model—a result that is consistent with empirical evidence on the employment effects of US affirmative action (Leonard 1984, 1989). However, the problems of implementation are serious. Crude affirmative action cannot easily handle differences in qualifications and abilities. Affirmative action in the form of employment quotas would only coincide with the idea of fair recruitment policy that is used here if the quotas correspond to the relevant population ratio \(\frac{1}{2} \). However, this ratio should be defined as the ratio of the number of potential workers in the two populations having the same set of productivity characteristics. In practice, affirmative action may fall far short of this ideal.

Our final conclusion relates to the conduct of empirical work. We have demonstrated that anti-discrimination legislation is not a single homogenous policy. There are three separate strands of policy relating to hiring, firing and pay, and these may have quite different effects. Convincing empirical work therefore needs to identify policy in facts in corresponding detail. It is difficult to see how this can be done without going beyond the usual wage and employment data, and looking at statistical evidence on individual’s experience of internal and external grievance processes related to complaints of discrimination.

References

(ed.) Equal Rights and Industrial Relations. Madison: Industrial Relations Research Association

