Title: Evidence for climate-driven synchrony of marine and terrestrial ecosystems in northwest Australia

Running head: Climate-driven synchrony of multiple taxa

Authors: Joyce J.L. Ong1,2, Adam N. Rountrey3, Jens Zinke4,7,9, Jessica J. Meeuwig1, Pauline F. Grierson5, Alison J. O’Donnell5, Stephen J. Newman6, Janice M. Lough7, Mélissa Trougan8 and Mark G. Meekan2

1Center for Marine Futures, School of Animal Biology, The University of Western Australia
2Australian Institute of Marine Science, UWA Oceans Institute (M096), 35 Stirling Highway, Crawley, Western Australia 6009, Australia
3Museum of Paleontology, University of Michigan, 1109 Geddes Avenue, Ann Arbor, Michigan 48109-1079, United States of America
4Department of Environment and Agriculture, Curtin University of Technology, Western Australia 6845, Australia
5Ecosystems Research Group, School of Plant Biology, The University of Western Australia (M090), 35 Stirling Highway, Crawley, Western Australia 6009, Australia
6Western Australian Fisheries and Marine Research Laboratories, Department of Fisheries, Government of Western Australia, P.O. Box 20, North Beach, Western Australia 6920, Australia
7Australian Institute of Marine Science, PMB 3 Townsville MC, Queensland 4810, Australia
8Natural Marine Park of Mayotte, 97660 Dembeni, France
School of Geography, Archaeology and Environmental Studies, University of Witwatersrand, Johannesburg, South Africa

Correspondence: Joyce Ong, tel. +618 63694081, fax +618 64884585, email: joyce.ong@research.uwa.edu.au

Keywords: Growth chronology, Lutjanus argentimaculatus, Lethrinus nebulosus, Callitris columellaris, Porites spp., El Niño Southern Oscillation (ENSO), environmental drivers of growth, tree-ring, otolith, coral core

Type of paper: Primary research article
Abstract

The effects of climate change are difficult to predict for many marine species because little is known of their response to climate variations in the past. However, long-term chronologies of growth, a variable that integrates multiple physical and biological factors, are now available for several marine taxa. These allow us to search for climate-driven synchrony in growth across multiple taxa and ecosystems, identifying the key physical processes driving biological responses at very large spatial scales. We hypothesized that in northwest (NW) Australia, a region that is predicted to be strongly influenced by climate change, the El Niño Southern Oscillation (ENSO) phenomenon would be an important factor influencing the growth patterns of organisms in both marine and terrestrial environments. To test this idea, we analysed existing growth chronologies of the marine fish *Lutjanus argentimaculatus*, the coral *Porites* spp. and the tree *Callitris columellaris* and developed a new chronology for another marine fish, *Lethrinus nebulosus*. Principal components analysis and linear model selection showed evidence of ENSO-driven synchrony in growth among all four taxa at inter-annual time scales, the first such result for the Southern Hemisphere. Rainfall, sea surface temperatures and sea surface salinities, which are linked to the ENSO system, influenced the annual growth of fishes, trees and corals. All four taxa had negative relationships with the Niño-4 index (a measure of ENSO status), with positive growth patterns occurring during strong La Niña years. This finding implies that future changes in the strength and frequency of ENSO events are likely to have major consequences for both marine and terrestrial taxa. Strong similarities in the growth patterns of fish and trees offer the possibility of using tree-ring chronologies, which span longer time periods than those of fish, to aid understanding of both historical and future responses of fish populations to climate variation.
Introduction

Research efforts focused on the effects of climate change on organisms in both terrestrial and marine ecosystems (Rosenzweig *et al.*, 2008; Hoegh-Guldberg & Bruno, 2010) have mostly examined single species or groups of species in common environments. Although it is recognised that terrestrial and marine ecosystems are intimately linked (e.g. Dai & Wigley, 2000), the isolated nature of these studies means that the effects of a climate phenomenon across different ecosystems have not been fully explored. Our understanding of these connections has been further hampered by a lack of long-term (decades to centuries) records of the responses of marine taxa to climate variations (Rosenzweig *et al.*, 2008). Chronologies of growth are now being developed for an expanding suite of marine organisms including corals, molluscs and fishes, all of which have annual cycles of growth within their hard parts (see review by Morrongiello *et al.*, 2012). These chronologies provide powerful insights into the effects of climate change, since growth is a variable that integrates the effects of multiple physical and biological factors (Morrongiello *et al.*, 2012) and these taxa are relatively long-lived (typically many decades).

Initial attempts to compare growth of taxa across ecosystems have shown evidence for links between oceanic/atmospheric variation and growth, with some studies revealing climate-driven synchrony in growth across multiple taxa. For example, the growth of freshwater fish and trees were correlated in the United States because of similar responses of these taxa to rainfall and river discharge (Guyette & Rabeni, 1995). Synchronous growth patterns of trees, marine fish and bivalves in the northeast Pacific and has been linked to ENSO through the influence this phenomenon on sea surface temperatures (SST), land temperatures and precipitation (Black *et al.*, 2009). An understanding of the factors and mechanisms that drive such linkages provides us with an improved capacity to hind- and forecast the effects of climate change on the growth of aquatic organisms.
Additionally, growth chronologies derived from taxa that are sensitive to climate variations can also be utilised to reconstruct past patterns of climate. In Australia, long-term (multi-decadal) growth records from trees and corals have been used to extend records of rainfall (e.g., Cullen and Grierson 2009; Lough, 2011; O’Donnell et al., 2015) and SST (Hendy et al., 2002; Zinke et al., 2014) to times prior to instrumental records. Where connections between ocean and atmospheric processes lead to synchronous growth responses among marine and terrestrial taxa, multi-proxy reconstructions of broad-scale (hundreds to thousands of km) climate phenomena can be developed. For example, tree and coral growth increments and ice core stratigraphy spanning the Pacific basin have been found to be synchronously responsive to the influence of the ENSO phenomenon on regional temperatures and precipitation. These chronologies were subsequently used to develop a robust, multi-proxy reconstruction of ENSO variability over the last ~450 years (Braganza et al., 2009). Such reconstructions have greatly extended instrument records and furthered our knowledge of the amplitude and frequency of variation in climate through time.

Linked biological responses of taxa across terrestrial and marine ecosystems could also enable the use of terrestrial chronologies (which are generally available over longer time scales than marine records) as proxies for estimating the likely responses of marine taxa to climate change. For example, synchrony in the growth of trees, marine fish and the breeding success of seabirds has been linked to the influence of sea level pressure on upwelling and precipitation in the northeast Pacific (Black et al. 2014). This strong connection between oceanic and atmospheric processes has enabled the use of growth chronologies from trees to develop a robust ~600-year reconstruction of upwelling intensity (California Current Winter Index) along the California coast (Black et al., 2014). [Add a summary sentence – why such reconstructions are useful – see conclusion of Black et al. 2014 for example]
Here, we present the first regional comparison of the climatic drivers of the growth of fishes, corals and trees from the Southern Hemisphere. We focus on the marine and terrestrial environments of northwest (NW) Australia. Western Australia (WA) has been identified as a potential ‘hotspot’ of climate change (Pearce & Feng, 2007), where water temperatures along the NW coast are predicted to increase by more than 2°C by the year 2055 (Cheung et al., 2012). In this region, large–scale drivers (i.e., over hundreds to thousands of kilometres) such as the ENSO interact with regional Indian Ocean processes to influence the marine environment on the NW coast (Marshall et al., 2015). The combination of these interactions can result in phenomena such as the ‘Ningaloo Niño’, an anomalous warming of surface waters that has caused widespread fish kills and coral bleaching (Feng et al., 2013).

Long-term growth chronologies have already been developed from trees (O’Donnell et al., 2015), corals (Cooper et al., 2012) and fish (Ong et al., 2015) in this region, providing an opportunity to investigate linked biological responses to climate patterns across taxa and ecosystems. These earlier studies have revealed that growth of trees in NW Australia show a strong positive response to rainfall because water is a limiting resource (O’Donnell et al., 2015). Similarly, coral growth is positively influenced by regional changes in SST (Cooper et al., 2012) while adult fish respond to sea surface salinity (SSS; Ong et al., 2015). Given that ENSO drives regional environmental and climate variables such as SST, SSS and rainfall in Australia’s NW region, we hypothesized that the growth of these taxa will exhibit similar patterns. Additionally, we identify the key environmental variables driving patterns in growth among taxa.

Materials and methods

Environmental drivers of marine and terrestrial regions in Western Australia
The NW coast of Australia includes two major marine bioregions (as defined by Fletcher & Santoro, 2014): the North Coast, which includes coastal areas of the Pilbara and Kimberley regions, and the more southerly Gascoyne Coast from Exmouth Gulf to Shark Bay (Fig. 1). The warm, low salinity waters off the North Coast are of Pacific origin, entering the region via the Indonesian through-flow and interacting with waters of the Indian Ocean (Meyers, 1996). The North Coast bioregion is entirely tropical while the Gascoyne Coast bioregion is subtropical and is a transition zone between the tropics to the north and the temperate zone to the south (Fletcher & Santoro, 2014). The marine environment off the Gascoyne Coast is influenced by the Leeuwin Current, a pole-ward flowing, eastern boundary current (Cresswell & Golding, 1980; Feng et al., 2009) that transports warm tropical waters southwards along the coast of WA (Fletcher & Santoro, 2014) and is strongly influenced by ENSO on inter-annual time scales (Feng et al., 2009). In the tropical marine waters of the North Coast, SST in summer averages 28.8°C with a maximum of ca. 30°C while average SST in winter drops to a monthly minimum of ca. 24°C (1970-2010 seasonal averages; Rayner et al., 2003). In this region, the intra-annual variability of SSS is low, with an average of 34.8 PSU (practical salinity units) and a range of ~0.3 PSU (1970-2010 seasonal average; Good et al., 2013). In the Gascoyne Coast region, average SST in summer is slightly lower than the North Coast (25.2°C; range of ~1.1°C) while SSS is slightly higher with an average of 35.4 PSU and range of 0.3 PSU. Both the North Coast and the Gascoyne Coast are seasonally influenced by summer tropical cyclones (Fletcher & Santoro, 2014) and the North Coast, in particular, is affected by river outflows from summer rainfall (Lough, 1998).

In the semi-arid and arid terrestrial environments of NW Australia, biological processes are principally driven by rainfall (Cullen et al., 2008). This is shown by strong correlations of the growth of Callitris columellaris trees with rainfall and humidity (Cullen & Grierson, 2007; Cullen et al., 2008; O’Donnell et al., 2015). In NW Australia, rainfall is extremely variable both within and among years. Most rain falls during the summer months (average of 102 mm
per month from January to March over the years 1970-2010; Jones & Harris, 2008) and is
associated with tropical cyclones or rain-bearing low pressure systems (Gentilli, 1971). In
contrast, the austral winter to spring months of June to November average only 12 mm per
month (data from 1970-2010; Jones & Harris, 2008).

Growth chronologies

Growth chronologies from fish, coral and trees were obtained from earlier studies (Table 1).
These were supplemented with a new growth chronology developed from otoliths of another
tropical fish, the spangled emperor (*Lethrinus nebulosus*). For all species, we only used data
for the years 1984 to 2003, which were common to chronologies from all taxa. The quality of
the chronologies was assessed using the mean of pairwise series correlations (\bar{r}), an estimate
of fractional common variance, and expressed population signal (EPS), a measure of how
well the chronology represented the theoretical population chronology (Wigley *et al.*, 1984).
These were analysed using the R package ‘dplR’ (Bunn, 2008).

Spangled emperor growth chronology

Archived collections of otoliths of spangled emperor were obtained from the Department of
Fisheries (Government of Western Australia). These otoliths came from fish collected in the
Gascoyne Coast region of WA (Fig. 1) from 2006-2010 (Marriot *et al.*, 2010). The sagittal
otoliths of each fish were cleaned and one otolith was embedded in epoxy resin. Two to three
thin transverse sections were made near the primordium in a direction perpendicular to the
sulcus acusticus with a low speed saw containing a diamond-wafering blade, following the
methods of Marriot *et al.* (2010). The sections were then washed by agitating in 2%
hydrochloric acid for up to 10 seconds (to remove calcium build-up), followed by rinsing in
water. Dry sections were then mounted on microscope slides using casting resin.
For our analyses, we used the otoliths from 23 fish aged 24-32 years old with sufficiently clear increments for image analysis. The region next to the sulcus acusticus on the dorsal side of each otolith was imaged using an Aperio Scanscope Digital Slide Scanner (Leica Biosystems, Germany) with a motorized stage system. Images were captured using transmitted light with a 20x objective. Increment widths were measured on the otolith images using a plugin ("IncMeas"; Rountrey, 2009) written for ImageJ, an open source image processing program (version 1.48, National Institutes of Health, USA). Two to three transects parallel to the growth axis were drawn, and the outer edge of the opaque zones were marked (along the transects) from the edge of the otolith to the core. The calendar years were also recorded for each marked increment by working backwards from the date of capture and taking into consideration the timing of completion of the opaque zone (austral summer; Marriot et al., 2010), as part of the visual cross-dating process. Cross-dating assumes that the environment induces synchronous, time-specific growth patterns that can be matched among individuals (Fritts, 1971; Gillanders et al., 2012). Averages of increment widths from the multiple transects per sample were calculated and used if the inter-transect correlations were greater than 0.9. Statistical cross-dating was used to check the correct assignments of calendar years to increments (Black et al., 2005) and any errors were visually inspected before measurements were changed.

To produce the overall chronology, the increment widths were aligned by fish age and the mean increment width at each age was calculated, following the methods of Black et al. (2013). Each series was then divided by the mean-by-age series to obtain standardized series that removed ontogenetic trends, and the standardized series were averaged by calendar year to create a single overall chronology (see Supplementary Fig. S1 for raw, detrended and averaged series). Only years with a sample depth of more than eight fish (1984-2003) were used for analysis. EPS and \bar{r} were calculated using only one time series for each individual fish for the period from 1984-2003.
Mangrove jack growth chronology

We used existing detrended (ontogenetic trends removed) growth increment series for 36 adult mangrove jack (*Lutjanus argentimaculatus*) that were collected between 1996 and 2005 at various sites along the NW coast (Fig. 1; Ong *et al*., 2015). The detrended increment series from the 36 fish were averaged to obtain a single growth chronology. The published chronology consisted of increment data from 1975 to 2003 with a sample depth of at least 20 fish contributing to each year value (Ong *et al*., 2015).

Coral growth chronology

The coral chronology was a record of annual calcification (calculated as the product of linear extension and skeletal density; Lough & Cooper, 2011) from 24 cores of *Porites* spp. (Cooper *et al*., 2012) collected between October 2008 and September 2010 from five reefs (Table 1) along the NW coast (Fig. 1). Data were available from 1900 to 2010. To obtain a standardized growth index, the annual calcification rates were normalized by first subtracting the mean for the period 1961-1990 and subsequently dividing by the standard deviation of this period. Normalized calcification rates were calculated for each of the 24 coral cores from all five reefs. The 24 time series were averaged to obtain a single coral chronology for the NW coast.

Tree-ring chronology

We used a ring-width chronology developed from 27 *Callitris columellaris* trees (O’Donnell *et al*., 2015) from the Hamersley Ranges of the inland Pilbara region (Fig. 1). The chronology had been detrended using the signal free method (Melvin & Briffa, 2008) to improve the retention of medium frequency (representing time scales of decades to a century) variance, reduce trend distortion at the ends of the chronologies and remove age-related trends.
The ring-width chronology covered the period 1802-2012 and was constructed using 41 series from the 27 trees.

Climatic and environmental datasets

Recent studies have shown that ENSO (represented by the Niño-4 index) and SSS are important drivers of the growth of mangrove jack (Ong et al., 2015), while coral growth has been correlated with decadal trends in SST (Cooper et al., 2012). The growth of Callitris trees in the Pilbara mainly responds to rainfall in the austral summer from December to May (Cullen et al., 2008; O’Donnell et al., 2015). We compared growth patterns to the Niño-4 index (based on SST in the Western Pacific between 5°N - 5°S and 160°E - 150°W; Rayner et al., 2003), SST (HadISST; Rayner et al., 2003), SSS (Good et al., 2013) and rainfall (Jones & Harris, 2008). All environmental data were obtained from the Royal Netherlands Meteorological Institute (KNMI) Climate Explorer (Trouet & Van Oldenborgh, 2013), a web application for climate data (http://climexp.knmi.nl). The SST, SSS and rainfall values were averaged for a grid box covering the NW coast from the Kimberley south to Coral Bay (14°S - 28°S, 110°E - 127°E). For each environmental variable, the January to March averages were used because the growing season for fishes, corals and trees in NW Australia usually occurs in the austral summer (Ong et al., 2015; Lough & Barnes, 2000; O’Donnell et al., 2015 respectively). In addition to the January to March averages for each regional environmental variable from 1984-2003, we also used the previous year’s values (ie. 1983-2002) for SST, SSS and rainfall from the same grid, and for the Niño-4 index to allow for possible lagged responses.

Data analyses

All four chronologies were standardized (μ = 0, σ² = 1) and analysed using principal components analysis (PCA). The scores for the principal components that accounted for the majority of the variance (PC1 and PC2) were tested for significant correlations (using
Pearson’s correlation) with current and lagged Niño-4 index. The principal component scores were subsequently included as response variables in linear regression models to assess the importance (based on information-theoretic methods) of current year and previous year SST, SSS and rainfall as drivers of growth. The rainfall values were square root transformed (due to the large range of values from 30-200 mm per month) before insertion into the linear models used in the model selection process, to satisfy the assumptions of homogeneity for linear models. Collinearity between all six environmental variables (|r|> 0.5, p < 0.01) was evaluated. The R package ‘MuMIn’ (Barton, 2015) was used for model selection using the second-order Akaike information criterion (AICc) based on Kullback-Leibler (K-L) information loss and accounting for small sample sizes (Burnham & Anderson, 2004). Differences in AICc values (ΔAICc) were used to assess the different models. Adjusted R² values, F-statistic, t-statistic and p-values were reported with models using linear regression. Model validation was carried out to ensure that the models conformed to the assumptions of linear models and tested for auto-correlation. All statistical analyses were completed in R version 3.1.3 (R Development Core Team, 2008). After the model selection process, spatial correlation maps of the significant regional variables were made in the web application KNMI Climate Explorer to show the relationships at a higher spatial resolution.
Table 1 Growth chronologies of fishes, corals and trees from northwest Australia.

<table>
<thead>
<tr>
<th>Species</th>
<th>Type of Data</th>
<th>Length of chronology</th>
<th>Location</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fish (Lutjanus argentinamaculatus)</td>
<td>Annual growth increments from otoliths</td>
<td>1975-2003</td>
<td>Kimberley (15)</td>
<td>Ong et al., 2015</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Pilbara (15)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Gascoyne (6)</td>
<td></td>
</tr>
<tr>
<td>Fish (Lethrinus nebulosus)</td>
<td>Annual growth increments from otoliths</td>
<td>1984-2003</td>
<td>Gascoyne coast (23)</td>
<td>This study</td>
</tr>
<tr>
<td>Coral (Porites spp.)</td>
<td>Annual calcification rate from coral cores</td>
<td>1900-2010</td>
<td>Clerke Reef (5)</td>
<td>Cooper et al., 2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Imperieuse Reef (4)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Bundegi (4)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tantabiddi (7)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Coral Bay (4)</td>
<td></td>
</tr>
<tr>
<td>Tree (Callitris columellaris)</td>
<td>Ring-width chronology</td>
<td>1802-2012</td>
<td>Hamersley Range, inland Pilbara (27)</td>
<td>O’Donnell et al., 2015</td>
</tr>
</tbody>
</table>
Fig. 1 Sampling locations of growth chronologies for four taxa in northwest Australia. Chronologies were for the period from 1984 to 2003. MJ = mangrove jack (fish; *Lutjanus argentimaculatus*), SE = spangled emperor (fish; *Lethrinus nebulosus*), all corals were *Porites* spp. and trees were *Callitris columellaris*. Mangrove jack locations are approximate sampling areas within the boxes. Terrestrial regions follow the Interim Biogeographic Regionalisation for Australia (IBRA) version 7, modified from the Department of Environment (Australian Government).
Results

Chronology statistics

The growth chronology of *L. nebulosus* included the years from 1984 through 2009 (Supplementary Fig. S1). Measurements from more than eight fish contributed to each yearly value, with 22 out of the 23 fish contributing to the period between 1988 and 2003. Although the fractional common variance ($\bar{r} = 0.14$) and EPS value (0.78) were low relative to tree-ring data, indicating that variability among individuals was high, the mean chronology from 1984 to 2003 did relate to environmental variables as evidenced by significant correlations with January to March SST around the northern Gascoyne Coast (21°S - 23°S, 112°E - 115°E; $r = 0.60$, $p = 0.005$) and marginally significant correlations with average rainfall from January to March over the entire NW area ($r = 0.44$, $p = 0.05$).

The published chronology of *L. argentimaculatus* from 1975 to 2003 had averaged $\bar{r} = 0.153$ and averaged EPS = 0.84 (Ong et al., 2015). Bootstrapped \bar{r} and EPS values were calculated for the 24 coral cores of *Porites* spp. from 1950-2003 using 15-year intervals with 14-year overlaps (Supplementary Fig. S2) and showed that there were synchronous signals among corals from the year 1980 onwards ($\bar{r} \sim 0.05$, EPS ~ 0.6). The published ring-width chronology of *C. columellaris* trees had a running \bar{r} (> 0.4) and EPS (> 0.85) for 51-year intervals with 25 year overlaps (O’Donnell et al., 2015).

Principal components analysis

The standardized growth chronologies of all four taxa (Fig. 2, Supplementary Table S1 shows a correlation matrix) from 1984 to 2003 were analysed using a PCA. The first principal component (PC1) accounted for 41% of the variance and PC2 accounted for 33%. The third and fourth principal components each accounted for less than 15% of the variance and were not included in any further analyses. Three of the taxa (fishes and trees) had similar negative
loadings on PC1 (Table 2, Fig. 2a). The coral series had the strongest loading on PC2, followed by *L. argentimaculatus* (Table 2, Fig. 2b). Inverse values of both PC1 and PC2 were used in further analyses because the strongest loadings were negative (Table 2).

Relationships with ENSO

PC1 was negatively correlated with the Niño-4 index (average January to March values) with no lag ($r = -0.65, p = 0.002$; Fig. 3a and 3b). PC2 was negatively correlated with the Niño-4 index (average January to March values) in the previous years ($r = -0.52, p = 0.02$; Fig. 3c and 3d).

Relationships with environmental variables

Because of the high collinearity among five of the six environmental variables ($|r| > 0.5$; Supplementary Table S2) and the low number of observations ($n = 20$), models using only a maximum of two non-collinear variables were constructed. These 17 models (Table 3) were evaluated in the model selection process for PC1 and PC2 separately. The model selection process involving PC1 and the 17 possible combinations of environmental variables found that the first ranked model (i.e. lowest AICc) was one that related PC1 with rainfall and SST from the current year (Table 3). This first ranked model was considered to be substantially better than the second model (ΔAICc = 8.7, Table 3). The linear model relating PC1 with rainfall and SST from the current year explained 70% of the variation in PC1 (Table 4), which was largely driven by the growth of fishes and *Callitris* trees. In this linear model, both variables were highly significant ($p < 0.01$) with rainfall having a positive t-value of 4.92 and SST a positive t-value of 3.72. Spatial correlation maps (using higher resolution environmental variables) show the positive relationship between PC1 and these two significant variables (Fig. 4a and 4b).
The second model selection process involving PC2 and the 17 possible combinations of environmental variables identified a first ranked model that related PC2 with SSS and rainfall from the current year (Table 3). This first ranked model was not considered to be significantly better than the second model that only included SSS (ΔAICc = 1.5, Table 3), hence we chose initially to keep both variables. The linear model relating PC2 with SSS and rainfall from the current year explained 44% of the variation in PC2 (Table 4), however, SSS was the only significant variable (t = -4.07, p = 0.0008; Fig. 5a). PC2 (mainly reflecting variation in growth of corals) had a negative relationship with SSS. A spatial correlation map for PC2 and SST from June to August of the previous year (using higher resolution environmental variables) also showed a strong positive relationship between PC2 and offshore waters along the NW coast, in addition to the waters around the Indonesian region (Fig. 5b).
Table 2 Loadings of the four taxa (two fishes, one coral and one tree) on the first and second principal components (PC). Chronologies included the years 1984 to 2003.

<table>
<thead>
<tr>
<th>Taxa</th>
<th>Loading on PC1</th>
<th>Loading on PC2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fish (Lethrinus nebulosus)</td>
<td>-0.60</td>
<td>+0.29</td>
</tr>
<tr>
<td>Tree (Callitris columellaris)</td>
<td>-0.58</td>
<td>+0.31</td>
</tr>
<tr>
<td>Fish (Lutjanus argentimaculatus)</td>
<td>-0.54</td>
<td>-0.47</td>
</tr>
<tr>
<td>Coral (Porites spp.)</td>
<td>-0.13</td>
<td>-0.78</td>
</tr>
</tbody>
</table>
Table 3 Selected models with a maximum of two non-collinear explanatory variables that went into the model selection process. Explanatory variables consist of January to March averages from the years 1984 to 2003. Response variables are the first two principal components (PC) scores from four taxa (two fishes, one coral and one tree) in northwest Australia. ΔAICc = second order Akaike information criterion. SST = Sea Surface Temperature, SSS = Sea Surface Salinity, lag = data with a one year lag. Model 1 shows the first ranked model for PC1 and model 2 is the first ranked model for PC2.

<table>
<thead>
<tr>
<th>Model</th>
<th>Explanatory variables</th>
<th>ΔAICc for PC1</th>
<th>ΔAICc for PC2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SST + Rainfall</td>
<td>0.00</td>
<td>13.40</td>
</tr>
<tr>
<td>2</td>
<td>Rainfall + SSS</td>
<td>11.89</td>
<td>0.00</td>
</tr>
<tr>
<td>3</td>
<td>SST + SSS</td>
<td>17.67</td>
<td>3.80</td>
</tr>
<tr>
<td>4</td>
<td>Rainfall + SSS lag</td>
<td>11.47</td>
<td>12.30</td>
</tr>
<tr>
<td>5</td>
<td>SST lag + SSS lag</td>
<td>12.99</td>
<td>9.10</td>
</tr>
<tr>
<td>6</td>
<td>SST lag + Rainfall lag</td>
<td>13.00</td>
<td>9.60</td>
</tr>
<tr>
<td>7</td>
<td>SST + SSS lag</td>
<td>17.67</td>
<td>12.50</td>
</tr>
<tr>
<td>8</td>
<td>SST + Rainfall lag</td>
<td>17.13</td>
<td>13.50</td>
</tr>
<tr>
<td>9</td>
<td>SSS lag + Rainfall lag</td>
<td>24.97</td>
<td>10.00</td>
</tr>
<tr>
<td>10</td>
<td>Rainfall + Rainfall lag</td>
<td>11.82</td>
<td>13.50</td>
</tr>
<tr>
<td>11</td>
<td>SSS</td>
<td>21.81</td>
<td>1.50</td>
</tr>
<tr>
<td>12</td>
<td>Rainfall lag</td>
<td>8.75</td>
<td>10.48</td>
</tr>
<tr>
<td>13</td>
<td>SST</td>
<td>14.56</td>
<td>10.42</td>
</tr>
<tr>
<td>14</td>
<td>SSS lag</td>
<td>23.22</td>
<td>9.52</td>
</tr>
<tr>
<td>15</td>
<td>Rainfall lag</td>
<td>23.00</td>
<td>10.48</td>
</tr>
<tr>
<td>16</td>
<td>SST lag</td>
<td>9.84</td>
<td>7.13</td>
</tr>
<tr>
<td>17</td>
<td>Intercept only</td>
<td>20.43</td>
<td>7.86</td>
</tr>
</tbody>
</table>
Table 4 Selected first-ranked linear models that explain variation in the first two principal components (PC) scores from four taxa (growth chronologies of two fishes, one coral and one tree). Environmental variables are January to March averages. Chronologies included the years 1984 to 2003. SST = Sea Surface Temperature, SSS = Sea Surface Salinity.

<table>
<thead>
<tr>
<th>Model equation</th>
<th>Adjusted R^2</th>
<th>F-statistic</th>
<th>Model p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>PC1 ~ Rainfall + SST</td>
<td>0.70</td>
<td>23.3</td>
<td>0.00001</td>
</tr>
<tr>
<td>PC2 ~ SSS + Rainfall</td>
<td>0.44</td>
<td>8.4</td>
<td>0.003</td>
</tr>
</tbody>
</table>
Detrended and normalized (mean = 0, variance = 1) growth chronologies of four taxa (two fishes, one coral and one tree) from the years 1984 to 2003 in northwest Australia with the respective leading principal components. (a) Mangrove jack (Lutjanus argentimaculatus) chronology, spangled emperor (Lethrinus nebulosus) chronology and tree-ring width (Callitris columellaris) with PC1 and (b) Mangrove jack and coral (Porites spp.) chronology with PC2.
Fig. 3 Relationships between principal components (PC) scores constructed from the growth chronologies of four taxa (two fishes, one coral and one tree) and the Niño-4 index (average January to March values) in northwest Australia. (a) PC1 (mainly driven by the growth of the two fish and one tree species) and the Niño-4 index over the same years; (b) regression plot of PC1 and the Niño-4 index; (c) PC2 (mainly driven by the coral chronology) and the Niño-4 index (average January to March values) with a one year lag included and (d) regression plot of PC2 with lagged Niño-4 index. The inverse of PC scores was used because all taxa were negatively loaded on both PC1 and PC2.
Fig. 4 Significant correlations (p < 0.05) between PC1 and (a) rainfall (mm per month) and (b) sea surface temperature (°C) over the January to March period. PC1 scores were composed of growth patterns of all taxa (two fishes, one coral and one tree) between the years 1984 to 2003 and were plotted on an inverted scale because all taxa were negatively loaded on this variable. Maps were obtained and modified from KNMI Climate Explorer (Trouet & Van Oldenborgh, 2013).
Fig. 5 Significant correlations (p < 0.05) between PC2 and (a) sea surface salinity (psu) for January to March of the same year and (b) sea surface temperature (°C) from June to August in the previous year in northwest Australia. PC2 scores were composed of growth patterns of all taxa (two fishes, one coral and one tree) between the years 1984 to 2003 and were plotted on an inverted scale because the strongest loading taxon (corals) was negatively loaded on this variable. Maps were obtained and modified from KNMI Climate Explorer (Trouet & Van Oldenborgh, 2013).
Discussion

Our study revealed that the growth patterns of taxa from both marine and terrestrial ecosystems in NW Australia were coupled to large-scale, oceanographic and atmospheric processes. Growth of the study species (two fishes, one coral and one tree) had significant inverse relationships with the ENSO phenomenon (as measured by the Niño-4 index) over two decades, so that when the index was positive (El Niño), growth slowed, whereas at times when the index was negative (La Niña), growth rates increased.

These strong relationships between ENSO and growth responses of all taxa can be explained by the influence this phenomenon has on the temperature and salinity of coastal waters and on rainfall patterns in the water-limited terrestrial ecosystems of the NW region. During the La Niña phase of ENSO there is greater transport of warmer and less saline waters from the western Pacific towards the coast of NW Australia via the Indonesian through-flow (Meyers et al., 2007; Zinke et al., 2014). The stronger Indonesian through-flow subsequently drives a stronger Leeuwin Current that increases the transport of warmer and less saline waters along the coast of WA. The reverse of this process occurs during El Niño events (Meyers, 1996; Feng et al., 2009). Warmer waters have been shown to positively influence growth of fish and corals on the WA coast (Rountrey et al., 2014; Cooper et al., 2012), while lower salinities may increase fish growth through various metabolic pathways that result in reduced metabolic costs (see review by Boeuf & Payan, 2001) or by increasing food conversion efficiency (Lambert et al., 1994). Furthermore, Hanson et al. (2005) found much higher rates of primary productivity along the coastal Gascoyne region in austral summer, the time when we found strong correlations between the growth of all taxa and ENSO. The Leeuwin Current is weakest during austral summer, when southerly winds that favour coastal upwelling prevail and generate a system of inshore counter-currents that flow toward the Equator (the Ningaloo Current and Capes Current; Hanson et al., 2005). These localized upwelling events enhance
primary production in otherwise oligotrophic waters and might play an important role in the increased growth of our study organisms that we observed during the austral summer (Huang and Feng, 2015).

The La Niña phase of ENSO is also typically associated with higher rainfall over inland northwest Australia. La Niña tends to strengthen the Australian monsoon by influencing SSTs, low-level winds, vertical motion and convection north of Australia (Wang et al. 2003, Journal of Climate, 16:1195-1211). This enhanced monsoon causes higher rainfall over northwest (and much of northern and eastern) Australia, which in turn stimulates tree growth in northwest Australia (Cullen et al., 2008; O’Donnell et al., 2015). The ENSO also influences northwest Australian rainfall through its effect on the activity of tropical cyclones off the northwest coast of Australia, where tropical cyclone activity is enhanced in La Niña and suppressed in El Niño conditions (Liu and Chan 2012, International Journal of Climatology, 32: 190-202). Tropical cyclones (and other closed lows) cause intense rain events over inland northwest Australia and contribute to more than half of the region’s annual rainfall (Lavender and Abbs 2013, Clim. Dyn. 40: 317-326). Furthermore, warm SST off NW Australia and the Gulf of Carpentaria were found to favour increased precipitation in monsoon affected Australia (van Rensch & Cai, 2014). Hence, the La Niña phase of ENSO positively influences the growth of both fishes and trees in NW Australia by driving climatic conditions likely to favour growth (i.e., warmer, less saline sea water in the eastern Indian Ocean and greater rainfall over northwest Australia).

River outflows might link terrestrial and coastal systems on the North Coast where there is higher rainfall however, our tree and some fish data were mostly collected around the Gascoyne region, an area subject to very sporadic patterns of rainfall and river outflow (Lough, 1998). In addition to strong correlations between growth of all taxa and the current year’s ENSO, we also found significant, albeit slightly weaker, correlations between growth
and the ENSO signal in the previous year. This suggests that the influence of the ENSO system on growth may carry over between years.

The correlations between ENSO and growth patterns of our study species occurred despite the fact that the fractional common variance of the growth chronology of *Lethrinus nebulosus* was relatively low compared to trees and some fishes (e.g. Cullen & Grierson, 2007; Gillanders *et al.*, 2012). Such low common variances appear to be a feature of fishes sampled from the WA coast (e.g. Rountrey *et al.*, 2014; Nguyen *et al.*, 2015; Ong *et al.*, 2015), but it is important to note that all WA fishes for which growth chronologies have been constructed have displayed significant correlations with regional environmental factors such as SST.

The strong correlations that we found between PC2 (largely composed of coral growth) and SSS were unexpected, given the small range of changes in salinity that occur in the NW region and the results of an earlier study that suggested that decadal growth rates of corals were most strongly correlated with SST (Cooper *et al.*, 2012). However, we found a strong collinearity between SSS and lagged SST at broader spatial scales, implying that the latter (or perhaps some other unmeasured factor) may be driving the correlation between SSS and coral growth. Our results also showed that SST from June to August in the previous year had strong positive correlations with PC2. The lag in this relationship reflects the fact that coral calcification values were based on a year defined by annual density minima, which were presumed to occur in the austral winter months of June to August (Cantin & Lough, 2014). Hence, a year in the coral chronology was based on calcification rates from August of the previous calendar year to August of the current calendar year. Changes in salinity, in particular anomalous lows, were responsible for around 30% of the unusual enhancement of the Leeuwin Current transport during the marine heatwave event in the austral summer of 2010/2011 (Feng *et al.*, 2015). This observation suggests that salinity may have a more general direct or indirect influence on the growth rates of marine taxa in the NW region.
The importance of the ENSO along the coastline of WA is well recognised. In this region, the inter-annual variability of this phenomenon has been linked to various life history stages of marine taxa, with La Niña years (stronger Leeuwin Current) showing a greater transport of nutrients into the euphotic zone (Thompson et al., 2011) that accounts for greater phytoplankton biomass (Koslow et al., 2008; Huang & Feng, 2015) and increased fisheries recruitment (Caputi, 2008). Our findings also show the influence of ENSO on the growth rates of adult fish and corals, increasing knowledge of the far-reaching impacts of ENSO on a range of life history stages of marine taxa and across different trophic levels.

Overall, the strong negative relationship between the growth responses of all four taxa with ENSO has important implications for the future. Predicted increases in rainfall (Christensen et al., 2013) and SST (Cheung et al., 2012) for NW Australia suggest that growth rates of our study taxa will continue to increase in WA until thermal limits are reached. However, the strong La Niña conditions (with peak SST reaching 5°C above average) over the summer of 2011 led to fish kills and widespread coral bleaching (Feng et al., 2013), suggesting that the thermal limits of fishes and corals are relatively close to present day conditions on the NW coast. Extreme La Niña events typically follow strong El Niño conditions and both are predicted to occur more frequently in the future (Cai et al., 2014, 2015), which may create greater year-to-year variation in the productivity and yield of fisheries and the likelihood of bleaching in coral communities along the NW coast. The magnitude of SST changes in the future (along with the frequencies of El Niño and La Niña events) is likely to have major consequences on both marine and terrestrial taxa and will need to be carefully monitored.

The similarities in the growth patterns of the fish and tree species used in this study suggest that it may be possible to use tree-ring chronologies to hindcast/reconstruct the growth responses of fish where archives of otoliths do not exist. In many coastal locations worldwide, tree-ring chronologies now extend centuries into the past, while the most
comprehensive otolith archives are generally the product of fisheries management studies with a relatively recent history (less than 60 years in most cases). Our study shows that where strong links between the growth of fishes and trees can be established, chronologies of tree growth may provide a proxy to understand the response of fish populations to climate change, both in the past and the future.

In summary, we have provided the first empirical evidence for climate-driven synchrony between marine and terrestrial ecosystems in the Southern Hemisphere at annual time scales. These links occur through the influence of ENSO events on regional environmental variables that affect the annual growth of fishes, corals and trees throughout the region. Although we lacked an overlap of all taxonomic groups across the entire region, this is a common limitation of any program that seeks to access legacy datasets where researchers had no control over the intensity and location of sampling in the past. The large historical archives of fish otoliths (Campana & Thorrold, 2001), coral (e.g. Tierney et al., 2015) and tree-ring (St. George, 2014) records held by institutions and organizations worldwide offer a major opportunity to expand the scale and resolution of our approach. This will improve both our understanding of the effect of climate fluctuations on ecosystems in the past and the likely impact of climate change on both marine and terrestrial ecosystems in the future.

Acknowledgements

This work was funded by the Australian National Network in Marine Science and the Australian Institute of Marine Science. JJLO was supported by a scholarship from the Australian Postgraduate Awards. JZ was supported by a UWA/AIMS/CSIRO fellowship and a Curtin Senior Research Fellowship. The authors acknowledge the facilities, and the scientific and technical assistance of the Australian Microscopy & Microanalysis Research Facility at the Centre for Microscopy, Characterisation & Analysis, the University of Western
Australia, a facility funded by the University, State and Commonwealth Governments. In particular, we would like to thank Professor Paul Rigby and Miss Alysia Buckley for the help and advice they have provided.
References

http://CRAN.R-project.org/package=MuMIn

Black BA, Boehlert GW, Yoklavich MM (2005) Using tree-ring crossdating techniques to
validate annual growth increments in long-lived fishes. Canadian Journal of Fisheries and
Aquatic Sciences, 62, 2277-2284.

Black BA (2009) Climate-driven synchrony across tree, bivalve, and rockfish growth-
increment chronologies of the northeast Pacific. Marine Ecology Progress Series, 378, 37-46.

reconstructions of northeastern Pacific sea surface temperature data from trees and Pacific

Black BA, Matta ME, Helser TE, Wilderbuer TK (2013) Otolith biochronologies as
multidecadal indicators of body size anomalies in yellowfin sole (Limanda aspera). Fisheries
Oceanography, 22, 523-532.

Black BA, Sydeman WJ, Frank DC et al. (2014) Six centuries of variability and extremes in a

Atmospheres, 114, D05106.

Bunn AG (2008) A dendrochronology program library in R (dplR). Dendrochronologia, 26,
115-124.

Caputi N (2008) Impact of the Leeuwin Current on the spatial distribution of the puerulus settlement of the western rock lobster (Panulirus cygnus) and implications for the fishery of Western Australia. *Fisheries Oceanography, 17*, 147-152.

Feng M, Waite AM, Thompson PA (2009) Climate variability and ocean production in the Leeuwin Current system off the west coast of Western Australia. *Journal of the Royal Society of Western Australia, 92*, 67-81.

Fletcher WJ, Santoro K (2014) Status reports of the Fisheries and Aquatic resources of Western Australia 2013/14: The state of the Fisheries. Western Australia, Department of Fisheries.

R Development Core Team (2008) R: A language and environment for statistical computing. 3.1.3. Available at: http://www.R-project.org/

Supporting Information

Additional Supporting Information may be found in the online version of this article:

Figure S1. Raw and detrended increment width time series for *Lethinus nebulosus*.

Figure S2. Assessment of chronology properties for the 24 *Porites* spp. cores.

Table S1. Correlation matrix of the growth chronologies of the four taxa.

Table S2. Correlation matrix of the six environmental variables.