Properties and Physiological Function of Ca\(^{2+}\) Dependent K\(^+\) Currents in Uniglomerular Olfactory Projection Neurons

Cathleen Bradler*, Ben Warren*, Viktor Bardos, Sabine Schleicher, Andreas Klein, and Peter Kloppenburg

Biocenter, Institute for Zoology, and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Zülpicher Str. 47b, 50674 Cologne, Germany

*Authors contributed equally to this work

Running head: Ca\(^{2+}\) dependent K\(^+\) currents of olfactory projection neurons

Peter Kloppenburg
University of Cologne
Biocenter
Zülpicher Str. 47b
50674 Cologne, Germany
peter.kloppenburg@uni-koeln.de

Copyright © 2016 by the American Physiological Society.
ABSTRACT

Ca$^{2+}$-activated potassium currents ($I_{K(Ca)}$) are an important link between the intracellular signaling system and the membrane potential, which shapes intrinsic electrophysiological properties. To better understand the ionic mechanisms that mediate intrinsic firing properties of olfactory uniglomerular projection neurons (uPNs), we used whole-cell patch clamp recordings in an intact, adult brain preparation of the male cockroach *Periplaneta americana* to analyze $I_{K(Ca)}$. In the insect brain uPNs form the principal pathway from the antennal lobe to the protocerebrum, where centers for multimodal sensory processing and learning are located. In uPNs the activation of $I_{K(Ca)}$ was clearly voltage and Ca$^{2+}$ dependent. Thus, under physiological conditions $I_{K(Ca)}$ is strongly dependent on the Ca$^{2+}$ influx kinetics and on the membrane potential. The biophysical characterization suggests that $I_{K(Ca)}$ is generated by BK channels. An SK channel generated current could not be detected. $I_{K(Ca)}$ was sensitive to charybdotoxin and iberiotoxin but not to apamin. The functional role of $I_{K(Ca)}$ was analyzed in occlusion experiments under current clamp, in which portions of $I_{K(Ca)}$ were blocked by charybdotoxin or iberiotoxin. Blockade of $I_{K(Ca)}$ showed that $I_{K(Ca)}$ contributes significantly to the intrinsic electrophysiological properties such as the action potential waveform and membrane excitability.

KEYWORDS: Antennal lobe, chemosensory, glomerulus, olfaction, *Periplaneta americana*
INTRODUCTION

In insects odors are detected by antennal sensory neurons and are initially processed in the first synaptic relay, the antennal lobe (AL), which is the functional equivalent of the mammalian olfactory bulb (reviewed in Bargmann 2006; Davis 2004; Galizia and Rössler 2010; Hildebrand and Shepherd 1997; Strausfeld and Hildebrand 1999; Vosshall and Stocker 2007; Wilson and Mainen 2006). The integrated olfactory information is then conveyed to higher order processing centers in the protocerebrum by antennal lobe projection neurons (PNs), the analog of the mammalian mitral/tufted cells (Su et al. 2009). The most prominent and most studied group of PNs are the uniglomerular projection neurons (uPNs), whose morphology and response properties are well described in various insect species. uPNs are considered the only cholinergic input to the mushroom body calyx (Fusca et al. 2013; Yasuyama et al. 1995, 2002). Typically, each uPN receives synaptic input from olfactory sensory neurons and local interneurons in a single AL glomerulus. Each uPN sends an axonal projection into the mushroom body calyx and/ or the lateral horn where it terminates with synaptic boutons. The tuning profiles and odor responses of uPNs are determined by synaptic inputs from the sensory and local interneurons together with their intrinsic electrophysiological properties. A given uPN can respond to odorants of many different chemical classes, typically with odor specific elaborate patterns of excitation and spiking that could also include periods of inhibition (Broome et al. 2006; Christensen et al. 1998; Kanzaki et al. 1989; Lemon and Getz 1998; Mazor and Laurent 2005; Stopfer et al. 2003; Watanabe et al. 2012; Wilson et al. 2004).

While the odor response profiles of uPNs are generally well documented we have only limited information about the intrinsic firing properties and the cellular mechanisms that determine them. However, in depth knowledge of the cell-type specific intrinsic electrophysiological properties and the membrane conductances that mediate them is an important prerequisite towards a detailed understanding of the cellular basis of olfactory information processing. Here we analyzed the \(\text{Ca}^{2+} \) dependent \(K^{+} \) outward currents (\(I_{K(Ca)} \)) of uPNs, which play a crucial role in controlling action potential waveform and neuronal
excitability (Adelman et al. 2012; Berkefeld et al. 2010; Faber and Sah 2003; Ghatta et al. 2006; Greffrath et al. 2004; Vergara et al. 1998).

Since Ca2+ is an important messenger of the intracellular signaling system, Ca2+ dependent ion channels constitute an important link between the intracellular status of neurons and their membrane potential. Vertebrates and invertebrates express several types of Ca2+ dependent potassium (K\textsubscript{Ca}) channels in most neuron types, where they mediate Ca2+ dependent hyperpolarization and contribute to the resting membrane potential, spike wave form, and spike frequency. Historically, three main types of K\textsubscript{Ca} channels have been categorized by their biophysical and pharmacological properties: 1) small conductance (SK)-, 2) intermediate conductance (IK)-, and 3) big conductance (BK or maxi K) channels (Adelman et al. 2012; Berkefeld et al. 2010; Faber and Sah 2003). Molecular cloning helped to reveal sequence relationships and made structure/function studies possible (Sah and Faber 2002; Stocker 2004). The SK family has three members (K\textsubscript{Ca}2.1-2.3) and is closely related with the IK channel (K\textsubscript{Ca}3.1). These channels are activated by cytosolic Ca2+ and are not voltage-sensitive. Their activation by intracellular Ca2+ is mediated by calmodulin that is constitutively bound to the C-terminus. In contrast, the BK channel (K\textsubscript{Ca}1.1) is activated by both voltage and cytosolic Ca2+. The activation by Ca2+ is not calmodulin dependent but mediated directly by cytoplasmic Ca2+ binding sites (Berkefeld et al. 2010; Fakler and Adelman 2008; Grunnet and Kaufmann 2004; Lee and Cui 2010; Salkoff et al. 2006).

Here we aimed to characterize Ca2+ dependent K+ currents \(I_{K(Ca)}\) of uPNs in the AL of the cockroach \textit{Periplaneta americana}. First, we characterized the general functional properties of \(I_{K(Ca)}\) in uPNs with whole-cell voltage clamp recordings in an intact brain preparation. Second, we used occlusion experiments, in which portions of \(I_{K(Ca)}\) were pharmacologically blocked, to better understand the functional role of \(I_{K(Ca)}\) in shaping the electrophysiological properties of uPNs.
METHODS

Preparation

P. americana were reared in crowded colonies at 27 °C under a 12 : 12 h light/ dark photoperiod regimen, on a diet of dry rodent food, oatmeal, and water. All experiments were performed with adult males. Chemicals, unless stated otherwise, were obtained from Applichem (Darmstadt, Germany) or Sigma-Aldrich (Taufkirchen, Germany) and were of ‘pro analysis’ grade. The intact brain preparation was based on an approach described previously (Husch et al. 2009; Kloppenburg et al. 1999a), in which the entire olfactory network was left intact. Animals were anaesthetized by CO$_2$, placed in a custom built holder, and the head was immobilized with tape (Tesa ExtraPower Gewebeband, Tesa, Hamburg, Germany). The head capsule was opened by cutting a window between the two compound eyes at the bases of the antennae. The brain was dissected in extracellular saline (see below) and pinned in a Sylgard-coated (Dow Corning Corp., Midland, Michigan, USA) recording chamber. To minimize synaptic input to AL neurons, the antennae were removed. To gain access to the recording site and to facilitate the penetration of pharmacological agents into the tissue, we desheathed parts of the AL using fine forceps. Some preparations were also enzymatically treated with a mixture of papain (0.3 mg·ml$^{-1}$, P4762, Sigma) and L-cysteine (1 mg·ml$^{-1}$, 30090, Fluka) dissolved in ‘normal’ saline (~ 2 min, 37°C). For electrophysiological recordings, the somata of the AL neurons were visualized with a fixed stage upright microscope (BX51WI, Olympus, Hamburg, Germany) using a water-immersion objective (UMPLFL, 40x, 0.8 numerical aperture [NA], 3.3 mm working distance, Olympus) and infrared differential interference contrast optics (Dodt and Ziegglänzberger, 1994).

Whole-cell recordings

Whole-cell recordings were performed at room temperature (~24°C; RT) following the methods described by Hamill *et al.* (1981). Electrodes with tip resistances between 2.5-3.5 MΩ were fashioned from borosilicate glass (inner diameter 0.86 mm, outer diameter 1.5 mm, GB150-8P, Science Products, Hofheim, Germany) with a temperature-controlled pipette.
puller (PIP5, HEKA-Elektronik, Lambrecht, Germany). If not stated otherwise, the recording pipettes were filled with intracellular saline solution containing (in mM): 190 K-aspartate, 10 NaCl, 1 CaCl₂, 2 MgCl₂, 10 HEPES, 10 EDTA or EGTA, and adjusted to pH 7.2 with KOH, resulting in an osmolarity of ~415 mOsm and the cells were superfused constantly with extracellular saline solution containing (in mM): 185 NaCl, 4 KCl, 2 CaCl₂, 2 MgCl₂, 10 HEPES, 35 D-glucose. The solution was adjusted to pH 7.2 with NaOH and to 430 mOsm with glucose.

In the experiments in which it was crucial to quantitatively clamp the free intracellular Ca²⁺ to different levels, the solutions were made up with calculated Ca²⁺/Ca²⁺ chelator ratios to reach the desired concentration range, while Ca²⁺ influx via voltage gated Ca²⁺ channels was blocked by CdCl₂ (5 x 10⁻⁴ M). In these experiments the stated free intracellular Ca²⁺ concentrations are measured using a Ca²⁺ electrode. The calibration of the Ca²⁺ electrode was performed as described in Kay et al. 2008.

Whole-cell voltage- and current clamp recordings were made with an EPC9 patch clamp amplifier (HEKA-Elektronik) that was controlled by the program Patch Master (version 2.52, HEKA-Elektronik) running under Windows. The electrophysiological data were sampled at 20 kHz and low pass filtered at 2 kHz with a 4-pole Bessel-Filter. Compensation of the offset potential and capacitive currents was performed using the ‘automatic mode’ of the EPC9 amplifier. Whole-cell capacitance was determined by using the capacitance compensation (C-slow) of the amplifier. The liquid junction potential between intracellular and extracellular solution of 15.6 mV was calculated with Patcher's-Power-Tools plug-in (http://www3.mpibpc.mpg.de/groups/neher/index.php?page=aboutppt) for Igor Pro (Wavemetrics, Portland, Oregon) and was also compensated. To remove uncompensated leakage and capacitive currents, a p/6 protocol was used (Armstrong and Bezanilla 1974). Voltage errors due to series resistance (Rₛ) were minimized using the Rₛ-compensation of the EPC9. Rₛ was compensated between 50% and 90% with a time constant (τ) of 100 μs. To reduce synaptic input during the current clamp recordings, 10 μM CNQX (6-cyano-7-nitroquinoxaline-2,3-dione, C127, Sigma-Aldrich), 50 μM DL-AP5 (DL-2-amino-5-
phosphonopentanoic acid, BN0086, Biotrend), 100 µM PTX (picrotoxin, P1675, Sigma Aldrich), 5 µM CGP-54626 hydrochloride (BN0597, Biotrend), and 100 µM mecamylamine hydrochloride (M9020, Sigma-Aldrich) or 50 µM tubocurarine (93750, Sigma Aldrich)) was added to the extracellular saline. These chemicals block glutamate-, GABA$_{A}$-, GABA$_{B}$-, and nicotinic acetylcholine receptors, respectively. Initially we used tubocurarine to block nicotinic synaptic transmission. To avoid potential interactions with SK channels it was replaced by mecamylamine, which has been shown to block nicotinic transmission in the antennal lobe of P. americana (Warren and Kloppenburg 2014).

The protocols for each set of the voltage clamp experiments are given in RESULTS. Current density was calculated as the ratio between current and whole-cell capacitance. To analyze changes in electrophysiological properties during the occlusion experiments, series of hyperpolarizing and depolarizing current pulses (500 ms) were applied under current clamp from a membrane potential of -60 mV. Cell input resistance was determined with series of small hyperpolarizing current pulses (20 pA - 80 pA; 20 pA increments) and the action potential waveform was analyzed during depolarizing current pulses (30 pA – 210 pA; 30 pA increments). Action potential related parameters were compared from selected spike trains, which had similar instantaneous frequencies (16Hz - 18Hz) before and during blocker application. Blocker effects on excitability (latency to first spike and number of spikes) were analyzed during current pulses (with the same amplitude before and during blocker application) with a 'control latency' of at least 100 ms.

Current isolation

$I_{k(Ca)}$ was isolated using a combination of pharmacological blockers, appropriate holding potential, and digital current subtraction protocols, based on protocols that have been effective in insect preparations (Heidel and Pflüger 2006; Husch et al. 2009; Kloppenburg and Hörner 1998; Kloppenburg et al. 1999b; Lee et al. 2014; Mercer et al. 1995, 1996; Pym et al. 2006; Ryglewski and Duch 2009; Schäfer et al. 1994). Voltage-activated transient Na$^+$
currents were blocked by tetrodotoxin (10^{-6} \text{ M}, \text{TTX, T-550, Alomone, Jerusalem, Israel}). The transient K^+ current (I_A) was blocked with 4-aminopyridine (4 \times 10^{-3} \text{ M}, 4-AP, A78403, Sigma-Aldrich). Ca^{2+} currents were blocked by CdCl_2 (5 \times 10^{-4} \text{ M}). I_{K(Ca)} could be eliminated indirectly by blocking the Ca^{2+} currents by CdCl_2. To compensate for changes in osmolarity, the glucose concentration was appropriately adjusted. Details of recording solutions and voltage protocols for each set of experiments are given in the Results.

Recordings from dopaminergic neurons of the mouse substantia nigra

All animal procedures were conducted in compliance with protocols approved by local government authorities (Bezirksregierung Köln, Cologne, Germany) and were in accordance with National Institutes of Health guidelines. Experiments were performed on brain slices from 12 weeks old female and male C57/Bl6 mice. Dopaminergic neurons of the substantia nigra were recorded in the whole-cell configuration following previously described experimental procedures (Hess et al. 2013; Könner et al. 2011). The extracellular saline contained (in mM): 125 NaCl, 2.5 KCl, 1.2 NaH_2PO_4, 10 HEPES, 2 MgCl_2, 5 glucose, 21 NaHCO_3, 2 CaCl_2, adjusted to pH 7.2 with NaOH resulting in an osmolarity of ~310 mOsm. The patch pipettes were filled with (in mM): 128 K-D-gluconat, 10 KCl, 10 HEPES, 2 MgCl_2, 0.1 EGTA, 3 ATP, 0.3 GTP, adjusted to pH 7.3 with KOH resulting in an osmolarity of ~300 mOsm.

Data analysis

Calculated values are given as mean ± standard deviation. For IC_{50} values the 95% confidence intervals are presented in parentheses. When comparing significance between two groups of data a paired two-tailed t test was used, when comparing three groups of data ANOVA was used with a Tukey’s post-hoc test. A significance level of 0.05 was accepted for all tests. Statistical significance is represented by one, two, or three asterisks displayed between groups of data in the figures, which represent a p-value ≤ 0.05, ≤ 0.01, and ≤ 0.001,
respectively. We used the software Igor Pro 6.0.1 (Wavemetrics, including the Patcher's PowerTools plug-in) for analysis of electrophysiological data and GraphPad Prism 5 (GraphPad Software, San Diego, CA) for statistical analysis.

Single cell labeling

To label individual cells, 1% (w/v) biocytin (B4261, Sigma-Aldrich, Taufkirchen, Germany) was added to the pipette solution. After the electrophysiological recordings, the brains were fixed in Roti-Histofix (2-3 h, TR; P0873, Carl Roth, Karlsruhe, Germany) at room temperature (RT). Subsequently the brains were rinsed in phosphate buffered saline (PBS, 3 x 20 min, RT). All brains were processed as whole-mounts. To facilitate the streptavidin penetration, the brains were treated with a commercially available collagenase/dispase mixture (1 mg · ml⁻¹, 269638, Roche Diagnostics, Mannheim, Germany) and hyaluronidase (1 mg · ml⁻¹, H3506, Sigma-Aldrich, Taufkirchen, Germany) in PBS (20 min, 37°C), rinsed in PBS (3 x 10 min, 4°C), incubated in PBS containing 1% (w/v) Triton X-100 (A1388, Applichem, Darmstadt, Germany) and 10% normal goat serum (40 min, RT, S-1000, Linaris, Wertheim, Germany) and rinsed again in PBS (3 x 10 min, 4°C). Afterwards, the brains were incubated in Alexa Fluor 633 (Alexa 633) conjugated streptavidin (1:400, 1-2 days, 4°C, S21375, Life technologies, Darmstadt, Germany) that was dissolved in PBS containing 10% (v/v) normal goat serum. Brains were rinsed in PBS (3 x 10 min, 4°C), dehydrated, and cleared and mounted in methylsalicylate (M6752, Sigma-Aldrich, Taufkirchen, Germany).

The fluorescence images were captured with a confocal microscope (LSM 510, Carl Zeiss, Göttingen, Germany) equipped with Plan-Neofluar 10x (0.3 NA), Plan-Apochromat 20x (0.75 NA), and Plan-Apochromat 63x (1.4 NA Oil) objectives. Streptavidin-Alexa 633 was excited with a He-Ne Laser at 633 nm. Emission of Alexa 633 was collected through a 650 nm long-pass filter. Scaling, contrast and brightness adjustment, and z-projections were performed with ImageJ (version 1.47v) and the WCIF plugin bundle (www.uhnresearch.ca/facilities/wcif/). For overview images overlapping image stacks were
RESULTS

In most neurons Ca2+ dependent K+ currents are crucial in shaping their intrinsic firing properties. Here we aimed to characterize $I_{K(Ca)}$ in uPNs, which are key components of the insect olfactory system. The study was performed in two steps. First we characterized the functional properties of $I_{K(Ca)}$ in uPNs with whole-cell voltage clamp recordings in an intact brain preparation of male *P. americana*. Second, we used occlusion experiments, in which portions of $I_{K(Ca)}$ were pharmacologically blocked, to better understand the functional role of $I_{K(Ca)}$ in shaping the electrophysiological properties of uPNs.

The recordings were performed under visual control from cell bodies in the ventral portion of the ventrolateral somata group (VSG) (Distler 1990; Fusca et al. 2013, 2015; Husch et al. 2009) in an intact brain preparation. These somata belong mostly to a relatively homogeneous population of uPNs. During the recordings the neurons were labelled with biocytin/streptavidin to confirm the identity of the recorded neurons. Each of the recorded uPNs had arborizations in a single glomerulus and sent its axon through the medial antennal lobe tract (mALT) to the protocerebrum (Malun et al. 1993; Nishino et al. 2003, 2010; Watanabe et al. 2010, 2012), innervating the mushroom body calyces and the lateral horn (Fig. 1 A1-A4). Since we did not find any systematic differences in the electrophysiological properties that would justify a separation into distinct uPN classes, we pooled the data for the analysis. It has yet to be shown if other PN types have similar properties.

Isolation of $I_{K(Ca)}$.

$I_{K(Ca)}$ was isolated using a combination of pharmacological tools, appropriate holding potentials, and current subtraction protocols (Fig. 1 B-E). The preparation was superfused with saline containing 10-6 M TTX and 4 x 10-3 4-AP. If not stated otherwise the Ca2+
concentration during the voltage clamp experiments was 1 mM and the neurons were held at
-60 mV between voltage protocols. As a result of these current isolation protocols the current
profiles were clearly dominated by $I_{K(Ca)}$, but they may still have included small residuals of
other currents. The current waveforms did not indicate significant voltage control problems
(e.g. no delay of current onset, no jumps in the voltage-dependence), suggesting that they
originated mostly from well voltage-clamped regions. Given the long, thin primary neurite, we
assume that a major portion or all of the currents we measured originated from the cell
bodies.

To determine the current-voltage (I-V) relation, two series of 300 ms voltage pulses
were delivered in 10 mV increments between -60 and +60 mV (Fig. 1 B). During the second
series the extracellular saline additionally contained 5×10^{-4} M CdCl$_2$ (Fig. 1 C), which
completely abolished voltage-activated Ca$^{2+}$ currents (Husch et al. 2008). Accordingly, under
Cd$^{2+}$ the peak current was drastically reduced and the inverted U-shape of the I-V relation
was eliminated. The difference between the 'untreated' and the 'Cd$^{2+}$-treated' current series
was defined as $I_{K(Ca)}$ (Fig. 1 D). When defined like this, $I_{K(Ca)}$ contains I_{Ca}. Since the inward I_{Ca}
is very small compared to the whole current (~5%; Fig. 7) it does not affect the conclusions of
the experiments. $I_{K(Ca)}$ activated with voltage steps more depolarized than -40 mV and
consisted of a fast and slowly decaying component. This decay kinetics during a sustained
voltage pulse reflected the inactivation of I_{Ca} (Husch et al. 2009). $I_{K(Ca)}$ had a pronounced
inverted U-shaped I-V relation (Fig. 1 E; Fig. 2 A-C) which mirrored the I-V relation of I_{Ca}
(Husch et al. 2009). On average the maximal peak current was 21.3 ± 6.1 nA (n=7). Given a
mean whole-cell capacitance of 17.9 ± 3.7 pF, this corresponded to a mean current density
of 1.23 ± 0.46 nA·pF$^{-1}$. On average the maximal peak current was reached at 17 ± 11 mV
(n=7) and decreased at more depolarized voltage steps as the driving force for Ca$^{2+}$ declined.
Note that these values differed from the maxima of the mean I-V and of the current density-V
plots, since the membrane potential at which the maximal currents occurred varied between
cells (Fig. 2 A-C). Assuming that the main charge carrier is K$^+$ this corresponds to a
conductance density of 11 ± 4.7 nS·pF$^{-1}$ (110 ± 47 pS·μm$^{-2}$). Increasing the extracellular
Ca$^{2+}$ concentration from 1 mM to 6 mM altered the I-V relation from an inverted U-shaped to a more linearly increasing I-V relation (Fig. 2D).

Calcium dependence of $I_{K(Ca)}$.

Our first series of experiments demonstrated that $I_{K(Ca)}$ is voltage and Ca$^{2+}$ dependent. However, the exact time course and amplitude of this outward current are complex functions of membrane potential, intracellular Ca$^{2+}$ concentration at the K_{Ca} channel, voltage and Ca$^{2+}$ dependence of I_{Ca}, and the Ca$^{2+}$ dependence of the underlying K_{Ca} channels. Accordingly, only limited conclusions about the intrinsic activation and inactivation properties can be made from the shape of whole-cell currents activated by simple depolarizing voltage steps. To further study the Ca$^{2+}$ dependence of $I_{K(Ca)}$ we used two-step voltage protocols (Solaro et al. 1995). A test pulse depolarized the membrane to +60 mV, where virtually no voltage activated Ca$^{2+}$ influx occurs, since the membrane voltage approaches the Ca$^{2+}$ equilibrium potential. The +60 mV test pulse was preceded by depolarizing voltage pulses (Ca$^{2+}$ loading-steps) of varying amplitude (Fig. 3A) or duration (Fig. 3B) which modified the Ca$^{2+}$ influx and thereby the intracellular Ca$^{2+}$ concentration in the vicinity of the K_{Ca} channel. Thus, during the +60 mV test pulse, $I_{K(Ca)}$ was activated a) by the strongly depolarized membrane potential and b) by the Ca$^{2+}$ resting level plus the varying amount of Ca$^{2+}$ delivered by I_{Ca} during the loading-pulse. Taking into account that I_{Ca} inactivates during a sustained voltage pulse, the instantaneous Ca$^{2+}$ influx during the loading-pulse depended a) on the potential of the loading-pulse and b) on the duration of I_{Ca} activation.

In a first set of experiments we used 200 ms loading-steps from -60 mV to +60 mV with 10 mV increments. This voltage range covered the complete voltage operating range of I_{Ca} in uPNs (Husch et al. 2009). During the loading-steps $I_{K(Ca)}$ was activated (Fig. 3A,B) as shown already in Fig. 1. Figure 3A1 shows the current in response to a +60 mV test pulse that was preceded by loading-pulses to +10 mV (large Ca$^{2+}$ influx) and to +60 mV (virtually no Ca$^{2+}$ influx) (compare with Fig. 2A-C). The Ca$^{2+}$ influx that is induced by the +10 mV pulse is terminated at the start of the +60 mV test pulse. Accordingly, during the +60 mV test
pulse \(I_{K(Ca)} \) was activated by the depolarized membrane potential and the residual \(Ca^{2+} \) from the +10 mV loading-pulse. Thus, \(I_{K(Ca)} \) that was activated during the test pulse is transient with fast deactivation (Fig. 3 A1), whereby the time course of the deactivation is strongly dependent on the decaying residual intracellular \(Ca^{2+} \) concentration. The whole experiment with the complete set of loading-pulses is shown in Figure 3 A2-A3. Plotting the transient peak \(I_{K(Ca)} \) during the test pulses over the potentials of the loading-pulses (Fig. 3 A4) revealed inverted U-shaped relations with an average maximum of 11.7 ± 13.3 mV (n = 6), which is within the voltage range where \(I_{Ca} \) has its maximum (Husch et al. 2009). The mirrored \(I-V \) relations of \(I_{Ca} \) and \(I_{K(Ca)} \) clearly demonstrated the strong \(Ca^{2+} \) dependence of \(I_{K(Ca)} \).

In a second set of experiments the +60 mV test pulse was preceded by loading-steps with increasing duration from 5 ms to 400 ms (Fig. 3 B). For each experiment the loading-step voltage was set to the value at which we observed the maximal current during the +60 mV test pulse in the first part of the experiment (previous paragraph). Due to the inactivation of \(I_{Ca} \) during a sustained depolarization (Husch et al. 2009) the instantaneous \(Ca^{2+} \) influx at the end of each loading-pulse was decreasing with increasing duration of the loading-pulses. Therefore, the amplitude of the transient peak \(I_{K(Ca)} \) during the +60 mV test pulses decreased with increasing loading-pulse duration (Fig. 3 B1-B2), again demonstrating the strong \(Ca^{2+} \) dependence of \(I_{K(Ca)} \).

Voltage dependence of \(I_{K(Ca)} \)

Next we studied the steady state voltage dependence, the voltage inactivation during a sustained depolarization, and the \(Ca^{2+} \) dependence directly and independently of each other. A series of voltage pulses was applied in 10 mV increments between -60 mV and +60 mV, while the cytosolic \(Ca^{2+} \) concentration was clamped at different concentrations using an EDTA or EGTA - \(Ca^{2+} \) buffering system and by blocking \(I_{Ca} \) with 5 x 10^{-4} M CdCl\(_2\). The concentration of free cytosolic \(Ca^{2+} \) [\(Ca^{2+} \)] was clamped at 56 µM, 143 µM, mM, 540 µM, or 1800 µM. These values were measured using a \(Ca^{2+} \) electrode. Under clamped [\(Ca^{2+} \)], \(I_{K(Ca)} \) did not inactivate during a sustained voltage pulse (Fig. 4 A,B), showing directly that the
decay of $I_{K(Ca)}$ as shown in Figure 1 depends on the I_{Ca} kinetics. At all cytosolic Ca\(^{2+}\) concentrations $I_{K(Ca)}$ increased with increasing depolarization showing a clear voltage dependence for steady state activation (Fig. 4). Comparing conductance-voltage (G-V) relations for the different [Ca\(^{2+}\)], showed that increasing Ca\(^{2+}\) concentrations lowered the voltage threshold for activation of $I_{K(Ca)}$ and the voltage for half-maximal activation ($V_{0.5,act}$) (Fig 4 C,D). For example: $V_{0.5,act}$ was 125±12 mV ($n = 5$) at [Ca\(^{2+}\)]\(_{i}\) = 56 µM and 50±14 mV ($n = 6$) at [Ca\(^{2+}\)]\(_{i}\) = 1800 µM ($p < 0.02$; unpaired test). We did not observe a 'Ca\(^{2+}\) block' at high [Ca\(^{2+}\)].

Effects of apamin, charybdotoxin and iberiotoxin on $I_{K(Ca)}$.

In principle depolarizing voltage steps with the resulting Ca\(^{2+}\) influx can activate both SK and BK channels. Here we tested the effect of apamin, charybdotoxin (CTX) and iberiotoxin (IbTX) on $I_{K(Ca)}$, which are toxins that have been shown to block specific components of $I_{K(Ca)}$ in vertebrates (Bennett et al. 2000; Blatz and Magleby 1986; Faber and Sah 2003; Fioretti et al. 2004; Galvez et al. 1990; Ghatta et al. 2006; Giangiacomo et al. 1992; Kaczorowski et al. 1996; Pineda et al. 1992; Wolfart et al. 2001). Apamin blocks SK (K\(_{Ca}\) 2.1, K\(_{Ca}\) 2.2, K\(_{Ca}\) 2.3) channels and iberiotoxin blocks BK (K\(_{Ca}\) 1.1) channels. Charybdotoxin not only blocks BK (K\(_{Ca}\) 1.1) channels but has also been shown to block IK (K\(_{Ca}\) 3.1) and K\(_{V}\) (K\(_{V}\) 1.2; K\(_{V}\) 1.3) channels. Ideally such blockers could be used a) for occlusion experiments during current clamp recordings to analyze the role of $I_{K(Ca)}$ in shaping the intrinsic firing properties of uPNs and b) to get information about the molecular identity of the channels that mediate $I_{K(Ca)}$ in uPNs.

Both ChTX and IbTX reduced $I_{K(Ca)}$ in a concentration dependent way (Fig. 5 A,B) while apamin had no effect (data not shown). The concentration-response relations were determined with concentrations ranging from 50 pM to 100 nM and were well fit with the sigmoidal relation

\[
F(x) = Bottom + \frac{(Top - Bottom)}{1 + 10^{(x-x_c)/20}}
\]
(Fig. 5 B). CTX started to block $I_{K(Ca)}$ at concentrations higher than ~100 pM and completely abolished $I_{K(Ca)}$ at concentrations higher than ~30 nM. The concentration response relation had an IC$_{50}$ of 2.7 nM (1.8 nM – 3.8 nM). IbTX started to block $I_{K(Ca)}$ at concentrations around 100 pM and blocked maximally ~60% of $I_{K(Ca)}$ at concentrations of ~10 nM and higher. The concentration response relation had an IC$_{50}$ of 157 pM (53.7 pM to 460 pM). Apamin was applied in concentrations up to 1 µM with no detectable effect on $I_{K(Ca)}$. Since previous work had shown that I_{SK} in insect neurons can be insensitive to apamin (Abou Tayoun et al. 2011; Wicher et al. 2001), we used voltage clamp protocols, which have been used to evoke I_{SK} in rodents (Chen et al. 2014; Wolfart et al. 2001), to probe for SK channels in uPNs. In these experiments neurons were held at -60 mV. To elicit I_{SK} a 100 ms depolarizing voltage pulse (Ca$^{2+}$ loading-pulse) to 0 mV was applied, that was preceded by a 1 s hyperpolarizing pulse to -80 mV. In dopaminergic substantia nigra neurons of mice this protocol evoked an apamin (100 nM) sensitive I_{SK} (Fig. 6 A). Using the same protocol, we did not detect I_{SK} in uPNs (Fig. 6 B). To ensure the 'right parameter space' of the loading-pulse, its amplitude (-40 mV to +50 mV) and duration (10 ms to 200 ms) were varied.

Since CTX (100 nM) completely blocked $I_{K(Ca)}$, we compared the residual currents after the direct CTX block of $I_{K(Ca)}$ with the residual currents after the indirect block of $I_{K(Ca)}$ using Cd$^{2+}$ (Fig. 7). As expected, in contrast to the Cd$^{2+}$ block, the residual current after CTX block still contained I_{Ca} (Fig. 7E).

The role of $I_{K(Ca)}$ on spike waveform

Clearly odor responses and tuning profiles of uPNs are determined by their synaptic input and by their intrinsic electrophysiological properties. In synaptically isolated uPNs depolarizing current injections induced trains of action potentials with fairly regular firing patterns. Typically, the spike frequency increased during a prolonged depolarization. We did not observe spike frequency adaptation. To better understand the role of $I_{K(Ca)}$ in mediating the intrinsic electrophysiological properties we performed occlusion experiments under...
current clamp in which $I_{K(Ca)}$ was partially blocked by the $I_{K(Ca)}$ blockers CTX or IbTX. In synaptically connected neurons application of 100 nM CTX, which blocked 100% of $I_{K(Ca)}$, resulted in an unstable membrane potential and spontaneous high frequency bursts of action potentials (data not shown). These drastic effects of completely blocking $I_{K(Ca)}$ indicated the important role of $I_{K(Ca)}$ in shaping the intrinsic electrophysiological and synaptic properties of AL neurons. Based on these experiments the blocker concentration was reduced to block maximally 60% to 80% of $I_{K(Ca)}$, and we also blocked synaptic input pharmacologically (see METHODS). Before, during and after the application of the $I_{K(Ca)}$ blockers, we applied current injection protocols to analyze a set of intrinsic electrophysiological properties. These included resting membrane potential, cell input resistance, action potential repolarization rate, action potential width, action potential afterhyperpolarization, latency to the first action potential upon depolarizing current injection, firing threshold, and number of elicited action potentials. Details of the current clamp protocols are given in METHODS.

Charybdotoxin. 10 nM CTX, which blocked ~80% of $I_{K(Ca)}$ (Fig. 5), changed the action potential waveform significantly (Fig. 8; Fig. 9A). The maximal rate of action potential repolarization was reduced from -174 ± 16 to $-119 \pm 10 \text{ mV} \cdot \text{s}^{-1}$ ($p<0.001$; n = 10; Fig. 9 A1). Accordingly, the spike width at half-maximal amplitude was increased from $505 \pm 60 \mu\text{s}$ to $668 \pm 40 \mu\text{s}$ ($p<0.001$; n = 10; Fig. 9 A2) and the action potential afterhyperpolarization was reduced ($p<0.001$; n = 10; Fig. 9 A3). During constant 500 ms depolarizing current pulses, the latency to the first spike decreased from $252 \pm 106 \text{ ms}$ to $123 \pm 46.8 \text{ ms}$ ($p < 0.01$; n = 10; Fig. 9 A4) and the number of spikes increased from 6 ± 3 to 13.3 ± 2.8 ($p < 0.001$; n = 10; Fig. 9 A6). The threshold for spike initiation (Fig. 9 A5), the resting membrane potential and cell input resistance (measured around the resting membrane potential) did not change (data not shown). All of the observed CTX effects were at least in part reversible.
Iberiotoxin. IbTX was applied at concentrations of 100 nM IbTX, where it had its maximal effect and blocked ~60% of $I_{K(Ca)}$ (Fig. 5). Generally, 100 nM IbTX had similar but weaker effects than 10 nM CTX. IbTX decreased the repolarization rate from $194 \pm 26 \, \text{V} \cdot \text{s}^{-1}$ to $130 \pm 34 \, \text{V} \cdot \text{s}^{-1}$ ($p<0.001; \, n = 11$; Fig. 9 B1), increased spike width from $430 \pm 49 \, \mu\text{s}$ to $561 \pm 125 \, \mu\text{s}$ ($p<0.001, \, n = 11$; Fig. 9 B2), and reduced the action potential afterhyperpolarization ($p<0.001; \, n = 11$; Fig. 9 B3). The latency to the first spike decreased from $146 \pm 20 \, \text{ms}$ to $95 \pm 53 \, \text{ms}$ ($p < 0.05; \, n = 7$; Fig. 9 B4) and the number of spikes increased from 6.5 ± 1.5 to 9.6 ± 2 ($p < 0.05; \, n = 7$; Fig. 9 B6). All these effects were reversible upon wash out. IbTX had no significant effects on firing threshold (Fig. 9 B5), cell input resistance (measured around the resting membrane potential), and resting membrane potential (data not shown).

Apamin. In agreement with our voltage clamp experiments, in which apamin had no effect on $I_{K(Ca)}$ and in which we did not detect I_{SK} (Fig. 6), there was no effect of 1 μM apamin on the membrane potential or spike related properties (Fig. 9C).

DISCUSSION

The overall goal of this study was to characterize $I_{K(Ca)}$ in uPNs. In the insect brain uPNs form the principal pathway from the AL to the protocerebrum, where centers for multimodal sensory processing and learning, and relays for innate behaviors are located (Davis 2004; Heimbeck et al. 2001; Heisenberg 2003; Stopfer 2014). Ca$^{2+}$-activated currents are an important link between the intracellular signaling system and the membrane potential of the cell. In most neuron types $I_{K(Ca)}$ is pivotal for shaping intrinsic electrophysiological properties. Accordingly, we performed the study in two steps. First, we characterized the functional properties of $I_{K(Ca)}$. Second, we used occlusion experiments, in which portions of $I_{K(Ca)}$ were pharmacologically blocked, to reveal the role of $I_{K(Ca)}$ in shaping the intrinsic electrophysiological properties of uPNs. For all recordings we used the whole-cell patch
clamp configuration combined with single cell labeling in an intact, adult brain preparation of
P. americana.

In general, \(I_{K(Ca)} \) in uPNs was similar to \(Ca^{2+} \)-activated \(K^{+} \) currents found in other insect neurons (Derst et al. 2003; Grolleau and Lapied 1996; Grünewald 2003; Heidel and Pflüger 2006; Kulke et al. 2014; Lucas and Shimahara 2002; Perk and Mercer 2006; Pézier et al. 2007; Ryglewski and Duch 2009; Schäfer et al. 1994). \(I_{K(Ca)} \) had the typical inverted U-shaped \(I-V \) relation and \(I_{K(Ca)} \) decayed during a sustained depolarizing voltage pulse, but did not inactivate when \([Ca^{2+}]_{i}\) was clamped to constant values. The strong \(Ca^{2+} \) dependence of \(I_{K(Ca)} \) is corroborated by the inverted U-shaped \(I-V \) relation that mirrored the \(I-V \) relation of \(I_{Ca} \) and also the decay kinetics during a sustained voltage pulse, which reflected the inactivation kinetics of \(I_{Ca} \) (Husch et al. 2009). The \(Ca^{2+} \) dependence is also shown in the loading-pulse experiments where \(I_{K(Ca)} \) activated transiently with a very fast decay during the +60 mV test pulse (where virtually no \(Ca^{2+} \) is entering the cell). The transient activation and fast decay of \(I_{K(Ca)} \) in these experiments indicated a close spatial relation of the \(Ca^{2+} \) and \(K_{Ca} \) channels (Augustine et al. 2003; Berkefeld et al. 2010) and efficient \(Ca^{2+} \) sequestration (Pippow et al. 2009) leading to a fast attenuation of the \(Ca^{2+} \) microdomain in the vicinity of the \(K_{Ca} \) channel. Taken together our data demonstrate that \(I_{K(Ca)} \) is directly linked to the voltage-activated \(Ca^{2+} \) influx and that it is strongly \(Ca^{2+} \) and voltage dependent. Following the classical biophysical classification of \(K_{Ca} \) channels our results suggest that \(I_{K(Ca)} \) in uPNs is mediated by BK channels, since it required depolarized membrane potential and elevated intracellular \(Ca^{2+} \).

This notion is in line with our pharmacological experiments. We found sensitivity of \(I_{K(Ca)} \) to IbTX and CTX, but not to apamin. However, these experiments have to be interpreted with caution. IbTX, which is considered a specific BK (\(K_{Ca} 1.1 \)) channel blocker, reduced \(I_{K(Ca)} \) by 60%, while the less specific blocker CTX completely abolished \(I_{K(Ca)} \). CTX not only blocks BK (\(K_{Ca} 1.1 \)) channels but has also been shown to block IK (\(K_{Ca} 3.1 \)) and KV (\(K_{V} 1.2; K_{V} 1.3 \)) channels (Garcia et al. 1995). Accordingly, this might indicate that IK channels also contribute to \(I_{K(Ca)} \). Given that our current isolation protocol selected for true \(Ca^{2+} \) dependent currents, KV channels did not contribute to the current that we define as \(I_{K(Ca)} \). Our results are
also in line with previous work from Derst et al. (2003) who cloned pSlo, the BK channel α subunit of *P. americana*, and expressed it in HEK 293 cells. The resulting whole-cell current had similar properties as $I_{K(Ca)}$ in uPNs. It had a clear Ca^{2+} and voltage dependence, and did not inactivate under clamped $[Ca^{2+}]_i$.

Apamin, which is considered a specific SK channel ($K_{Ca} 2.1, K_{Ca} 2.2, K_{Ca} 2.3$) blocker (Adelman et al. 2012), had no effect on $I_{K(Ca)}$. Since previous work has shown that SK channels in insects can be insensitive to apamin (Abou Tayoun et al. 2011; Wicher et al. 2001), we used voltage clamp protocols that induce I_{SK} in dopaminergic midbrain neurons of mice. These experiments did not reveal I_{SK} in uPNs and suggest that uPNs of *P. americana* do not express SK channels. While these results seem somewhat unexpected, they are in agreement with in situ hybridization experiments which suggest that SK channels are indeed not expressed in AL neurons of *P. americana* (S. Korsching, V. Zapilko and D. Fusca, personal communication). A straightforward and tempting conclusion is that the lack of I_{SK} makes the resting membrane potential of uPNs relatively independent of the resting $[Ca^{2+}]_i$, since I_{BK} requires high $[Ca^{2+}]_i$ and a depolarized membrane potential.

The occlusion experiments with high concentrations of CTX, which completely blocked $I_{K(Ca)}$ (I_{BK}), increased synaptic input and excitability of uPNs indicated the significant physiological role of $I_{K(Ca)}$ in neurons of the AL network. To reveal in more detail how $I_{K(Ca)}$ contributes to shaping the intrinsic electrophysiological properties of uPNs, we performed experiments on synaptically isolated uPNs in which $I_{K(Ca)}$ was only moderately blocked. A 60% to 80% block of $I_{K(Ca)}$ (I_{BK}) significantly changed the action potential waveform and excitability, which is in agreement with the roles of $I_{K(Ca)}$ that have been observed in other neuron types of different species (Berkefeld et al. 2010; Faber and Sah 2003; Greffrath et al. 2004; Kadas et al. 2015). By linking free $[Ca^{2+}]_i$ and membrane potential BK channels contribute to regulating the intrinsic electrophysiological properties. BK channels are rapidly activated during the rising phase of the action potential by the depolarizing membrane potential and the voltage dependent Ca^{2+} influx. Once activated, BK channels influence the rate of action potential repolarization and action potential afterhyperpolarization (Berkefeld et
al. 2010; Faber and Sah 2003; Greffrath et al. 2004), thus they directly contribute to the control of action potential waveform and spike frequency (Berkefeld et al. 2010; Faber and Sah 2003; Greffrath et al. 2004; Kadas et al. 2015).

All the recordings in this study were performed in an intact brain preparation, in which the currents are not altered by any culturing procedure or in vitro development. Given that the complex arborizations are still intact, perfect voltage control across the whole neuron is impossible. The current waveforms usually did not indicate significant voltage control problems (e.g. no delay of current onset, no jumps in the $I-V$ relation) suggesting that they originated mostly from well voltage-clamped regions. Since we recorded from the soma, which has a long thin neurite connecting it to the rest of the cell, it is likely that the currents we have measured originate primarily from the cell body. Ionic currents generated by channels selectively located in very distal regions of the neuron may not be detectable by voltage-clamping the soma.

Because intrinsic electrophysiological properties of neurons are determined by the expressed ion channel types and by their expression ratio, we consider such a detailed analysis of the biophysical properties an important prerequisite to conductance-based models to gain a clear understanding of how olfactory signals are processed at the single cell and circuit level.

Acknowledgements
We thank Helmut Wratil for excellent technical assistance.

Grants
This work was supported by grant KL 762/5-1 from the Deutsche Forschungsgemeinschaft, a CONNECT grant, and a Max-Delbrück Award from the UoC to PK, and an Alexander von Humboldt fellowship awarded to BW.
REFERENCES

Abou Tayoun AN, Li X, Chu B, Hardie RC, Juusola M, Dolph PJ. The Drosophila SK channel (dSK) contributes to photoreceptor performance by mediating sensitivity control at the first visual network. J Neurosci 31: 13897–13910, 2011.

FIGURE CAPTIONS

Fig. 1: Morphology of uniglomerular projection neurons and isolation of $I_{K(Ca)}$. A: Morphology of the recorded uPN revealed by labeling with biocytin-streptavidin via the patch pipette. A1: overview. The neuron innervated a single glomerulus and sent a single axon along the mALT to the mushroom body’s calyces (CA) and the lateral horn (LH). The position of the soma, which was lost during processing, is marked (★). A2-A4: higher magnification of the framed areas in A1. A1; A2: boutons in the calyces (A2) and in the LH (A3). A4: neurites in the single innervated glomerulus. B-E: isolation of $I_{K(Ca)}$. The holding potential was -60 mV. B: Currents were activated by 300 ms depolarizing steps from -60 mV to 60 mV in 10 mV increments. C: Current traces elicited by the same depolarizing steps as in B, during the application of a 5 x 10^{-4} M Cd$^{2+}$. D: subtraction of the C traces from the B traces yields $I_{K(Ca)}$. E: voltage-dependence for activation of $I_{K(Ca)}$. I-V relation and current density-V relation of $I_{K(Ca)}$. na, neural anterior; AL, antennal lobe; CA, calyx; GL, glomerulus; mALT, medial antennal lobe tract; l, lateral; LH, lateral horn; ★, soma location.

Fig. 2: Voltage-dependence of $I_{K(Ca)}$. A: I-V relation. B: current density-V relation. Current density was calculated from the ratio between $I_{K(Ca)}$ and the cell capacitance. C,D: normalized I-V relation ($I_{K(Ca)}$ as fractions of the maximal $I_{K(Ca)}$ for each neuron). A-C are based on the same original recordings with [Ca$^{2+}$]o=1 mM. The recordings in D were performed in [Ca$^{2+}$]o = 6 mM. Gray: individual cells; black: mean ± SD.

Fig. 3: $I_{K(Ca)}$ is dependent on the amplitude and duration of the "Ca$^{2+}$ loading-pulses". Test pulses depolarized the membrane to +60 mV where virtually no voltage activated Ca$^{2+}$ influx occurs, since the membrane approaches the Ca$^{2+}$ equilibrium potential. The test pulses were preceded by "Ca$^{2+}$ loading-pulses" of varying amplitude (A1-A4) or duration (B1-B3). A1-A4:
the +60 mV test pulses were preceded by 200 ms depolarizing Ca2+ loading-pulses of varying amplitude (-60 mV to +60 mV; 10 mV increments). A1: currents in response to the +60 mV test pulse preceded by loading-pulses to +10 mV (large Ca2+ influx) and to +60mV (virtually no Ca2+ influx). A2: same experiment as in A1 with the whole series of loading-pulses from -60 mV to +60 mV. A3: framed area of A2 in higher resolution. A4: I-V\textsubscript{loading} relation of \(I_{K(Ca)}\). The I-V\textsubscript{loading} relation shows \(I_{K(Ca)}\) at the beginning of the +60 mV test pulse plotted as a function of the loading-pulse voltage. B1-B3: the +60 mV test pulses were preceded by Ca2+ loading-pulses of varying duration (5 ms – 400ms). The loading-pulse amplitude was adjusted for each neuron to values where maximal loading occurred during the first part of the experiments (see A4). B1: currents in response to the + 60 mV test pulse that were preceded by 10 mV loading-pulses of varying duration. B2: \(I_{K(Ca)}\) at the beginning of the +60 mV test pulses (normalized to the maximal \(I_{K(Ca)}\) of each cell) plotted as a function of the loading-pulse duration. B3: The decay time constant of \(I_{K(Ca)}\) in dependence of the loading-pulse duration.

FIG. 4: Voltage and Ca2+ dependence of \(I_{K(Ca)}\). To measure the voltage and Ca2+ dependence of \(I_{K(Ca)}\) independently from the instantaneous Ca2+ influx, \(I_{K(Ca)}\) was recorded under voltage and [Ca2+]\textsubscript{i} clamp. The holding potential was -60 mV and voltage pulses were applied between -60 mV and +90 mV in 10 mV increments. The cytosolic Ca2+ concentration [Ca2+]\textsubscript{i} was clamped at 56 µM (n=5), 143 µM (n=5), mM, 540 µM (n=6) or 1800 µM (n=6) using an EDTA or EGTA - Ca2+ buffering system. Voltage activated Ca2+ currents were blocked by 5 x 10-4 M CdCl\textsubscript{2}. A: Under clamped [Ca2+]\textsubscript{i} \(I_{K(Ca)}\) did not inactivate during a sustained voltage pulse. Increasing Ca2+ concentrations increased the \(I_{K(Ca)}\) amplitude and at all Ca2+ concentrations \(I_{K(Ca)}\) increased with increasing depolarization. B: Example traces (different neurons) demonstrating the effect of increasing [Ca2+] on \(I_{K(Ca)}\). C: G-V relations for different [Ca2+]. Error bars are omitted for better visualization. D: Voltages for half-maximal activation (\(V_{0.5,act}\)) for different [Ca2+].
FIG. 5: Charybdotoxin and iberiotoxin reduce $I_{\text{K(Ca)}}$. A: Example traces (different neurons) demonstrating the effect of increasing concentrations of CTX (left) and IbTX (right) on $I_{\text{K(Ca)}}$. B: Concentration - response relation of CTX and IbTX. The curves are fits to a sigmoidal relation (Eq. 1). CTX had an IC$_{50}$ of 2.7 nM (1.8 nM – 3.8 nM) and IbTX had an IC$_{50}$ of 157 pM (53.7 pM - 460 pM).

FIG. 6: Uniglomerular projection neurons do not generate I_{SK}. A: In dopaminergic substantia nigra neurons of mice a short depolarizing voltage pulse (Ca$^{2+}$ loading-pulse), evoked Ca$^{2+}$ influx which activated an apamin sensitive I_{SK}. B: uPNs did not generate I_{SK}. The 100 ms loading-pulse to 0 mV was preceded by a 1 s hyperpolarizing step to -80 mV. The holding potential was -60 mV. The recordings are only shown for the framed region of the voltage protocol. p/n protocols were not applied. The apamin concentration was 100 nM in A and 1 µM in B.

FIG. 7: Comparison of direct and indirect "block" of $I_{\text{K(Ca)}}$ by CTX and Cd$^{2+}$ respectively. The holding potential in all recordings was -60 mV. Currents were activated by 300 ms depolarizing steps from -60 mV to +60 mV in 10 mV increments. A: whole cell currents of a uPN during TTX and 4-AP application. B,C: recordings of the same neuron as in A, during the additional application of CTX (B) and during the application of CTX and 5 x 10$^{-4}$ M Cd$^{2+}$ (C). D: Subtraction of the B traces from the A traces. E: Subtraction of the C traces from the B traces. F: I-V relation for the current traces shown in A-E.

Fig. 8: Example current clamp recording to demonstrate the CTX effect on action potential waveform.
FIG. 9: Summary and quantification of the charybdotoxin (A), iberiotoxin (B), and apamin (C) effects on electrophysiological properties (rate of repolarization [1], amplitude of afterhyperpolarization [2], width of half maximal amplitude [3], latency to first action potential during a depolarizing voltage step [4], action potential threshold [5], and number of action potentials during 500 ms depolarizing current pulses [6]). The schematics demonstrate how the parameters were measured; for details see METHODS. n values are given in the bars of each graph. * ≤ 0.05; ** ≤ 0.01; *** ≤ 0.001. Apa, apamin; CTL, control; CTX, charybdotoxin; IbTX, iberiotoxin; W, wash.
A. $I_{\text{K(Ca)}}$ (nA) vs. E_M (mV) at $[\text{Ca}^{2+}]_o = 1$ mM ($n = 7$)

B. $I_{\text{K(Ca)}}/C_M$ (nA/pF) vs. E_M (mV) at $[\text{Ca}^{2+}]_o = 1$ mM ($n = 7$)

C. I/I_{max} vs. E_M (mV) at $[\text{Ca}^{2+}]_o = 1$ mM ($n = 7$)

D. I/I_{max} vs. E_M (mV) at $[\text{Ca}^{2+}]_o = 6$ mM ($n = 18$)
$[\text{Ca}^{2+}]_i = 1800 \mu\text{M}$

$[\text{Ca}^{2+}]_i = 540 \mu\text{M}$

$[\text{Ca}^{2+}]_i = 143 \mu\text{M}$

$[\text{Ca}^{2+}]_i = 56 \mu\text{M}$

$V_{0.5, \text{act}} (\text{mV})$

[G/G_{\text{max}}]μM

$E_{\text{m}} (\text{mV})$

$V_{\text{off, } \text{act}} (\text{mV})$
A

-90 mV
0 mV
100 ms
5 nA
0.5 nM
5 nM
50 nM
Cd²⁺
control
IbTX
0.5 nM
5 nM
50 nM
100 nM
Cd²⁺
control

B

1.0
0.5
0.0
I / Iₘₚₓ

10⁻¹² 10⁻¹¹ 10⁻¹⁰ 10⁻⁹ 10⁻⁸ 10⁻⁷ 10⁻⁶
[blocker] (M)

CTX

0.0

10⁻⁵

CTX

IbTX

(blocker) (M)
A -60 mV +60 mV

B

C

D

E

F

(A - B)

(B - C)

I (nA)

EM (mV)

TTX, 4-AP, CTX

TTX, 4-AP, CTX, Cd^{2+}

TTX, 4-AP, CTX

TTX, 4-AP, CTX, Cd^{2+}

TTX, 4-AP

TTX, 4-AP

TTX, 4-AP, CTX

TTX, 4-AP, CTX, Cd^{2+}

A-B

0 10 20 30

-60 -40 -20 0 20 40 60

-60 mV +60 mV

100 ms

10 nA
Charybdotoxin

A1

- Repolarisation rate
- Width

A2

- Afterhyper-polarisation

A3

- Latency

A4

- Threshold

A5

- Number of APs

A6

- Firing

Iberiotoxin

B1

- Repolarisation rate
- Width

B2

- Afterhyper-polarisation

B3

- Latency

B4

- Threshold

B5

- Number of APs

B6

- Firing

Apamin

C1

- Repolarisation rate
- Width

C2

- Afterhyper-polarisation

C3

- Latency

C4

- Threshold

C5

- Number of APs

C6

- Firing