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Synopsis 

Computerized image analysis is becoming more routine in multiple sclerosis 

research. This article reviews the common types of task that are performed when 

producing quantitative measures of disease status, progression or response to 

treatment. These tasks encompass uniformity (bias) correction; registration; 

segmentation; image algebra and fitting; diffusion tensor imaging and tractography; 

perfusion assessment; and 3-D visualization. The aim of these steps is to output 

reproducible, quantitative assessments of MRI scans that can be performed on data 

generated by the many different scanning sites that may be involved in multi-centre 

studies. 
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Introduction 

Standard T1- and T2-weighting have formed the basis of contrast in most 

magnetic resonance (MR) images since the clinical utility of these types of scan was 

demonstrated by showing abnormal morphology or pathology (Error! Reference 

source not found.Error! Reference source not found.Error! Reference source 

not found.1, 2). For diagnostic purposes, a simple dual-echo T2-weighted image will 

allow the radiologist or clinician to assess the number, position and shape of tissue 

abnormalities in the brain and spinal cord, all of which are factors in making a 

differential diagnoses of multiple sclerosis (MS). Lesions that enhance with injectable 

contrast agents such as gadolinium DTPA (Gd-DTPA) are most easily seen on T1-

weighted images (Error! Reference source not found.3). 

However, the need to make quantitative measurements of factors that are 

more subtle, or open to subjective interpretation has long been recognized; for this, 

computerized analysis makes these sorts of measurement feasible or can assist in 

reducing any operator bias in the measurement, or even remove it completely. This 

review summarizes the tasks that are commonly applied in the analysis of MR 

images so that quantitative results can be presented. 

Uniformity (Bias) Correction 

MR images have an arbitrary intensity scale, where the actual intensity values 

depend on such factors as the receiver gain setting, as well as the sequence 

parameters (TR, TE) and tissue type. Furthermore, the intensity of a certain tissue 

type varies according to its position in the radio frequency (RF) transmitter and 

receiver coils, since the RF field and reception properties vary spatially. This 
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intensity non-uniformity (or bias) is most obvious in images acquired using surface 

receiver coils, such as those used for spinal cord imaging, but it is present in all MR 

scans (4Error! Reference source not found.). 

For quantitative image analysis which relies on relative intensities, this bias is 

obviously a problem, and several methods for its correction have been put forward. 

Ideally, the bias field can be measured at the time of scanning by running extra pulse 

sequences, and then corrected in situ. However, retrospective correction has been 

investigated by a number of groups (see ref. 5Error! Reference source not found. 

for a review). A basic assumption behind all the retrospective correction methods is 

that the bias field varies only slowly in space which, given that the bias field comes 

mainly from non uniformities in the RF field, is a reasonable assumption. Some 

methods model the bias field as a sum of smooth polynomial or trigonometric 

functions (6,7), whilst others assume that bias field is (spatially) piecewise uniform 

(8). Other methods integrate the classification of tissue types (such as white matter, 

gray matter and CSF) with bias field correction by making the assumption that all 

tissues in the same class should have a similar intensity (9). 

Accurate uniformity correction will become more important as the number of 

high-field scanners increases, and with the greater use of phased-array receiver 

coils for head imaging (Figure 1). Whatever the correction method, uniformity 

correction is used as a preprocessing step in a number of applications, particularly in 

image registration and segmentation.  

Registration 

Another common task that forms a part of many aspects of image analysis is 
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registration, where scans performed at different times are aligned so that the same 

anatomical locations can be superimposed (10). The time between scans may be of 

the order of a second or so, as is seen with fMRI where the registration corrects 

small amounts of patient movement. However, the time could be several years, in 

long-term follow-up studies of brain change. The scans may be performed with 

essentially the same type of contrast (for example, serial T1-weighted images used 

to assess atrophy (11)), or they may have a different contrast or even be collected 

using a different imaging modalities (for example, to integrate data about glucose 

metabolism using positron emission tomography (PET) scans with high-resolution 

structural MRI scans (12)). 

The process of registering images generally follows a common framework: by 

an iterative a process, a transform is calculated with distorts one scan (the 'floating 

image') so that it overlays another image (the 'base image') accurately. The 

parameters of the transform are adjusted to obtain a good match between the two 

images, and the goodness of the match is evaluated using a 'cost function'. The cost 

function is evaluated over the whole image (sometimes after background removal), 

and the choice of cost function is dictated by the types of image that are to be 

aligned. In cases where the images have very similar brightness and contrast (e.g., 

in fMRI time series), the root-mean-square difference or cross-correlation is most 

appropriate (13). Where images have similar contrast but different absolute intensity 

ranges (as can occur in images acquired with the same pulse sequence with a long 

time interval between acquisitions, or on different scanners) then the standard 

deviation of the intensity ratio can be useful (14). 

Where images are acquired with different contrast or with different modalities, 
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another class of cost function should be used. These rely on the assumption that 

although the intensities at the same anatomical location may not be similar across 

modalities, the intensities are consistent such that a certain tissue type will have a 

fairly constant intensity for any one modality. When the two images are closely 

aligned, a two-dimensional (joint) histogram of intensities formed from the images 

will therefore show sharp peaks, and any mis-alignment will cause a blurring of the 

histogram because tissues of different types will overlap. Woods and mutual 

information are amongst these types of cost function, and they are a measure of this 

blurring of the joint histogram (15). 

In order to compare images from different patients, it is necessary to 

transform them into a standard, anatomical space. One such space is based on the 

MNI brain atlas from the Montreal Neurological Institute. This was composed by 

registering the scans from a large sample of control subjects to an average brain that 

was previously created by transforming a large number of other scans to the 

standard space of Talairach and Tournoux (13). The original Talairach atlas (16) was 

created from a single, rather unrepresentative subject post mortem, which has 

resulted in some differences between the MNI atlas and the Talairach atlas. 

Nevertheless, for the purposes of identifying gross anatomical features, the MNI 

atlas serves well, and the disparity can largely be corrected by applying an additional 

transform (17). Therefore, after registering a set of scans to the MNI atlas, it is 

possible to compare image features between subjects, in anatomical space. 

One use of this type of registration to standard space is so-called voxel-based 

morphometry (VBM) analysis, such as that built into the Statistical Parametric 

Mapping (SPM) package from the Wellcome Trust Centre for Neuroimaging, London 
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(18). The goal of VBM is to allow the identification of significant differences in brain 

tissue between groups of subjects, and it allows the regional and anatomical 

variation to be visualized (19), revealing the subtle changes that can occur, and the 

differences between the different MS phenotypes. 

Most registration is done using a simple distortion to transform the image to 

be registered, such as the affine transform, a property of which is that it always 

preserves the straightness of straight lines when the transform is applied. This type 

of linear transform cannot therefore account for the complex differences in the 

shapes of the brain that occur between individuals; more complex general 

transforms are needed in this case. Registration using non-linear transforms is now 

becoming a much more mature procedure, although it it still very compute intensive. 

The deformation required to bring about registration is normally modeled as a sum a 

polynomial, trigonometric or radially-symmetric basis functions (20). It is used for 

inter-subject registration or for assessing atrophy within a subject (21). Figure 2 

shows an attempt to register an MS patient with a severely atrophied brain to a 

control subject, first using a simple affine transform, and then with non-linear 

registration using radial basis functions to model the deformation field (20). 

Considering the severity of the atrophy, the non-linear registration produces quite a 

good anatomical match between the patient and control. 

Image Segmentation 

Image segmentation refers to the process of splitting an image into multiple 

regions (sets of pixels). Segmentation of MRI scans is typically used to identify 

different types of tissue, and their boundaries, so that the volumes or shapes of the 
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individual tissues can be quantified or analysed further. 

Image segmentation can result in either a set of regions that, when combined, 

cover the entire image, or a set of object boundaries such that each of the pixels in a 

region has some similarity to the others in that object. The similarity may be a simple 

intensity similarity, or contain information about connectivity within a regions, or be 

based on some collective shape property. The objective is usually to determine 

regions that form a set of tissue types such as white-matter, gray-matter or MS 

lesion. 

Measurement of Lesion Volumes 

Probably the first and most straightforward use of segmentation in the field of 

MS research was to determine the volume of hyperintense lesions on T2-weighted 

images. The segmentation of MS lesions can be done by manually drawing around 

the boundary of the lesions whilst showing the scans slice-by-slice on a computer 

display. Using this process, it is quite possible to achieve reasonable reproducibility, 

but it is very labour intensive. Changes in lesion volumes are used as secondary 

outcomes measures in clinical trials of new putative treatments for MS, and the 

lesions may be hyperintense (22) on T2-weighted images, or hypointense on T1-

weighted images ('black holes') (23). Black hole lesions are thought to represent 

tissues with more severe cellular damage (24). 

Many workers have addressed the problem of reducing the amount of 

operator time and improving the reproducibility of the measurement of MS lesion 

volumes using computer-assisted or fully-automated computerized methods. 

Methods include edge detection and contour following (25,26), multi-parametric 
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image analysis (27,28,29), template-driven segmentation (31,32) and fuzzy 

connectedness (33). Of these, probably the one which is most commonly-used in 

clinical trials is one which still relies on operator judgement to identify the individual 

lesions, but which uses an edge detector to find the border of the lesion (26). The 

operator visually determines a fairly well-defined portion of the lesion boundary and 

clicks on it with the computer mouse; an edge detector selects the sharpest part of 

the boundary and a contour surrounding the lesion is generated by following a level 

of iso-intensity from the initial edge point. This simple method has been shown to 

considerably improve reproducibility compared to manual outlining (25). 

Many other methods are used by individual research groups for their own 

clinical and MRI research programmes. The reproducibilities are often shown to be 

better than manual identification and outlining, but they are often tested using data 

from only one MRI scanner with specific pulse sequence parameters. It may be that 

some of these methods do not transfer to the context of multi-centre clinical trials 

because they are sensitive to the subtle differences in images seen between 

different manufacturers for what are nominally the same pulse sequence 

parameters. 

Probably the most promising approaches are based on multi-parametric 

segmentation, where information from a number of scans (such as the two echoes of 

a dual-echo sequence, and FLAIR) are combined to segment the lesions based on 

the position of pixels in an N-dimensional intensity space (34). The number of 

dimensions is equal to the number of images and, in principle, the greater the 

number of images used, the higher will be the discriminating power that will allow 

lesion to be distinguished from other tissues. Fuzzy connectedness can be regarded 
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as an extension of multi-parametric methods, but it is a general method for image 

segmentation in which the object membership of pixels depends on the way they 

―hang together‖ spatially in spite of gradual variations in their intensity. For the task 

of measuring lesion volumes, Udupa et al. (33)Error! Reference source not found. 

adopted a three-part procedure: first was the manual identification by the operator of 

a few typical tissue types on the scan: MS lesion, normal white matter, normal gray 

matter, and CSF. Next, the fuzzy connectedness algorithm automatically identified 

―candidate‖ MS lesions, and in the final stage these candidates lesions were 

presented to the operator who reviewed them and accepted, rejected or modified 

them. Thus, the method implicitly recognized that human operators are good at 

identifying image features, but do not perform well when attempting to delineate the 

poorly-defined borders of the lesions. The operator time required to assess typical 

image sets from MS patients was between 2 and 20 minutes, depending on the 

number and complexity of the lesions. Another approach based on fuzzy 

connectedness principles incorporated ―domain knowledge‖ in the form of probability 

maps, which showed the probability of finding MS lesion tissue at any given 

anatomical location (35). This allowed the number of ―false positive‖ lesions to be 

greatly reduced, eliminating the need for review. However, it was still necessary for 

the operator to manually identify each MS lesion with a mouse click. 

Atrophy 

Brain and spinal cord atrophy measures are becoming standard in MS clinical 

trials, where the loss of neuronal tissue is thought to be an indicator of long-term 

irreversible tissue damage (36). This is slightly complicated by the phenomenon of 

'pseudo atrophy' where by the anti-inflammatory effect of some treatments causes a 
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rapid initial loss of brain volume because of a reduction in the amount of excess fluid 

in the brain. Brain atrophy is a normal feature of ageing, with progressive loss of 

tissue starting in early adulthood (37). However, the brain volume is highly variable 

amongst individuals. 

Brain atrophy can be measured either cross-sectionally or longitudinally. 

Cross-sectional measures estimate the total volume of brain tissue. However, since 

the cranial volume and brain size are so variable, the results are not easily compared 

except in studies of very large populations. One way to standardize the measures is 

to provide a 'normalized' brain volume, and there are really two ways to do this. The 

first is to divide the brain parenchymal volume by the cranial volume, since the 

cranial volume remains largely fixed throughout adult life (38). The second is to 

divide it by the sum of the parenchymal and CSF volumes to form what is known as 

the brain parenchymal fraction (BPF) (39). As atrophy occurs, the CSF-filled 

ventricles and sulci enlarge and the BPF reduces, and therefore the BPF is a highly-

effective measure of the state of atrophy which can be compared across individuals. 

In longitudinal studies, it is of course possible simply to measure the reduction in 

normalized brain volume over time. However, more sophisticated approaches first 

register the scans made at different time points; it then becomes possible not only to 

assess the gross change in tissue volume, but also to visualize the anatomical 

location of tissue loss (40). 

While there are several software packages that can be used to assess 

atrophy, it is necessary that they have a scan-rescan coefficient of variation of 

around 0.5% or better if they are to be useful for MS research. This allows 

differences in atrophy rates between groups of subjects to be assessed with 
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relatively small groups (typically 25-50) (41). Virtually all methods use high-resolution 

T1-weighted images (either multi-slice spin-echo or 3-D gradient-echo) as input, 

where the timing parameters are optimised to maximise contrast between the low-

intensity CSF and the parenchyma. As a pre-processing step, it is necessary to 

separate the cranial contents from other tissues such as scalp, eyes and facial 

tissues; this can be achieved in a variety of ways, but one of the most popular is the 

Brain Extraction Tool (42), which uses an expanding triangulated surface model 

which ―sticks‖ to the brain/CSF boundary as it expands from the centre of the brain. 

With sufficient image contrast, segmentation can then be achieved using an intensity 

threshold to separate brain from CSF (39). More sophisticated approaches assess 

gray matter, white matter and CSF volumes separately, allowing loss of different 

types of tissue to be assessed (37); however, this method is prone to errors due to 

the misclassification of MS lesions as gray matter. Taking this a stage further, a VBM 

approach allows the identification of the individual brain structures that are 

particularly subject to atrophy (19). 

It has also been shown that the spinal cord is subject to atrophy, and that the 

degree of atrophy is related to disability (43). The cord is of course a much smaller 

structure and, because of this, cord atrophy measurements have a much lower 

reproducibility (larger CoV) than those for the whole brain. A typical approach is to 

measure the cord area over a fairly limited portion of the cervical region. The cord 

can be segmented using methods similar to those used in the brain, either with a 

threshold to separate to CSF from the cord parenchyma (44), or using edge 

detection (43).  
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Magnetization Transfer 

Standard MRI detects signal only from hydrogen nuclei (protons) that are 

―mobile‖ (contained within a liquid)—if a hydrogen atom is part of a molecule that is 

large and cannot move about freely, then the signal from that hydrogen atom will 

decay too quickly to be seen using a clinical MRI scanner. Such protons are found in 

large molecules (macromolecules) such as large proteins, cell membranes, and 

myelin. However, the mobile protons are in constant motion and come into regular 

and intimate contact with the macromolecular protons, and the spin state (the proton 

magnetization state, which is measured with MRI) of the mobile protons can 

exchange with that of the macromolecular protons. This exchange of magnetization 

forms the basis of magnetization transfer imaging (MTI) (45).  

A magnetization transfer ratio (MTR) image is calculated from a pair of 

images acquired in an identical way, except that one has extra off-resonance RF 

pulses applied, which saturate the macromolecular magnetization pool. The MTR is 

calculated for every corresponding pair of pixels in the two images. If the intensity of 

the pixel in the image without saturation pulses is M0, and the corresponding 

intensity in the image with saturation pulses is Ms, then the MTR is: 

MTR=
M0− M s

M0

.100% . 

The application of formulae such as the one above, on a pixel-by-pixel basis is a 

straightforward procedure of image processing, and is generally referred to as 

―image algebra‖. 

Misregistration can occur if the subject moves between the two scans, but the 
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M0 and Ms images must be in register, otherwise artifacts will appear at the edges of 

features in the calculated MTR image, with false MTR values. It is best to acquire the 

two images in an interleaved way (46,47), although it is possible to register them 

after acquisition. 

Two forms of data analysis have been used extensively for MTR images: 

region of interest and histogram analysis. Region of interest (ROI) analysis may be 

useful for elucidating the degree of tissue damage within individual lesions seen on 

T2-weighted scans, or within anatomical regions associated with particular 

symptoms. ROI analysis, however, can be subject to operator bias because the 

placement of regions is normally done manually. This could be overcome by first 

registering scans to an anatomical template and using ROIs defined on the template 

image. With MTR histogram analysis, a histogram of pixel MTR values is formed 

from the whole of the brain parenchyma; thus, both focal damage and more 

widespread diffuse tissue damage are reflected in changes to the shape of the 

histogram, with a general shift towards lower MTR values as the density of 

macromolecules is reduced with demyelination or axonal loss. Extraction of the brain 

parenchyma, using the same procedures that are used in atrophy measurements is 

a necessary pre-processing step. After normalization (to remove any effect of the 

absolute brain size) the MTR histogram can be characterised by a number of simple 

statistics such as the histogram peak position, the peak height and the average 

MTR. 

Least-Squares Fitting and Relaxometry 

The calculated MTR images noted in the previous section allow a quantitative 
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approach to the assessment of tissue damage. Whilst T1- and T2-weighted images 

show, qualitatively, the burden of tissue damaged by MS, a quantitative approach to 

relaxation time measurements is more rigorous. The mapping of T1, T2 and T2* (or 

their inverses R1, R2 and R2*) is possible if images are acquired with more than one 

set of timing parameters: T1 maps can be produced from a series of images with 

varying TR, inversion time (TI) or flip angle (for gradient-echo sequences) (48); T2 

maps from spin-echo images and T2* images from gradient-echo images with 

varying echo times (49). 

In a way that is similar to pixel-by-pixel MTR calculation, the relaxation time 

constants are calculated for every image pixel, normally by least-squares fitting to 

the different images. At least two images are needed to estimate simple T1 or T2 

maps, since the fitted variables include the proton density as well as the relaxation 

time: the number of images acquired must be at least as many as the number of fit 

variables. Increasing the number of acquired images reduces the sensitivity to noise, 

reducing errors in the estimates of the fit variables. Figure 3 shows relaxation time 

and rate maps created from data collected using a dual-spin-echo sequence (T2) and 

a sixteen-echo gradient-echo sequence (T2*).  

Simple least-squares fitting can reliably fit a single exponential decay curve, 

and possibly even a couple of isolated exponential components (50). However, 

because of noise in the data, fitting multiple relaxation components, representing 

different tissue water components, is notoriously unreliable. To make fitting stable, it 

is common to ―regularize‖ the fitting procedure by fitting a smooth distribution of 

exponential components (51). This approach has been taken by the group of 

MacKay in Vancouver, to produce T2 distributions from brain tissue (52). Three 
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peaks in the white matter T2 distribution are attributed to: water between the myelin 

lipid bilayers (T2 between 10 and 50 ms); intracellular water (T2 of approximately 70 

ms); and CSF (T2 > 1 second) (Figure 4). In recent studies, maps of the short T2 

component have been shown to correlate strongly with myelin staining in post-

mortem samples (53) (Figure 5). 

Diffusion Tensor Imaging 

Diffusion-weighted (DW) MR imaging has been used in the human brain for 

almost 20 years, to investigate numerous conditions, including multiple sclerosis 

(MS) (54,55). The contrast in DW MRI is based on the diffusional displacement of 

water molecules which, in the presence of a strong magnetic field gradient, causes 

the signal intensity to be attenuated. In simple anisotropic systems, diffusion in three 

dimensions can be represented mathematically by the diffusion tensor, a 3×3 matrix 

which specifies the root mean square diffusional displacements in any direction (56). 

It is common to display images of properties of tensor, rather than the tensor its self 

(see Figure 6). 

Echo planar imaging (57) is normally used for diffusion-weighted applications 

because of the technique's insensitivity to bulk patient motion. However, because of 

scanner hardware limitations, diffusion-weighting gradient pulses usually induce 

some distortions in DW EPI images, characterized by a shear, shift and scaling of 

the images in the phase-encoded direction. The post-processing correction of these 

distortions has been subject to a good deal of work; the most successful methods 

exploit the relationship between the type and magnitude of distortion and the 

magnetic field gradient vector direction and amplitude (58,59). One approach is also 
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capable of including a model of patient motion, so that gradient-induced distortion 

and patient motion can be corrected simultaneously (60). 

After distortion correction, calculation of the tensor is relatively straightforward 

problem in multivariate regression (56). Diagonalization of the tensor to extract the 

principal axes allows images showing the direction of greatest diffusivity, the degree 

of anisotropy, and the directionally-averaged diffusivity (mean diffusivity, equivalent 

to one third of the Trace of the diffusion tensor) to be synthesized (Figure 6). All 

these properties of the tensor reflect the diffusional behavior of water in the tissue 

and, given similar acquisition parameters, should be comparable across sites and at 

different field strengths. 

Once the tensor is computed, it is possible to reconstruct the spatial path of 

the major white matter axonal bundles in 'fibre tracking' applications (61). 

Tractography is performed by following the direction of largest diffusivity to 

reconstruct a pathway corresponding to the underlying axonal fibre bundle. This 

allows the study of human white matter anatomy that could previously only be 

accessed by post mortem dissection. Tissue damage along the reconstructed tracts 

can then be assessed by evaluating other parameters, such as the fractional 

anisotropy or mean diffusivity, along the tract (62,63).  

One problem with performing tractography on MS patients is that diffusion 

anisotropy is reduced in MS lesions, and a reduction in anisotropy leads to a greater 

uncertainty in the estimated principal diffusion direction (64) (see Figure 6 and Figure 

7). Tracking through lesions is therefore problematic, and it may be necessary to use 

an 'atlas-based' approach to determining the tissue characteristics within specific 

tracts, having first localized the tracts by performing fiber tracking on a large 
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population (65). 

The simple model of diffusion that is provided by the diffusion tensor cannot 

capture the details of diffusion in complex white matter regions; these occur in brain 

areas where fibers merge and cross. MRI does not have the spatial resolution to 

resolve the individual fiber bundles, but the MRI methods are sensitive to the 

diffusion of water over distances of a few microns; detailed analysis of the diffusion 

behavior can reveal more about white matter architecture on a smaller scale where 

an individual image voxel contains a mixed population of fibers. Approaches such as 

q-ball imaging (66) and determining the fiber orientation density function (ODF) (67) 

can resolve more details about these regions of mixed fiber orientations. 

Perfusion 

Abnormalities of cerebral blood flow (CBF) have long been recognised in MS, 

and MRI can be used to assess perfusion in vivo. Perfusion can be measured in 

either of two ways: using standard injectable MRI contrast agents as a bolus (bolus 

tracking), or by using blood as an endogenous contrast agent, an experiment that is 

known as arterial spin labelling (ASL).  

For bolus tracking, images are acquired rapidly and continuously as the 

contrast agent is injected over a short time (normally around five seconds) into the 

antecubital vein. From there, the bolus is carried to the heart, through the lungs, 

back to the heart and then to the arterial system where it can be measured in the 

carotid arteries, circle of Willis, or the cerebral arteries. The images are normally 

acquired using an echo-planar sequence to give good time resolution (of the order of 

one or two seconds) and to give a large signal reduction as the contrast agent 
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passes through. This signal reduction is used to estimate the concentration of 

contrast agent for every voxel from the relaxivity and echo time of the sequence. 

By the time the contrast agent arrives in the feeding arteries, considerable 

dispersion has occurred, and the arterial input into the brain is no longer a short, 

sharp bolus as would be required for straightforward analysis. An important part of 

the processing of bolus tracking data is therefore to account for this dispersion, by a 

process of ―deconvolution‖ (68). This mathematical process examines the real 

dispersed contrast agent input and the real passage through the brain tissue, and 

reconstitutes what would have been the response to an ideal sharp ―impulse‖ of 

contrast agent. This reconstructed impulse response is used to calculate the mean 

transit time (MTT) for contrast passage, and the cerebral blood volume (CBV) can be 

assessed by measuring the degree of signal change in the brain tissue compared to 

that in an artery. The cerebral blood flow can then be calculated from the ratio: 

CBF=
CBV
MTT . 

Bolus tracking experiments are not normally considered to give accurate 

quantitative CBF values, mainly because of the difficulty of obtaining accurate 

estimates of the contrast agent concentration in the arteries and in the capillary bed: 

the relaxivity in T2- and T2*-weighted pulses sequences depends on the size of the 

vessels that contain the blood. Furthermore, estimation depends on the contrast 

agent remaining within the vessels, and where disease is present, the blood-brain-

barrier may not be intact and the contrast agent leaks into tissue; however, it is 

possible to correct for this (69). In spite of these problems, bolus tracking is 

considered to give good qualitative CBF maps, which can be used to make relative 
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comparisons across regions within a single patient. 

The basic idea of arterial spin labeling is to acquire two images: in the first, 

the blood is ―labeled‖ before it moves into the imaged slice, usually by inverting the 

magnetization; the second is a control image in which no labeling takes place. If 

carefully performed, the difference between the two images is then solely due to the 

labeled blood that has perfused the tissue volume imaged. However, since the brain 

blood volume fraction is small, the signal difference is also very small (of the order of 

1%), and so this technique has inherently poor SNR. Acquisition over a long period, 

with signal averaging, is usually necessary, and the method is of most use at higher 

field strength. The advantage of ASL over bolus tracking methods is that repeated 

measures can be made, and the response to various interventions monitored as long 

as changes in blood flow occur and can be sustained over time scales longer than 

the acquisition time for a single measurement (typically 5 minutes). It is also totally 

non-invasive since no contrast agent injection is needed. 

There are many variants of the ASL experiment, which are designed to permit 

more complex assessment of the confounding factors that inhibit quantitative 

measurement of perfusion. One of the most common variants introduces a variable 

transit time between the inversion and the image readout in the brain; the impact of 

variable transit times then be taken into account (70). The details of processing of 

ASL data depend, of course, on the exact form of experiment, and vary in complexity 

from a simple subtraction to a least-squares fitting to extract the various model 

parameters, including CBF; see (71) for a review. 

Both bolus tracking (72) and ASL (73) methods have been used to map the 

regional changes in blood flow that develop with MS, with reduced perfusion being 
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seen in both white and gray matter. Correlations have been seen between white 

matter perfusion and disability (72), and between gray matter perfusion and 

neuropsychological impairment (74). 

Visualization 

The mainstay of MR image computerized visualization is still the common 

multi-slice viewing system, analogous to a conventional light box, where image slices 

can be viewed either singly, with arrays of slices, and preferably with images of 

different contrast being viewable side-by-side. For manual analysis (such as 

counting the numbers of lesions), semi-automated analysis (semi-automatically 

outlining lesions (26)), or reviewing the output of fully-automated methods (75), this 

sort of presentation tool is very efficient, enabling rapid throughput. 

However, 3-dimensional visualization tools are popular for data exploration 

and presentation (77,78). These generally allow surface models and cut-planes to be 

viewed simultaneously, so that the spatial relationships between the various 

anatomical elements can be better appreciated (Figure 8). Whilst these tools are 

established as valuable aids in other medical settings, such as surgical planning 

(79), they are difficult to integrate into quantitative analysis procedures for MS 

research, in a useful way.  

Data handling 

In the context of multi-centre clinical trials, central analysis of image data is 

essential for improving the quality of data acquisition, consistency of processing, 

achieving validation of processing methods, and data archiving to the standards 

required for clinical trials of new therapeutic agents (80). Basic transfer of image data 
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has been greatly facilitated in the last few years by the adoption of the Digital 

Imaging and Communication in Medicine (DICOM) standards for image exchange by 

all mainstream manufacturers of medical equipment (81). This allows data to be sent 

for analysis either by fairly conventional means (by sending an archive CD-ROM in 

the mail) or by transfer using standard methods over the Internet. 

Having received the image data, some groups have adopted a ―pipeline‖ 

processing approach to ensure efficiency, consistency, and quality control of the 

analysis procedure (75,76). By integrating the analysis pipeline with a database of 

patients enrolled in a trial and the trial scanning schedules, quality can be improved 

and the tasks streamlined. The sorts of task that can be automated by the pipeline 

include sending out automatic reminders to participating sites about scans which are 

due or not received; automatically implementing pre- and post-processing steps; 

prioritizing and presenting tasks to be performed by neurologists, technologists and 

technicians; generating and collating reports; and archive of data. 

Concluding Remarks 

Image analysis methods have become much more mainstream over the last 

five years or so, and there are now many excellent tools available to enable the non-

specialist to participate in the sorts of task that were once considered to be only for 

those with expert knowledge and large computing resources. The resources required 

were not only specialist and expensive computer equipment, but also technical 

personnel who would implement and integrate the necessary processing steps. With 

the advent of very powerful and inexpensive personal computers, and mature 

software applications that have been designed for the general user, post-processing 
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of MRI data for quantitative analysis of MS patients' scans is becoming much more 

mainstream. Over time, I expect that some of these methods will become integrated 

into routine clinical practice so that, for example, individual patients' disease 

progression can be monitored, and treatment plans designed accordingly. 
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Figure Legends 

Figure 1. Bias field correction of a proton density image collected at 3 Tesla. (A) is 

the uncorrected image; (B) is has been non-uniformity corrected using the method in 

(6) that models the bias field using a 3-dimensional polynomial surface of order 3; 

(C) is the difference between (A) and (B); and (D) is a representation of the 

polynomial surface model of the bias field. 
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Figure 2. Linear (Affine) and non-linear registration. (A) is a normal control subject to 

which an MS patient with severe cerebral atrophy has been registered; (B) is the 

patient registered using an affine transform; (C) is the same patient but registered 

using the non-linear registration algorithm in Ref. 20. Illustration kindly provided by 

Dr. Elisabetta Pagani, Neuroimaging Research Unit, Ospedale S. Raffaele, 

University of Milan. 
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Figure 3. Relaxometry maps: T2 (A, E), R2 (B, F), T2
∗  (C, G), and R2

∗  (D, H) maps 

obtained at 3 Tesla are shown from a patient with relapsing–remitting multiple 

sclerosis (disease duration seven years, moderate disability [expanded disability 

status scale score 5]) (images A–D) and a healthy control (E–H). Marked 

hypointensity is seen in the caudate, putamen, and globus pallidus on T2 and T2
∗  

maps from patient with MS (A, C) compared to the normal control (E, G). Similarly, 

marked hyperintensity is seen in the caudate, putamen and globus pallidus on R2 

and R2
∗  maps from the patient with MS (B, D) compared to the normal control (F, H). 

The hypointensity seen on T2 and T2
∗  maps and hyperintensity seen on R2 and R2

∗  

in the gray matter areas of patients with MS likely represents excessive iron 

deposition. From Neema M, Stankiewicz J, Arora A, et al. T1- and T2-based MRI 

measures of diffuse gray matter and white matter damage in patients with multiple 

sclerosis. J Neuroimaging 2007;17:16S-21S, with permission, Blackwell Publishing. 
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Figure 4. (A) T2 decay curve and (B) T2 distribution from human white matter. Inset in 

(B) shows a cross-section through an axon with the locations of the intra/extracellular 

water and myelin water. From Laule C, Vavasour IM, Kolind SH, et al. Magnetic 

resonance imaging of myelin. Neurotherapeutics 2007;4(3):460-84, with permission. 
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Figure 5. Formalin-fixed human brain tissue from the partieto-occipital lobe of an MS 

patient. MR images acquired at 7 Tesla: (a) short echo image image (TE=20.1 ms), 

and (b) myelin water map corresponding to that part of the T2 distribution with values 

below 20 ms. (c) is the corresponding luxol fast blue histology image. A good 

qualitative correspondence is observed between the myelin water map and histology 

stain for myelin. The normal prominent myelination of the deeper cortical layers 

(arrows) is also visible on the myelin water image. From Laule C, Kozlowski P, 

Leung E, et al. Myelin water imaging of multiple sclerosis at 7 T: correlations with 

histopathology. Neuroimage 2008 (in press), with permission. 
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Figure 6. T2-weighted image (A), diffusion tensor trace (B), fractional anisotropy (C) 

and color-coded direction maps (D) calculated from diffusion-weighted images of a 

patient with MS. Hyperintense lesions (such as the one arrowed) show high 

diffusivity and low anisotropy. In fiber-tracking applications (61), this causes greater 

uncertainty in the orientation of the axonal fibers, and tracking errors. In the direction 

map, axonal fibers which have a left-right orientation are colored red; anterior-

superior are green; and superior-inferior are blue. 
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Figure 7. Tractography performed in a patient with MS. The MS lesions have been 

segmented from T2-weighted images, and are rendered in red. Fiber tracking was 

initiated in the patient's right internal capsule, and the tracts pass through tissue 

affected by MS lesions. As they do so, the path spuriously deviates from the known 

motor tract and across corpus callosum. 
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Figure 8. Graphic created using a three-dimensional visualization tool (77). The 

composite picture shows the surface-rendered skin surface in pink, a transparent 

extracted brain surface, MS lesions surface rendered in red, and a backdrop of 

orthogonal planes from a T2-weighted image. The brain surface and lesions were 

found using pre-processing steps to automatically extract them (6,35). 


