Erratum: Swift follow-up of gravitational wave triggers: results from the first aLIGO run and optimisation for the future

1Department of Physics and Astronomy, University of Leicester, Leicester, LE1 7RH, UK
2Department of Astronomy and Astrophysics, Pennsylvania State University, 525 Davey Lab, University Park, PA 16802, USA
3Los Alamos National Laboratory, B244, Los Alamos, NM, 87545, USA
4Leiden Observatory, Leiden University, PO. Box 531, 2300 RA Leiden, the Netherlands
5Janusz Gil Institute of Astronomy, University of Zielona Góra, ul. Labuska 2, P-65-265 Zielona Góra, Poland
6NASA Goddard Space Flight Center, 8800 Greenbelt Road, Greenbelt, DMD 20771, USA
7INAF-Osservatorio Astronomico di Brera, via E. Bianchi 46, I-23807 Merate, Italy
8Joint Space-Science Institute, University of Maryland, College Park, MD 20742, USA
9INAF-Osservatorio Astronomico di Roma, via Frascati 33, I-00040 Monte Porzio Catone (RM), Italy
10ASI-Science Data Center, Via del Politecnico snc, I-00133 Rome, Italy
11Department of Physics and Astronomy, University of Maryland, College Park, MD 20742-4111, USA

Accepted 2019 January 8. in original form 2019 January 3

There was an error in equation (7) of Evans et al. (2016). That equation contains the normalising term \(N_p \), which is the total number of pixels in the gravitational wave (GW) localisation probability map. The paper states: “\(N_p \) is the number of pixels in the map, and \(L_{\text{tot}} \) is the total catalogued galaxy luminosity within the GW volume, so \(L_p/N_p \) gives the ratio of the actual luminosity in pixel \(p \) compared to that expected if the galaxies were homogeniousely distributed on the sky, i.e. the relative probability of this pixel hosting a merger event compared to any other pixel.”. While this is true, it results in an incorrect overall normalization of the probability that the GW event is in a known galaxy (\(P_{\text{gal}} = \sum_p (P_{\text{gal},p}) \)) compared to not being in such a galaxy (\(P_{\text{nogal}} = \sum_p (P_{\text{nogal},p}) \); \(P \) refers to the total probability, \(P_p \) is the probability in pixel \(p \)).

The correct formulation should result in \(P_{\text{gal}} = \bar{C} \), \(P_{\text{nogal}} = 1 - \bar{C} \), where \(\bar{C} \) is the mean completeness of the galaxy catalogue employed at the distance of the GW event. Since \(P_{\text{gal}} \) is simply the sum over all pixels, \(p \), of equation (7) in Evans et al. (2016), one should find:

\[
N \sum_p \left(C_p P_{\text{GW},p} \frac{L_p}{L_{\text{tot}}} \right) = \bar{C} \tag{1}
\]

where \(N \) is the normalization constant we are seeking, \(C_p \) is the galaxy catalogue completeness to the GW distance should the event lie in pixel \(p \) (equation 5 of Evans et al. 2016) and \(P_{\text{GW},p} \) is the original GW probability in that pixel, \(L_p \) is the sum over all galaxies in pixel \(p \) of the galaxy luminosity multiplied by the probability that the galaxy is the same distance as the GW event, \(L_{\text{tot}} \) is the sum of \(L_p \) over all pixels. It will be seen that \(\frac{L_p}{L_{\text{tot}}} \) corresponds to the summation in the original equation (7), but here \(N_p \) has been replaced with \(N \) and taken outside of the sum (since it is constant). Thus:

\[
N = \frac{\bar{C}}{\sum_p \left(C_p P_{\text{GW},p} \frac{L_p}{L_{\text{tot}}} \right) = \frac{\sum_p P_{\text{GW},p} C_p}{\sum_p P_{\text{GW},p} \sum_g \left(P(g|P_p[D]) \frac{L_g}{L_{\text{tot}}} \right) \tag{2}}
\]

\(P(g|P_p[D]) \) is defined in equation (9) of Evans et al. (2016).

Hence, the correct formulation for equation (7) in Evans et al. (2016) should be:

\[
P_{\text{gal},p} = P_{\text{GW},p} C_p N \sum_g \left(P(g|P_p[D]) \frac{L_g}{L_{\text{tot}}} \right) \tag{3}
\]

with \(N \) as defined in equation (2).
Figure 1. The cumulative probability within the galaxy-convolved GW skymap of GW 170817 as a function of area. The black curve is calculated using the incorrect normalization of Evans et al. (2016) whereas the red curve uses the values from this erratum. The effect is not large, but increases as the fractional probability enclosed becomes high.

The impact of this error is modest. The incorrect formulation resulted in the over-emphasis of catalogued galaxies within the GW error region. The only GW event to date for which this may have had an impact was GW 170817 (e.g. Abbott et al. 2017), for which the GW merger was in a catalogued galaxy, thus this error if anything aided the search. Fig. 1 demonstrates quantitatively the impact of the error. Here we show the cumulative probability in the galaxy-convolved skymap as a function of area enclosed (summing over pixels in decreasing probability order). The original equation (7) shown in black clearly overestimates the enclosed probability as a function of area; the discrepancy being worse as the fractional probability enclosed becomes high.

REFERENCES

This paper has been typeset from a TeX/LaTeX file prepared by the author.