Nut Directs p300-Dependent, Genome-Wide H4 Hyperacetylation in Male Germ Cells

Highlights
- *Nut* is a post-meiotically expressed gene that is critical for male fertility
- Nut recruits p300 and/or CBP to enhance histone H4K5 and H4K8 acetylation
- Nut-mediated histone hyperacetylation is required for histone-to-protamine transition

Authors
Hitoshi Shiota, Sophie Barral, Thierry Buchou, ..., Sophie Rousseaux, Yingming Zhao, Saadi Khochbin

Correspondence
saadi.khochbin@univ-grenoble-alpes.fr

In Brief
A transcription-independent histone hyperacetylation is associated with near-total histone replacement during mouse spermatogenesis. Shiota et al. show the oncogenic factor Nut is expressed in post-meiotic male germ cells, where it recruits p300 and/or CBP and enhances histone H4K5 and H4K8 acetylation, leading to histone-to-protamine replacement.

Data Resources
GSE111931
GSE118969
PXD008727
Nut Directs p300-Dependent, Genome-Wide H4 Hyperacetylation in Male Germ Cells

Hitoshi Shiota, Sophie Barral, Thierry Buchou, Minja Tan, Yohann Couté, Guillaume Charbonnier, Nicolas Reynold, Faycal Boussouar, Matthieu Gérard, Mingrui Zhu, Lisa Bargier, Denis Puthier, Florent Chuffart, Ekaterina Bourouva-Flin, Sarah Picaud, Panagis Filippakopoulos, Afsaneh Goudarzi, Ziad Ibrahim, Daniel Panne, Sophie Rousseaux, Yingming Zhao, and Saadi Khochbin

SUMMARY

Nuclear protein in testis (Nut) is a universal onco-genic driver in the highly aggressive NUT midline carcinoma, whose physiological function in male germ cells has been unclear. Here we show that expression of Nut is normally restricted to post-meiotic spermatogenic cells, where its presence triggers p300-dependent genome-wide histone H4 hyperacetylation, which is essential for the completion of histone-to-protamine exchange. Accordingly, the inactivation of Nut induces male sterility with spermatogenesis arrest at the histone-removal stage. Nut uses p300 and/or CBP to enhance acetylation of H4 at both K5 and K8, providing binding sites for the first bromodomain of Brdt, the testis-specific member of the BET family, which subsequently mediates genome-wide histone removal. Altogether, our data reveal the detailed molecular basis of the global histone hyperacetylation wave, which occurs before the final compaction of the male genome.

INTRODUCTION

In mammals, unique physiological, genome-wide histone hyperacetylation has been observed, associated with a near-total histone eviction that occurs during the late stages of spermatogenesis. In this context, an outstanding issue is the understanding of the causes and consequences of this histone hyperacetylation and, more precisely, of its role in histone eviction (Goudarzi et al., 2014). After meiosis, haploid cells, named spermatids, engage in one of the most dramatic known chromatin remodel-
oncogenic activity of the fusion protein BRD4-NUT revealed that it mediates the creation of hyperacetylated chromatin domains. In cells expressing BRD4-NUT, a feed-forward loop drives histone acetylation propagation (Reynoird et al., 2010). This BRD4-NUT-driven histone acetylation is constrained by cellular deacetylases (Reynoird et al., 2010; Schwartz et al., 2011) and remains limited to the nuclear topologically associated domains (TADs) (Alekseyenko et al., 2015), leading to the creation of hyperacetylated chromatin domains.

The discovery of the molecular basis of the activity of the fusion protein BRD4-NUT in NMC and of a role for NUT in inducing enhanced histone acetylation in NMC cancer cells prompted us to propose that Nut could also have a role in inducing the genome-wide histone hyperacetylation in post-meiotic male germ cells. To explore this hypothesis, we designed a series of experiments aiming to address the role of Nut during spermatogenesis at a molecular level.

The investigations reported here reveal mechanisms underlying the obscure process of histone H4 hyperacetylation and its molecular link to the genome-wide histone eviction. These data also demonstrate that the functional cooperation of Nut, p300 and/or CBP, and a BET factor that is created following the BRD4-NUT gene fusion in NMC also exists in the natural setting of Nut’s action, the post-meiotic spermatogenic cells. The sequence of events triggered by this interaction becomes oncogenic when it operates “off context.”

RESULTS

Nut Is a Testis-Specific Factor Exclusively Expressed in Post-Meiotic Spermatogenic Cells

The fusion partner of BRD4, NUT, was identified as a gene expressed in testis. However, until now, no information was available on its tissue-specific activity or on the pattern of its expression in testis during male germ cell differentiation.

Using publicly available transcriptomic data from different human and mouse tissues, we found that in both human and mouse, NUT/Nut is exclusively expressed in testis (Figure S1). We prepared RNA and protein extracts from developing mouse testes to precisely define the timing of
Nut gene expression and Nut protein accumulation during spermatogenesis.

Post-meiotic haploid round spermatids first appear at 20 days post-partum (dpp). Traces of Nut mRNA (Figure 1A) and protein (Figure 1B) also appear at day 20. Both Nut mRNA and protein strongly accumulate at 25 dpp, when late round and early elongating spermatids are produced. In situ co-detection of Nut, along with the acrosome on spermatogenic cell preparations, shows that Nut is not detectable in early round spermatids, but instead accumulates in mid-round, late round, and early elongating spermatid populations (Figure 1C, left panel).

The observed timing of Nut accumulation in round and early elongating spermatids corresponds to when histone H4 hyper-acetylation is known to first occur (Goudarzi et al., 2014). This observation prompted us to co-detect Nut and H4K5ac (acetyl), a critical histone mark in post-meiotic cells (Gaucher et al., 2012; Goudarzi et al., 2016). Figure 1C (left panels) shows that the accumulation of Nut is associated with the induction of histone H4K5 acetylation in differentiating spermatids. Additional in situ co-detection of Nut and H4K5ac confirms this strict correlation between the accumulation of Nut and the occurrence of enhanced H4K5 acetylation. Only background H4K5ac could be detected in spermatocytes that do not express Nut compared to Nut-expressing round spermatids (Figure 1C, right panel).

The question therefore arose of whether Nut could be a direct player in the induced acetylation of histone H4 in early elongating spermatids.

Figure 2. Inactivation of the Nut Gene Leads to Spermatogenesis Arrest and Male Infertility

(A) Protein extracts from wild-type and Nut KO mouse testes were probed with the anti-Nut and anti-actin antibodies as indicated (left panel). The right panels show litter sizes obtained after crossing wild-type female mice with wild-type (n = 12) or Nut KO (n = 5) male mice. The average weights of testes of wild-type (n = 16) and Nut KO (n = 19) mice were determined. Litter sizes and testis weights are represented as histograms. Each histogram represents averaged values ± SDs (error bars).

(B) Histological preparations of cauda epididymis from wild-type or Nut KO mice are shown as indicated. Scale bar: 50 μm.

(C) Histological sections of paraffin-embedded testes from wild-type and Nut KO mice at stages IX and X of spermatogenesis were stained with DAPI (left panels). The regions corresponding to the insets are shown at a higher magnification on the right. The right panels show the same types of sections as in the left panels but immunostained with an anti-Prm1 antibody and counterstained with hematoxylin. Scale bars: 10 μm.

See Figure S2 for the Nut KO strategy.

Nut is Essential for the Completion of Spermiogenesis and Mature Sperm Production

To evaluate the function of Nut in post-meiotic spermatogenic cells, we set up a strategy based on the deletion of Nut exon 2 to generate NutKO/KO mice (Nut knockout [Nut KO] mice) (Figure S2). Western blots using our antibody on total testis extracts demonstrated the absence of Nut in spermatogenic cells of Nut KO mice (Figure 2A, left panel). Nut KO mice harbored smaller testes and were sterile (Figure 2A, middle and right panels). Cauda epididymis from Nut KO mice showed the absence of spermatozoa (Figure 2B), demonstrating an arrest
of spermatogenesis at earlier stages. To precisely define spermatogenesis stages affected by the absence of Nut, we prepared histological sections of paraffin-embedded testes from wild-type (WT) and Nut KO mice. In Nut KO mice testes, spermatogenesis seems to occur normally until the appearance of condensing spermatids. Although round spermatids could be easily detected in both wild-type and Nut KO testes, no condensing spermatids were found in Nut KO testes (Figure 2C, DAPI panels). Immunohistochemistry on these sections using an anti-Prm1 antibody showed that in the absence of Nut, the Prm1-expressing spermatids do not undergo nuclear elongation and mostly remain round (Figure 2C, Prm1 panels).

Because Nut accumulation is associated with the induction of histone H4 acetylation (Figure 1C), which is associated with the replacement of histones by TPs and protamines (Gaucher et al., 2012; Goudarzi et al., 2016), we focused on the process of histone-to-protamine replacement. Accordingly, TH2B, which is the major spermatogenic cell histone H2B variant (Montellier et al., 2013), was co-detected, along with histone-replacing proteins TP1, TP2, Prm1, and Prm2. Figure 3 shows that although TH2B was never observed in wild-type cells expressing histone-replacing proteins, in Nut KO spermatids, TH2B was co-detected with TP1, TP2, Prm1, and Prm2. These observations demonstrate that even though the histone-replacing proteins are expressed in the absence of Nut, they are incapable of replacing histones.

To further demonstrate the defective histone replacement in the Nut KO spermatids, we made the hypothesis that the accumulation of TPs and protamines in the absence of histone replacement should leave an imprint on nucleosomes, especially on the more accessible DNA linker regions. The interaction of these highly basic proteins with linker DNA should protect DNA linker regions against micrococcal nuclease (MNase) digestion and therefore generate DNA fragments longer than the canonical 147 base pairs (bp). To test this hypothesis, we prepared nuclei from fractionated round-elongating spermatids from wild-type and Nut KO testes and submitted them to extensive digestion with MNase to generate nucleosomal monomers. We then used paired-end sequencing to accurately determine DNA fragment lengths at the highest (base pair) resolution following two independent experiments (different mice and different fractions). Both experiments revealed an enrichment of nucleosomal DNA fragments with lengths longer than the canonical 147 bp in Nut KO spermatids compared to wild-type spermatids (Figures 4A and 4B).

Altogether, the co-immunodetection of TH2B and histone-replacing proteins, as well as the accumulation of nucleosomes with longer linker DNA in Nut KO spermatids, strongly support an impairment of histone replacement in the absence of Nut.

The defective histone replacement observed in the absence of Nut was reminiscent of the impaired TP and protamine assembly previously detected in mouse spermatogenic cells expressing a Brdt mutant lacking its first bromodomain (BD1) (Gaucher et al., 2012) (Figure S3), suggesting a possible functional link between Nut and Brdt’s first bromodomain in histone replacement.

Nut Sustains Site-Specific Histone Acetylation

Because Brdt’s BD1 binds to histone H4 acetylated on K5 and K8 (Goudarzi et al., 2016; Miller et al., 2016; Morinie`re et al., 2009; Sasaki et al., 2009), and Brdt’s BD1 is necessary for histone-to-protamine replacement (Gaucher et al., 2012), the impairment of histone removal in the absence of Nut (Figures 3 and S3) could be attributed to the absence of functional Brdt or to a defective histone acetylation specifically at H4K5 and H4K8.

A western blot on extracts from fractionated post-meiotic round and early elongating spermatids showed no change in the level of Brdt expression in the absence of Nut (Figure 5A). This result, along with our observation that Nut accumulation in mid- and late round and early elongating spermatids corresponds to the induction of histone hyperacetylation (Figure 1C), prompted us to perform a comparative analysis of the level of histone acetylation on histones extracted from round and early elongating spermatids from wild-type and Nut KO testes. Consequently, we sought an unbiased approach to quantitatively monitor histone acetylation in the wild-type and Nut KO
round and early elongating spermatids. In vitro isotopic labeling followed by high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) analysis was performed to quantify histone post-translational modifications (PTMs). Histone extracts were digested with trypsin, and the resulting peptides were propionylated using light (\(^{13}C\)) and heavy (\(^{15}C\)) propionic anhydride. The light and heavy propionylated tryptic peptides were mixed in equal amounts and analyzed by HPLC-MS/MS.

The quantification of histone acetylation revealed a decrease in histone H4 and H2A acetylation, with a remarkable downregulation of acetylation at H4K5 and H4K8, as well as of H2AK5 and H2AK9 (Figure 5A, lower panel; Tables S1 and S2).

The downregulation of acetylation, especially at the critical H4K5 and H4K8 sites, in Nut KO round and early elongating spermatids compared to the wild-type spermatids was confirmed by western blotting, with the corresponding antibodies on independently prepared round and early elongating spermatid-enriched fractions (Figure 5B). Because none of the H3 tail lysines analyzed here by mass spectrometry were significantly affected by the absence of Nut, H3K9 acetylation was additionally checked by immunoblotting, showing only a slight decrease in Nut KO spermatids (Figure 5B).

These results show that the expression of Nut in round and early elongating spermatids (Figure 1C) is required for histone H4 hyperacetylation. In addition, the impairment of Nut-mediated acetylation of H4 demonstrates the inability of Brdt’s BD1 to bind chromatin, explaining the similarity between Nut KO and Brdt\(^{delta BD1/delta BD1}\) phenotypes (Figure S3).

Nut Controls the Expression of a Subset of Genes Expressed in Spermatids

Our previous work on NMC identified p300 and/or CBP as the major cellular histone acetyltransferases (HATs) recruited by the NUT moiety of the BRD4-NUT fusion protein in a NMC cell line or upon transfection (Reynold et al., 2010). We therefore hypothesized that when expressed in its physiological setting, spermatids, Nut could interact with p300 and/or CBP and use a similar mechanism to enhance histone acetylation. To verify this hypothesis, we performed two independent sets of experiments. First, the round and early elongating spermatid fractions from wild-type and Nut KO testes were used to obtain and compare the corresponding transcriptomes and to identify genes whose expression depends on Nut. The absence of Nut was found to be associated with the downregulation of 1,184 genes and the upregulation of 499 genes (using a cutoff of 1.5 for the absolute log2 fold change value and a t test p value, after adjustment for multiple tests by Benjamini-Hochberg, of p < 0.05) (Figure 6A).

To ensure the observed changes in gene expression in the absence of Nut were not due to changes in the cell-type composition of the Nut KO round and elongating cell fraction compared to the same fraction of wild-type cells, we performed an additional analysis. By comparing wild-type meiotic and post-meiotic cell populations, we identified genes that are normally activated in wild-type post-meiotic cells. The observation that only a fraction of these genes was downregulated in Nut KO post-meiotic cells was supportive of a specific action of Nut on gene expression.
the Prm1-encoding gene, that are normally activated in wild-type spermatids. In one experiment, the corresponding extracts were used to detect Brdt and actin as indicated. In another experiment, histone extracts of extracts (1 X) were used to normalize the site-specific acetylation was determined and expressed as the ratio of Net KO/ WT samples. H3, H4, H2B, and H2A peptides were used to normalize the labelling followed by HPLC-MS/MS. The relative abundance of identified site-specific acetylation was determined and expressed as the ratio Net KO/ wild-type samples. For more information on the normalization process, refer to Table S2 and its legend and to Quantification of Histone PTMs.

(B) Independent cell fractionation experiments were set up to prepare extracts from round and elongating spermatids. Increasing amounts of extracts (1 X, 2 X, and 4 X) were used for immunobLOTS as indicated. H4K5ac, H4K8ac, and H4K12ac were visualized with the corresponding specific antibodies in wild-type and Net KO cell extracts as indicated. Each of these biots was re-probed with anti-H3 antibody as indicated. H3K9ac was also detected (lower panel) and the corresponding blot was re-probed with anti-H4 antibody (the remaining H4K5ac, H4K12ac, and H3K9ac signals after anti-H3 and anti-H4 re-probing are indicated in gray letters).

expression as opposed to the loss of particular cell types. The expression of a significant number of the genes, 317, including the Prm1-encoding gene, that are normally activated in wild-type post-meiotic cells did not significantly change in the absence of Nut (Figures S4A and S4B), demonstrating that our transcriptomic data from wild-type and Net KO spermatids could be compared, because they were obtained from two comparable cell populations.

We then used a series of stage-specific transcriptomes that were produced in wild-type male germ cells from our previous studies (Boussouar et al., 2014; Montellier et al., 2013) and the present work to establish the normal pattern of these Nut-regulated genes during spermatogenesis. Figure S4C shows that the genes that require Nut to be active (downregulated genes in Net KO) are normally activated in post-meiotic cells, with the highest activity in late round and early elongating spermatids.

In a previous work, we identified genes that are specifically responsive to post-meiotic p300 and/or CBP variations in spermatids (Boussouar et al., 2014). We used these data to define whether Nut regulates gene expression through p300 and/or CBP by comparing our two Net- and p300 and/or CBP-dependent transcriptomes, both obtained in comparable post-meiotic cell populations. We looked for a significant enrichment of Nut-regulated genes in the lists of p300 and/or CBP-regulated genes, which would suggest the involvement of p300 and/or CBP in gene regulation by Nut. Gene set enrichment analysis (GSEA) was used to look for the expression in Net KO spermatids of genes whose expression in spermatids had previously been found to be affected by a targeted post-meiotic deletion of p300 and CBP (Boussouar et al., 2014). Although following this latter approach, the inheritance of both p300 and CBP from preceding stages led to only a small decrease in the enzyme levels in post-meiotic cells, it was enough to observe a change in the expression of a specific set of genes whose expression is highly dependent on, and sensitive to, p300 and CBP dosage (Boussouar et al., 2014).

Figure 6B shows a clear enrichment of the p300 and/or CBP-regulated genes among the genes up- and downregulated in Net KO mice, supporting the idea that Nut-p300 and/or CBP, while directing the global histone acetylation, also affects the expression of late active genes before the general shutdown of transcription in elongating spermatids.

p300 and/or CBP Are the Only Acetyltransferases Present in the Nut Interactome

The question arises of whether Nut uses CBP and p300 in spermatids as it does in NMC cells or if other HATs are also involved. To answer this question, in an additional set of experiments, we prepared extracts from fractionated wild-type and Net KO round and early elongating spermatids, which were submitted to anti-Nut immunoprecipitation and a proteomic analysis in two independent assays.

The aim of this experiment was two-fold: first, to confirm the presence of p300 and CBP in association with Nut, and second, to see whether additional cellular acetyltransferases interact with Nut in post-meiotic cells undergoing histone hyperacetylation. To maximize the chance of detecting any HAT associated with Nut, we used non-stringent immunoprecipitation conditions and performed the experiment twice on independent mice and fractionated cells. As expected from non-stringent immunoprecipitation conditions, many proteins were identified as

![Diagram](image-url)
Reconstituted histone octamers were incubated with acetyl-CoA, as well as purified p300 (residues 340–2,094: p300 short) and the p300-interacting domain of proteins functionally linked to chromatin and/or transcription and/or RNA and/or metabolism is presented in Table S3.

In vitro metabolism-related proteins. Table S3 lists the proteins that were relevant to the present study, especially HATs, which we chose to highlight in both experiments. However, in an effort to focus on proteins relevant specifically to the evaluation of the action of Nut on histone acetylation, and more specifically to evaluate the action of Nut on site-specific histone acetylation by label-free quantification in vitro. Five high-abundance unmodified peptides were used to normalize the amount of each histone. The peak area of histone octamer was then normalized, and the data corresponding to two wild-type cell extracts compared to Nut KO cell extracts. The heatmaps show genes that are down- or upregulated after double p300 and/or CBP KO are significantly enriched in genes that are, respectively, down- or upregulated in Nut KO spermatids. (C) Genes that are downregulated in BRD4-NUT fusion partners from a human cell line generated similar data, with p300 and CBP as the only BRD4-NUT-associated HATs (Alekseyenko et al., 2017), confirming our early finding that p300 and CBP are the major HAT partners of Nut (Reynoird et al., 2010). Altogether, these data are in agreement with our comparative transcriptomic analysis (Figure 6B), pointing to p300 and/or CBP as the only cellular HAT partners of Nut.

Nut Enhances p300-Induced H3 and H4 Acetylation

We previously demonstrated that p300 interacts with a specific fragment of Nut, which stimulates its HAT activity on purified histone H3 (Reynoird et al., 2010). Here, to have a comprehensive vision of the action of Nut on histone acetylation, and more specifically to evaluate the action of Nut on site-specific histone acetylation by p300, we incubated purified recombinant p300 with the p300-interacting fragment of NUT and histone octamers (Figure S5). Isotopic labeling following HPLC-MS/MS was used to quantitatively measure the impact of NUT on specifically enriched in Nut wild-type cells and were observed in both experiments. However, in an effort to focus on proteins relevant to the present study, especially HATs, which we chose to highlight the transcription and/or chromatin and/or RNA and/or metabolism-related proteins. Table S3 lists the proteins that were only found in the wild-type cell extracts or enriched at least 5 times in these extracts compared to Nut KO cell extracts. Despite the non-stringent immunoprecipitation conditions, p300 and CBP were the only known HATs found to be exclusively or significantly enriched in the Nut immunoprecipitates in wild-type extracts compared to Nut KO extracts (Figure 6C). In the Nut-dependent proteome, we also found TH2B-H2AL2 and transition protein 2 (TP2), shown to allow protamines to efficiently invade nucleosomes at the time of histone-to-protamine replacement (Barral et al., 2017) (Figure 6C). Because the generation of these nucleosomal transitional states also involves H4 acetylation and Brdt’s BD1, these findings reinforce the hypothesis that Nut could also be a player in the process of acetylation-dependent histone replacement.

A proteomic analysis of BRD4-NUT fusion partners from a human cell line generated similar data, with p300 and CBP as the only BRD4-NUT-associated HATs (Alekseyenko et al., 2017), confirming our early finding that p300 and CBP are the major HAT partners of NUT (Reynoird et al., 2010). We previously demonstrated that p300 interacts with a specific fragment of NUT, which stimulates its HAT activity on purified histone H3 (Reynoird et al., 2010). Here, to have a comprehensive vision of the action of Nut on histone acetylation, and more specifically to evaluate the action of Nut on site-specific histone acetylation by p300, we incubated purified recombinant p300 with the p300-interacting fragment of NUT and histone octamers (Figure S5). Isotopic labeling following HPLC-MS/MS was used to quantitatively measure the impact of NUT on
Nut BRD4 Hyperacetylated chromatin foci

NUT Midline Carcinoma

Transcription

H3ac

Histone removal

Hyperacetylated chromatin foci

Spermatocytes

Spermatids

p300

H3ac

H4ac

Brdt

(legend on next page)
p300-mediated histone H3 and H4 acetylation. In histone octamers, p300 more efficiently acetylated histone H3 compared to histone H4 (p300 + Ac-coenzyme A [CoA]) (Figure 6D). For both histones, acetylation occurred at the tails, with no significant acetylation of the internal lysines (Figure 6D). The addition of the p300-interacting fragment of NUT enhanced H3 and H4 tail acetylation (Figure 6D; Tables S4 and S5; Figure S5). These data were confirmed after independent HAT assays following immunodetection with two site-specific antibodies against H3K9ac and H4K5ac (Figures S5B and S5C).

Altogether, these data show that Nut directly recruits p300 and/or CBP to control both histone H3 and H4 acetylation, although *in vivo*, in early elongating spermatids, the most important impact is observed on H4 acetylation. In contrast to the action of Nut on H3 and H4 acetylation observed *in vitro* (Figure 6D), although the absence of Nut affected H4 acetylation in round and elongating spermatids, none of the considered H3 acetyl acceptor sites seemed to be significantly affected by the absence of Nut (Figure 5).

DISCUSSION

Quantitative measurements of Nut-dependent histone acetylation in round and early elongating spermatids reported here demonstrated that Nut has a histone-specific and site-specific action on chromatin acetylation, particularly targeted on H2A and H4, including H4K5 and H4K8 acetylation.

A wave of histone hyperacetylation had long been described in elongating spermatids. In this context, H4 acetylation seems to play a central role, because it provides a specific binding site for the essential factor involved in histone removal, Brdt (Goudarzi et al., 2014, 2016).

All investigations reported here point to p300 and/or CBP as major HATs, which in addition to a role in maintaining a basal acetylation of H3, become involved in H4 hyperacetylation in post-meiotic cells because of the expression of Nut. However, an important question was whether Nut could control the activity of other HATs in post-meiotic spermatogenic cells to direct the observed H4 hyperacetylation. Our Nut interactomic analysis shows that p300 and CBP are the only cellular Nut-interacting HATs. In an immunopurification of BRD4-NUT followed by mass spectrometry identification of the associated proteins, p300 and CBP were the only HATs found in a complex with BRD4-NUT in somatic cells (Alekseyenko et al., 2017), which highlights the conserved mode of action of Nut both in spermatogenic cells and after its ectopic expression in NMC cells.

Although the action of Nut on H4 acetylation seems to be dramatic, its transcriptional regulatory role only concerns a subset of genes expressed in transcriptionally active late spermatids. Our data show that in round and early elongating spermatids, most Nut-regulated genes are those previously found to be highly sensitive to the cellular levels of p300 and CBP in elongating spermatids before the transcriptional shutdown (Boussoar et al., 2014). It is therefore possible that the enhancement of H4 acetylation by Nut-p300 and/or CBP, in addition to the basal role of these HATs in H3 acetylation (Figure 6) in elongating spermatids, in preparation for histone removal, stimulates a subset of genes that are normally active immediately before the general transcriptional inactivation.

These data therefore depict Nut’s function in post-meiotic germ cells. Nut appears as a stimulator of p300 and CBP, which, in addition to H3 acetylation that normally occurs in spermatagonia and spermatocytes, drives cell-type-specific H4 hyperacetylation in post-meiotic cells in preparation for histone eviction. This gene is exclusively expressed in cells in which global H4 hyperacetylation naturally occurs, strongly supporting this conclusion. In agreement with a role of histone hyperacetylation in histone removal and a role of Nut in H4 hyperacetylation, we observed that in the absence of Nut, the acetylation of histone H4 is downregulated and histone removal is impaired.

The similarity of phenotypes between Nut KO and *Brdt*deltaBD1/deltaBD1 mouse models also supports a role of Nut in histone acetylation that occurs upstream of histone removal. In both cases, although TPs and protamines are produced, they are unable to replace histones. This observation strongly suggests that Nut and Brdt function in the same molecular pathway, leading to histone-to-protamine replacement. The molecular mechanism linking Nut activity to histone acetylation, specifically that of H4K5 and H4K8, explains how Nut and Brdt are functionally related. In Nut KO-elongating spermatids, because of insufficient acetylation of H4, Brdt’s BD1 remains non-functional, leading to the same phenotype as observed in *Brdt*deltaBD1/deltaBD1 cells.

These studies also place Nut at the heart of the molecular mechanisms controlling histone-to-protamine replacement. Nut could link histone hyperacetylation to histone exchange and nucleosome invasion by protamines (Barral et al., 2017). Our Nut-interactomic approach also identified TH2B, H2A.L2, and TP2 as Nut partners. Therefore, p300 could be part of a machinery that would couple histone H4 acetylation, Brdt binding, and the exchange of TH2B-H2A for TH2B-H2A.L2 in a series of events that are essential for nucleosome opening and TP-controlled protamine invasion of nucleosomes and histone replacement (Barral et al., 2017). In agreement with this hypothesis, published data have reported the ability of p300 to cooperate with Nap1 to mediate nucleosome disassembly (Asahara et al., 2002; Luebben et al., 2010; Sharma and Nyborg, 2008).

Therefore, at the time of p300-Nut interaction and histone H4 hyperacetylation, nucleosomes adopt an increasingly open configuration and are largely remodeled. It is possible that under these conditions, histone accessibility to HATs such as p300 becomes similar to that of histones in octamers rather than histones...
in regular nucleosomes. In our in vitro HAT assays, histone octamers were used instead of nucleosomes. In our hands, nucleosomes seemed to be poor substrates for p300. However, in spermatids in vivo, in contrast to our in vitro conditions, Nut seems to be indispensable for H4 acetylation, whereas its absence seems to have only minor effects on H3 acetylation. It is possible that in vivo, in spermatids, H3 acetylation is inherited from earlier stages and that only H4 acetylation occurs de novo at the time of Nut synthesis. This hypothesis is in good agreement with our previous observations that in post-meiotic cells, CBP and p300 are mostly inherited from earlier stages (Boussouar et al., 2014). This possibility could therefore explain why in vivo Nut only affects H4 acetylation, which occurs de novo in these cells, while most H3 acetylation comes from the preceding stages (Figure 7).

Hence, our data support the hypothesis that Nut is a factor required by CBP and p300 to include H4 as a substrate in vivo and ensure H4 hyperacetylation in spermatids. In contrast, its impact on the level of H3 acetylation in vivo is relatively modest, because these enzymes already efficiently acetylitate H3 in male germ cells at earlier stages of spermatogenesis (Figure 7).

In summary, we found that Nut’s major function is to direct histone H4 hyperacetylation, leading to the cooperative action of p300, CBP, and the BET factor Brdt in haploid male germ cells. In NMC cells, a chromosomal translocation induces NUT-mediated forced cooperation between p300 and/or CBP and BRD4 to induce hyperacetylated histone chromatin foci (Figure 7). An extension of this work would be to explore the similarities between NMC cells and elongating spermatids. Rescue experiments with Nut re-expression under the control of different promoters, active at earlier stages of spermatogenesis, could be performed in the context of mice bearing Nut KO alone or both Nut KO and Brdt/wt/deltaBD1, which would demonstrate the cooperation between Nut and BD1 in the process of histone hyperacetylation.

This work also highlights a concept that cells can use particular auxiliary factors in a tissue- and cell-type-specific manner to enhance the activity of chromatin-modifying enzymes that are ubiquitously expressed and thus achieve a large-scale, tissue-specific chromatin modification such as H4 hyperacetylation in post-meiotic spermatogenic cells. The ectopic activation of such factors could initiate an oncogenic molecular circuit as it does in NMC cells expressing the BRD4-NUT fusion protein.

STAR+METHODS

Detailed methods are provided in the online version of this paper and include the following:

- **KEY RESOURCES TABLE**
- **CONTACT FOR REAGENT AND RESOURCE SHARING**
- **EXPERIMENTAL MODEL AND SUBJECT DETAILS**
 - Animal care and breeding
 - Generation of Mouse: B6.129/SvPas-nutm1KO/J/KO (Nut KO)
- **METHOD DETAILS**
 - Epididymis and testis histology
 - Round and early elongating spermatids enrichment
 - Histone preparation
 - RNA preparation and transcriptomics
 - Protein sample preparation, western blotting
 - Immunofluorescence Analysis
 - Antibodies’ Dilutions
 - Recombinant protein expression
 - In vitro Histone acetyltransferase assays
 - Proteomics of histone modifications
 - Proteomics of Nut interactome
 - QUANTIFICATION AND STATISTICAL ANALYSIS
 - Statistics and quantifications
 - Nucleosomal DNA length determination

SUPPLEMENTAL INFORMATION

Supplemental Information includes five figures and five tables and can be found with this article online at https://doi.org/10.1016/j.celrep.2018.08.069.

ACKNOWLEDGMENTS

The S.K. laboratory is supported by a grant from the Foundation pour la Recherche Medicale (FRM), “analyse bio-informatique pour la recherche en biologie” program, as well as by the ANR Episperm3 program and by INCa libre program (RPT13001CCA). Additional support came from the Universite Grenoble Alpes (ANR-15-IDEQ-02) LIFE and SYMER programs, as well as from Fondation ARC “Canc’air” project (RAC16042CLA) and Plan Cancer (CH7-INS15B66 and ASC10121CSA). Z.I. and D.P. were supported by a Worldwide Cancer Research foundation grant (16-0286) to D.P. H.S. was a recipient of a Marie Curie Initial Training Network funded by European Commission (FP7-PEOPLE-2011-ITN and PITN-GA-289880) for 3 years and then supported by La Ligue Nationale Contre Le Cancer for a 4th year of PhD pursuit. G.C. is a bio-informatic expert benefiting from a FRM fellowship. Mice were bred in the High Technology Animal Facility (PHTA) of Grenoble University with the help of Nathacha Piton and Kevin Escot. The TGML Platform is supported by grants from Inserm, GIS IBiSA, and Aix-Marseille Université (ANR-10-INBS-0009-10). We are grateful to Hortense Vachon for her help with library preparation and sequencing. The proteomic analyses were partially supported by the French National Research Agency ProFi grant (ANR-10-INBS-008-01). P.F. and S.P. were supported by a Wellcome Trust Cancer Development Fellowship (095751/Z/11/Z). Y.C. thanks the support of the discovery platform and informatics group at Edyp. Most computations presented in this paper were performed using the GRICAD infrastructure (https://gricad.univ-grenoble-alpes.fr).

AUTHOR CONTRIBUTIONS

H.S., S.B., and T.B. performed most experiments. M.T., M.Z., and Y.Z. performed quantitative measurements of in vivo and in vitro histone acetylation. F.B., T.B., and N.R. designed the Nut KO strategy and prepared the necessary materials and controlled the various steps toward mouse production, which was carried out in the M.G. laboratory. Y.C. performed the characterization of the Nut interactome. A.G., Z.I., and D. Panne performed recombinant p300 purification and in vitro HAT assays. S.P. and P.F. did Nut fragment purification for anti-Nut antibody production. L.B. constructed and sequenced the library for micrococcal nuclease sequencing (MNase-seq) experiments. G.C., D. Puthier, F.C., E.B.-F., and S.R. performed the bioinformatics analyses. S.K. conceived and coordinated the project and wrote the manuscript. All authors discussed the data and read and commented on the manuscript.

DECLARATION OF INTERESTS

Y.Z. is a shareholder and a member of the scientific advisory board of PTM BioLabs, Co. (Chicago). The other authors declare no competing interests.

KEY RESOURCES TABLE

<table>
<thead>
<tr>
<th>REAGENT or RESOURCE</th>
<th>SOURCE</th>
<th>IDENTIFIER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antibodies</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rabbit polyclonal anti-Nut</td>
<td>This paper</td>
<td>N/A</td>
</tr>
<tr>
<td>Mouse monoclonal anti-Actin</td>
<td>Sigma</td>
<td>Cat#A5441; RRID: AB_476744</td>
</tr>
<tr>
<td>Rabbit polyclonal anti-BrdU</td>
<td>Shang et al., 2007</td>
<td>N/A</td>
</tr>
<tr>
<td>Mouse monoclonal anti-H3K9ac</td>
<td>Active Motif</td>
<td>Cat#61251</td>
</tr>
<tr>
<td>Mouse monoclonal anti-H4K5ac</td>
<td>Active Motif</td>
<td>Cat#61523</td>
</tr>
<tr>
<td>Rabbit polyclonal anti-H4K5ac</td>
<td>Abcam</td>
<td>Cat#ab51977</td>
</tr>
<tr>
<td>Rabbit polyclonal anti-H4K8ac</td>
<td>PTM Biolabs</td>
<td>Cat#120</td>
</tr>
<tr>
<td>Rabbit polyclonal anti-H4K12ac</td>
<td>Active Motif</td>
<td>Cat#39165; RRID: AB_2615076</td>
</tr>
<tr>
<td>Rabbit polyclonal anti-H3</td>
<td>Abcam</td>
<td>Cat#ab1791; RRID: AB_302613</td>
</tr>
<tr>
<td>Rabbit polyclonal anti-TH2B</td>
<td>Abcam</td>
<td>Cat#ab61245</td>
</tr>
<tr>
<td>Goat polyclonal anti-TP2 (K18)</td>
<td>Santa Cruz</td>
<td>Cat#SC-21106; RRID: AB_2206859</td>
</tr>
<tr>
<td>Mouse monoclonal anti-Prm2</td>
<td>Briar Patch Biosciences</td>
<td>Cat#HUP2B; RRID: AB_2687949</td>
</tr>
<tr>
<td>Rabbit polyclonal anti-TP1</td>
<td>Gift by S. Kistler</td>
<td>N/A</td>
</tr>
<tr>
<td>Rabbit polyclonal anti-H4</td>
<td>Abcam</td>
<td>Cat#ab10158; RRID: AB_296888</td>
</tr>
<tr>
<td>Mouse monoclonal anti-Protamine P1</td>
<td>Briar Patch Biosciences</td>
<td>Cat#HUP1N; RRID: AB_2651186</td>
</tr>
<tr>
<td>Lectin PNA Alexa Fluor 647 conjugate</td>
<td>Life Technologies</td>
<td>Cat#L32640</td>
</tr>
<tr>
<td>Bacterial and Virus Strains</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EMBAC-Y baculovirus</td>
<td>This paper</td>
<td>https://geneva-biotech.com/product_category/insect-cell-expression/multibac/</td>
</tr>
<tr>
<td>Chemicals, Peptides, and Recombinant Proteins</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Complete Protease Inhibitor EDTA-free</td>
<td>Sigma-Aldrich</td>
<td>Cat#4693159001</td>
</tr>
<tr>
<td>n-Butyric Acid</td>
<td>Sigma-Aldrich</td>
<td>Cat#B-2503</td>
</tr>
<tr>
<td>Nicotinamide</td>
<td>Sigma-Aldrich</td>
<td>Cat#N-3376</td>
</tr>
<tr>
<td>nProtein A Sepharose 4 Fast Flow</td>
<td>GE Healthcare</td>
<td>Cat#17-5280-01</td>
</tr>
<tr>
<td>Trichloroacetic Acid Solution</td>
<td>Sigma-Aldrich</td>
<td>Cat#T-0699</td>
</tr>
<tr>
<td>Deposited Data</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MNase-Seq: Gene Expression Omnibus accession number: GSE111931</td>
<td>This paper</td>
<td>https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE111931</td>
</tr>
<tr>
<td>Raw mass spectrometry proteomics: ProteomeXchange consortium via the PRIDE partner repository; accession number: PXD008727</td>
<td>This paper</td>
<td>http://proteomecentral.proteomexchange.org/cgi/GetDataset?ID=PXD008727</td>
</tr>
<tr>
<td>Mendeley Data</td>
<td>This paper</td>
<td>https://data.mendeley.com/datasets/9xt8rgn265/draft?a=1653d1d4-ee86-4c50-b465-8ee1a0f3c283a</td>
</tr>
<tr>
<td>Illumina expression raw and normalized data: Gene Expression Omnibus accession number: GSE118969</td>
<td>This paper</td>
<td>https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE118969</td>
</tr>
<tr>
<td>Experimental Models: Organisms/Strains</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mouse: B6.129/SvPas-nutm1 KO/KO</td>
<td>This paper</td>
<td>N/A</td>
</tr>
<tr>
<td>Oligonucleotides</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RT-qPCR Nut forward primer: ACCTCAGATTTGACATCAG</td>
<td>This paper</td>
<td>N/A</td>
</tr>
<tr>
<td>RT-qPCR Nut reverse primer: GCCATGGCCAGGTTTCCAT</td>
<td>This paper</td>
<td>N/A</td>
</tr>
<tr>
<td>Genotyping Nut wild-type forward primer: ACACAAGCAACAACCATGG</td>
<td>This paper</td>
<td>N/A</td>
</tr>
</tbody>
</table>

(Continued on next page)
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Saadi Khochbin (saadi.khochbin@univ-grenoble-alpes.fr).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Animal care and breeding
Mice were housed in the Grenoble High Technology Animal Facility (PHTA, University Grenoble Alpes). For this study no experimentation was required on live animals. Mice were euthanized following a procedure approved by the official ethic committee of the University Grenoble Alpes (COMETH, C2EA-12) and all of the investigators directly involved in care and breeding have an official animal-handling authorization obtained after 2 weeks of intensive training and a final formal evaluation.

Generation of Mouse: B6.129/SvPas-nutm1KO / KO (Nut KO)
The nutm1KO (NutKO) allele was constructed as follows using the gap-repair recombineering technique adapted from (Liu et al., 2003). An 11.3-kb DNA fragment encompassing exons 1, 2, and 3 (4.7-kb upstream and 6.6-kb downstream of the start codon) of the Nut gene was retrieved from a BAC (bMQ 235I10, CHORI) into the SpeI-linearized PL253 retrieval plasmid after induction of recombination in SW102 electro-competent cells. Two /C24-0.3-kb fragments surrounding the exon 2 of the Nut gene (0.9-kb and 3.7-kb downstream of the start codon) were cloned into a PL452 plasmid upstream and downstream of a neomycin cassette, respectively. An EcoR I restriction site was inserted at the 3'end of the first fragment to facilitate the identification of the mutant allele. In order to generate the Nut KO targeting vector, a SalI/NotI fragment encompassing the neomycin cassette was purified from the NutPL452-derived plasmid and cloned into the PL253 retrieval plasmid, containing the 11.3-kb DNA fragment of the Nut gene, after induction of recombination in SW102 cells and kanamycin selection. This strategy replaces the exon 2 of the Nut gene by a neomycin cassette. For gene targeting, 50 μg of NotI-linearized Nut KO targeting vector DNA (PL253) was electroporated (250V, 500 mF) into 10^7 AT1 embryonic stem cells (ESC) grown on mitomycin C-inactivated mouse embryo fibroblasts. Colonies were positively

REAGENT or RESOURCE SOURCE IDENTIFIER

<table>
<thead>
<tr>
<th>REAGENT or RESOURCE</th>
<th>SOURCE</th>
<th>IDENTIFIER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Genotyping Nut KO forward primer: AGAGGAAGTCTCCAGCCTT</td>
<td>This paper</td>
<td>N/A</td>
</tr>
<tr>
<td>Genotyping Nut wild-type and KO reverse primer: TCTGAGTTCTGACCTTG</td>
<td>This paper</td>
<td>N/A</td>
</tr>
<tr>
<td>Southern blot Nut probe forward: AAATACATGTTGGCCAGGAA</td>
<td>This paper</td>
<td>N/A</td>
</tr>
<tr>
<td>Southern blot Nut probe reverse: ACAGTCCTGGGCTGAGGAA</td>
<td>This paper</td>
<td>N/A</td>
</tr>
<tr>
<td>Genotyping Nut KO reverse primer: TCTGGATTCATCGACTGTGG</td>
<td>This paper</td>
<td>N/A</td>
</tr>
<tr>
<td>Southern blot Nut probe forward: AAATACATGTTGGCCAGGAA</td>
<td>This paper</td>
<td>N/A</td>
</tr>
<tr>
<td>Southern blot Nut probe reverse: ACAGTCCTGGGCTGAGGAA</td>
<td>This paper</td>
<td>N/A</td>
</tr>
<tr>
<td>cDNA sequence encoding residues 347-588 (NUT-F1C fragment) cloned in pET30 vector with a TEV cleavable N-terminal glutathione S-transferase (GST) tag</td>
<td>This paper</td>
<td>EMBL</td>
</tr>
<tr>
<td>Recombinant DNA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Software and Algorithms</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bowtie2 v2.2.9</td>
<td>NA</td>
<td>http://bowtie-bio.sourceforge.net/bowtie2/index.shtml</td>
</tr>
<tr>
<td>Samtools v1.3.1</td>
<td>NA</td>
<td>http://samtools.sourceforge.net/</td>
</tr>
<tr>
<td>DeepTools v2.2.4</td>
<td>NA</td>
<td>https://github.com/fidelram/deepTools</td>
</tr>
<tr>
<td>GSEA</td>
<td>Broad Institute</td>
<td>http://software.broadinstitute.org/gsea/index.jsp</td>
</tr>
<tr>
<td>DANPOS v2.2.2</td>
<td>NA</td>
<td>https://sites.google.com/site/danpostdoc/</td>
</tr>
<tr>
<td>R v3.3.1</td>
<td>R Development Core Team</td>
<td>https://cran.r-project.org/</td>
</tr>
<tr>
<td>Snakemake v3.9.0</td>
<td>NA</td>
<td>https://snakemake.readthedocs.io/en/latest/</td>
</tr>
<tr>
<td>Fastx-toolkit v0.0.13</td>
<td>NA</td>
<td>http://hannonlab.cshl.edu/fastx_toolkit/index.html</td>
</tr>
<tr>
<td>Xcalibur 2.1</td>
<td>Thermo Scientific</td>
<td>OPTON-20487</td>
</tr>
<tr>
<td>Mascot Distiller</td>
<td>Matrix Science</td>
<td>Version 2.6.0</td>
</tr>
<tr>
<td>Mascot Server</td>
<td>Matrix Science</td>
<td>Version 2.6.0</td>
</tr>
<tr>
<td>Proline</td>
<td>Open source</td>
<td>http://www.profproteomics.fr/proline</td>
</tr>
</tbody>
</table>
and negatively selected in ESC medium with neomycin and ganciclovir, respectively. One hundred neomycin-resistant clones were picked and analyzed by Southern blotting using EcoRI digests with a 3’ external probe to check for homologous targeting (see Figure S2). Three selected ES clones were then used to generate the corresponding mouse model (Mouse B6.129/SvPas-nutm1 KO/KO).

Studies were carried out on male adult mice (3 to 10 months old), except for Figures 1A and 1B, where prepubertal male mice were used from day post-partum 6 to day post-partum 50.

METHOD DETAILS

Epididymis and testis histology
Six micrometre paraffin-embedded formalin-fixed cauda epididymis sections were stained with hematoxylin. Testis sections were either processed for DAPI staining or Protamine 1 immunostaining. For details see (Gaucher et al., 2012) and (Barral et al., 2017).

Round and early elongating spermatids enrichment
Fractions enriched in spermatogenic cells at different stages of maturation, including post meiotic round and early elongating spermatids were obtained by sedimentation on a BSA gradient as detailed in a recent dedicated method publication (Buchou et al., 2017).

Histone preparation
Histone extraction was performed on germ cell nuclei of enriched round and early elongating spermatids, using 0.2 M H2SO4 at 4°C for 16 h followed by centrifugation at 16,000 x g for 10 min at 4°C to isolate solubilized histones. For germ cell preparation, see (Buchou et al., 2017). Histone precipitation was performed with TCA, 20% final concentration, added drop by drop for 30 min at 4°C and centrifuged at 16,000 x g for 10 min to obtain histone pellets. The pellets were washed once with cold acetone with 0.1% HCl, and twice with cold acetone. Precipitates were dried completely at room temperature.

RNA preparation and transcriptomics
RNA from testes harvested at various times after birth or from enriched round and early elongating spermatids was extracted in Trizol reagent followed by purification using the RNeasy Mini Kit (QIAGEN; for details, see (Buchou et al., 2017)). RNA was used on Illumina mouse whole-genome chip as performed in (Gaucher et al., 2012).

Protein sample preparation, western blotting
For total protein extracts, whole testes were homogenized in 8 M urea and sonicated at 250 J. Dried extracted histones were dissolved in 8 M urea. Protein dosage was assessed by Bradford assay. Western blots with SDS-PAGE were carried out using the antibodies listed in Key Resource Table.

Immunofluorescence Analysis
Testes were frozen in liquid nitrogen and cut, and then gently pressed onto glass slides and air-dried. Slides were incubated in 90% ethanol during 15 min, and air-dried again. Slides were permeabilized in 0.5% saponine, 0.2% Triton X-100, and 1x PBS at room temperature during 15 min. Saturation was performed by incubating slides in 5% dry milk, 0.2% Tween 20, and 1x PBS at room temperature for 30 min. Primary antibodies, diluted in 1% dry milk, 0.2% Tween 20, and 1x PBS, were applied onto the slides, followed by overnight incubation in a humidified chamber at 4°C, and washed 3 x 5 min in the dilution buffer. The secondary antibodies, diluted at 1:500 in the same buffer, was then applied and the slides incubated in a humidified chamber for 30 min at 37°C, and then washed as previously. After counterstaining by DAPI, the slides were mounted in Dako fluorescent mounting medium.

Antibodies’ Dilutions
Rabbit polyclonal anti-Nut: 1/500 (immunoblotting), 1/25 (immunofluorescence); Mouse monoclonal anti-Actin: 1/5000 (immunoblotting); Rabbit polyclonal anti-Brdt: 1/500 (immunofluorescence); Mouse monoclonal anti-H3K9ac: 1/2000 (immunoblotting); Mouse monoclonal anti-H4K5ac: 1/500 (immunofluorescence); Rabbit polyclonal anti-H4K5ac: 1/2000 (immunoblotting); Rabbit polyclonal anti-H4K8ac: 1/2000 (immunoblotting); Rabbit polyclonal anti-H4K12ac: 1/1000 (immunoblotting); Rabbit polyclonal anti-H3: 1/5000 (immunoblotting); Rabbit polyclonal anti-TH2B: 1/1000 (immunofluorescence); Goat polyclonal anti-TP2 (K18): 1/250 (immunofluorescence); Mouse monoclonal anti-Protamine P1: 1/100 (immunohistochemistry and immunofluorescence); Rabbit polyclonal anti-H4: 1/1000 (immunoblotting); Rabbit polyclonal anti-TP1, 1/500 (immunofluorescence); Mouse monoclonal anti-Prm2: 1/100 (immunofluorescence).

For precise reference regarding antibodies, please see Key Resource Table.

Recombinant protein expression
Expression and purification of Flag-tagged p300 protein (NCBI reference sequence: NM_001429.3) encoding residues 340-2094 was done as previously described (Panne et al., 2007). The procedure of p300 and NUT-p300 interacting fragment is as follows.
We used EMBAC-Y baculovirus for p300 expression. The recombinant baculoviruses were propagated in Sf21 insect cells with Sf-900 III SFM medium (Invitrogen). Hi5 insect cells (Invitrogen) in Express Five SFM medium were infected with recombinant baculovirus at a multiplicity of infection of 2, maintained in shake flasks at 27 °C and harvested by centrifugation 68-72 h post infection. Cells were resuspended in lysis buffer (20 mM Tris pH 7.5, 500 mM NaCl, 5 μg/mL ZnCl₂, 10 μL benzonase (SIGMA), Complete Protease Inhibitors EDTA-Free (Roche), 5% glycerol, 0.1% Tween) and sonicated. The lysate was clarified by centrifugation and applied to anti-Flag M2 affinity resin according to instructions by the manufacturer (Sigma). The resin was washed with the same buffer and the protein was eluted with buffer containing 0.2 mg/mL flag peptide and further purified by gel filtration on a Superdex 200 10/300 column (GE Healthcare) equilibrated in 20 mM HEPES buffer pH 7.5, 500 mM NaCl, 0.5 mM TCEP and 5 μg/mL ZnCl₂.

For NUT expression, cDNA sequence encoding residues 347-588 (NUT-F1C fragment) was cloned into the pETM30 vector (EMBL) with a TEV cleavable N-terminal glutathione S-transferase (GST) tag. The recombinant GST-NUT fusion protein was expressed in E. coli BL21 (DE3) in LB medium. Cell pellets were resuspended in buffer 1 containing 20 mM Tris pH 7, 300 mM NaCl, 0.5 mM TCEP, Complete Protease Inhibitor EDTA-free (Roche) and sonicated. The lysate was clarified by centrifugation and applied to a Glutathione Sepharose 4 Fast Flow resin (GE Healthcare). The resin was washed with buffer 1 and the protein was eluted with buffer containing 20 mM Glutathione. The protein was further purified by gel filtration in buffer 1 on a Superdex 75 10/300 GL column (GE Healthcare).

Recombinant Xenopus laevis histones H2A, H2B, H3 and H4 were expressed, purified and refolded according to standard procedures (Luger et al., 1999). Histone octamers were assembled by mixing equimolar amounts of each histone subunit. After mixing H2A, H2B, H3 and H4, the sample was incubated for one hour on ice then run on a Superdex 75 10/300 GL size exclusion column in refolding buffer (10 mM Tris pH 7.5, 2M NaCl, 1 mM EDTA, 5 mM β-mercaptoethanol). All preparations were confirmed by SDS-PAGE and mass spectrometry.

In vitro Histone acetyltransferase assays

Histone octamer acetylation reactions were performed in acetylation buffer (20 mM Tris pH 7.5, 100 mM NaCl, 1 mM DTT, 10% glycerol and Complete Protease Inhibitor EDTA-free (Roche)) with 100 μg/mL Acetyl-CoA, 2 μg/mL p300, 4 μg/mL purified histone octamers in the presence or absence of 4 μg/mL of GST-NUT-F1C (p300:NUT, 1:10 molar stoichiometry). Control experiments were performed with NUT-F1C and histone octamers. The reactions were incubated for one hour at 30 °C and stopped by addition of 1X SDS Laemmli buffer. The samples were then analyzed by SDS-PAGE and mass spectrometry.

Proteomics of histone modifications

Digestion and chemical derivatization

For histone peptides with no chemical derivatization, the sample was digested with trypsin at 37 °C overnight. For stable chemical isotope labeling samples, chemical derivatization was carried out as described previously (Garcia et al., 2007). Twenty micrograms of each histone sample were propionylated with C₁₂ or C₁₃ propionic anhydride in buffer (100 mM NH₄HCO₃, 100 mM NaHCO₃, pH 8.0) at 37 °C for one hour, and the propionylation reaction was then repeated. The sample was then digested with trypsin at 37 °C overnight. After digestion, N-terminal of tryptic peptides were further propionylated with C₁₂ or C₁₃ propionic anhydride, respectively. The light and heavy labeling peptides were then mixed, and subjected to MS analysis.

Nano-HPLC-MS/MS analysis

Peptides were injected onto a manually packed reversed phase C18 column (170 mm x 79 microm, 3-microm particle size, Dikma, China) connected to an Easy-nLC 1000 chromatography system (Thermo Fisher Scientific, Waltham, MA). Peptides were dissolved in solvent A (0.1% formic acid in 2% acetonitrile and 98% H₂O) and eluted using a 2-h gradient of 8% to 80% solvent B (0.1% formic acid in 90% acetonitrile and 10% H₂O) at a flow rate of 300 nl/min, and analyzed by an Orbitrap Fusion mass spectrometer (Thermo Fisher Scientific, San Jose, CA). The full MS range was set from m/z 350 to 1800 with a resolution of 240,000 at m/z 400. For MS/MS scans, the twenty most intense ions with intensity greater than 5,000 and charge states of +1, +2, or +3 in each full MS spectrum were sequentially fragmented in a linear ion trap by collision-induced dissociation, using a normalized collision energy of 35%. The dynamic exclusion duration was set to 15 s, and the isolation window was 1.5 m/z. All histone samples were analyzed twice.

Mass spectrometric data analysis

All acquired MS raw files were transformed into MGF format by Proteome Discoverer software (version 1.4, Thermo Fisher Scientific, Waltham, MA), then all MGF files were analyzed by Mascot software (version 2.3.01, Matrix Science Ltd., London, UK) against a mouse histone sequence database (94 sequences, 14,024 residues, updated on 05/07/2014) generated in-house from the UniProt database. For stable isotope labeling, propionyl (N-terminal of peptide), propionyl_C13 (N-terminal of peptide), propionyl (K), propionyl_C13 (K), propionylation-methylation (K), propionylation_C13-methylation (K), dimethyl (K), trimethyl (K), and acetyl (K) were specified as variable modifications. For histone peptides with no chemical derivatization, acetyl (K), methyl (KR), dimethyl (KR) and trimethyl (K) were specified as variable modifications. Other parameters for all analyses were specified as follows: mass error was ± 10 ppm for parent ions and ± 0.5 Da for fragment ions. The enzyme was specified as trypsin with a maximum of 5 missing cleavages. Peptide ion score cut-off was 20, and the spectra of all identified peptides were checked manually according to criteria reported previously to ensure the accuracy of peptide identification (Chen et al., 2005).

Quantification of histone PTMs

Identified peptides bearing modifications were manually quantified using the QualBrowser version 3.0.63 (Thermo Fisher Scientific). Extracted ion chromatograms were constructed for each precursor m/z value with a mass tolerance of 10 ppm and mass precision up
to four decimal places. For stable isotope labeling, peak areas for a pair of heavy and light peptides with the same retention time interval were calculated. Precursor ion AUC of prDNIQGITKprPAIR for H4, prEIAQDFKprTDLR for H3, prIASEASR for H2B and prAGLQFPVGR for H2A were used to normalize the amount of each histone in stable isotope labeling quantification. For histone peptides with no chemical derivatization, precursor ion AUC of YRPGTVALR, STELLIR, EIAQDFK, DNIQGITKPAIR, ISGLIYEETR were used to normalize the amount of each histone. Two technical replicates were used to quantify histone marks.

For the identification and quantification of histone acetylation following in vitro HAT with p300, we followed the previously published procedure (Goudarzi et al., 2016). See also the legend of Figure 6D.

Proteomics of Nut interactome

Immunoprecipitation of Nut

Soluble extracts of enriched round and early elongating spermatids from wild-type and Nut KO mice (5.10^6 cells) were obtained in LSBD (50 mM HEPES pH 7, 3 mM MgCl_2, 500 mM KCl, 20% Glycerol, 1mM DTT, 100 ng/ml TSA, Protease Cocktail Inhibitor). Extracts were immediately diluted with an equal volume of LSBD (no KCl) buffer and incubated with 2.5 μg of purified anti-Nut antibody for 16h at 4°C followed by incubation with protein A Sepharose beads for 6h at 4°C under rotation. After two washing steps in LSBD (250 mM KCl) buffer and two with PBS, 1 mM DTT, 100 ng/ml TSA, Protease Cocktail Inhibitor, proteins were eluted by boiling in Laemmli buffer. After separation in SDS-PAGE and staining in Coomassie blue, each sample was cut in 6 pieces for MS-based analyses.

Mass spectrometric data analysis

Proteins were in-gel digested using modified trypsin (Promega, sequencing grade) as previously described (Casabona et al., 2013). Resulting peptides were analyzed by online nanoLC-MS/MS (UltiMate 3000 and LTQ-Orbitrap Velos Pro, Thermo Scientific). For this, peptides were sampled on a 300 μm x 5 mm PepMap C18 pre-column and separated on a 75 μm x 250 mm C18 column (PepMap, Thermo Scientific). MS and MS/MS data were acquired using Xcalibur (Thermo Scientific). Peptides and proteins were identified using Mascot (version 2.6.0) through concomitant searches against Uniprot (Mus musculus taxonomy, August 2017 version), classical contaminants database (homemade) and the corresponding reversed databases. The Proline software (http://www.profiproteomics.fr/proline) was used to filter the results (conservation of rank 1 peptides, peptide identification FDR < 1% as calculated on peptide scores by employing the reverse database strategy, minimum peptide score of 25, and minimum of 1 specific peptide per identified protein group) before performing a compilation, grouping and comparison of the protein groups from the different samples. Proteins were considered as potential partners of the bait if they were identified only in the positive co-IPs with a minimum of 3 specific spectral counts or enriched at least 5 times in positive co-IPs compared to control ones on the basis of weighted spectral counts.

The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE (Vizcaíno et al., 2016) partner repository with the dataset identifier PXD008727.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistics and quantifications

Figure 1A, the histograms show the average values of 4 experiments ± standard deviations.

Figure 2A, right panels, the histograms show the average values ± standard deviations of litter sizes and testis weights. The average litter sizes were obtained after crossing wild-type female mice with wild-type (n = 12) or Nut KO (n = 5) male mice. The average weights of testes of wild-type (n = 19) and Nut KO (n = 19) mice were determined.

Figure 4 shows the results of two independent experiments. For each experiment round spermatid fractions were prepared from 3 (wild-type) or 5 (KO) mice (6 to 10 testes).

Figures 5 and 6C each shows the results of two independent experiments. For each experiment round spermatid fractions were prepared from 5 (wild-type) or 7 (KO) mice (10 to 14 testes).

RNAs for transcriptomic analyses (Figure 6A) were prepared from three independent experiments corresponding to three independent cell fractionations for each genotype. For each fractionation, cell suspensions from testes from two wild-type mice or three Nut KO mice were used. For each genotype (wild-type and Nut KO), 6 samples were prepared as follows. Samples 1, 2 and 3 were directly prepared from the three above-mentioned fractionations and three additional samples were obtained by respectively mixing samples 1 with 2, 2 with 3, and 1 with 3 (from left to right).

The Nut regulated genes (genes downregulated and upregulated in Nut KO cells compared to wild-type cells) correspond to genes showing an absolute value of fold change above 1.5 between Nut KO versus wild-type cells, with an adjusted Student test p value less than 5%. The Student test p values for fold changes were adjusted for multiples tests according to the method published by Benjamini & Hochberg.

Nucleosomal DNA length determination

Nuclei from fractionated round-elongating spermatids (equivalent of 100 μg of chromatin) were extensively digested with MNase. Digestion conditions were setup to completely digest chromatin to monomers. DNA was then prepared by the digestion of proteins by proteinase K in a SDS buffer and Phenol/Chloroform extraction.

Paired-end sequencing -2*75bp was performed using Illuma NextSeq 500. Base calling was performed using RTA version 2. MNAse-Seq fragments were aligned to the mm10 genome assembly using Bowtie version 2.2.9 with default arguments.
Fragment sizes were taken from the 9th column of SAM files (TLEN) using Samtools version 1.3.1 and plotted as distributions using R version 3.3.1.

DATA AND SOFTWARE AVAILABILITY

Data Resources
The accession number for the raw and processed MNase sequencing data reported in this paper is GEO: GSE111931.

The accession number for the raw and processed transcriptomic Illumina data reported in this paper is GEO: GSE118969.

Proteomic data: the list of all identified proteins immunoprecipitated by the anti-Nut antibody has been deposited with ProteomeXchange consortium via the PRIDE database with the accession number: PXD008727.

ADDITIONAL RESOURCES

Anti Nut-purified antibody
5 cDNA “fragments” covering the entire mouse Nut sequence (Reynoird et al., 2010), were used to produce the corresponding biotinylated peptides, which were injected to rabbits. Sera from final bleedings were differently screened for a ~150kDa signal by western blotting using total germ cell lysed in 15mM Tris HCl pH 7.4, 60mM KCl, 15mM NaCl, 0.34M Sucrose, 2mM EDTA, 0.5mM EGTA, 1mM Dithiothreitol, 0.03% Triton X-100, 1% Glycerol, Protease Cocktail Inhibitor 10mM Na Butyrate, followed by centrifugation for 15 min at 200 x g at 4°C in order to obtain nuclear extracts from testis of wild-type versus Nut KO male mice.

Positive samples were immunopurified against the Nut f1c fragment (Reynoird et al., 2010), bound to CNBr-activated Sepharose 4B beads, after elution with 0.1M Glycine pH2.5. Purified antibodies were dialysed and concentrated in a PBS, 350mM NaCl, 10% glycerol buffer at 0.5 μg/microliter and kept at −20°C until use.