Leicester Research Archive

Leicester Research Archive >
College of Science and Engineering >
Mathematics, Department of >
Theses, Dept. of Mathematics >

Please use this identifier to cite or link to this item: http://hdl.handle.net/2381/10916

Title: Operads and Moduli Spaces
Authors: Braun, Christopher David
Supervisors: Lazarev, Andrey
Award date: 22-Jun-2012
Presented at: University of Leicester
Abstract: This thesis is concerned with the application of operadic methods, particularly modular operads, to questions arising in the study of moduli spaces of surfaces as well as applications to the study of homotopy algebras and new constructions of ‘quantum invariants’ of manifolds inspired by ideas originating from physics. We consider the extension of classical 2–dimensional topological quantum field theories to Klein topological quantum field theories which allow unorientable surfaces. We generalise open topological conformal field theories to open Klein topological conformal field theories and consider various related moduli spaces, in particular deducing a Möbius graph decomposition of the moduli spaces of Klein surfaces, analogous to the ribbon graph decomposition of the moduli spaces of Riemann surfaces. We also begin a study, in generality, of quantum homotopy algebras, which arise as ‘higher genus’ versions of classical homotopy algebras. In particular we study the problem of quantum lifting. We consider applications to understanding invariants of manifolds arising in the quantisation of Chern–Simons field theory.
Links: http://hdl.handle.net/2381/10916
Type: Thesis
Level: Doctoral
Qualification: PhD
Rights: Copyright © the author, 2012
Appears in Collections:Leicester Theses
Theses, Dept. of Mathematics

Files in This Item:

File Description SizeFormat
2012brauncphd.pdf847.59 kBAdobe PDFView/Open
View Statistics

Items in LRA are protected by copyright, with all rights reserved, unless otherwise indicated.

 

MAINTAINER