Please use this identifier to cite or link to this item:
Title: Dynamic subauroral ionospheric electric fields observed by the Falkland Islands radar during the course of a geomagnetic storm
Authors: Grocott, A.
Milan, S. E.
Baker, J. B. H.
Freeman, M. P.
Lester, M.
Yeoman, T. K.
First Published: 4-Nov-2011
Publisher: American Geophysical Union (AGU); Wiley
Citation: Journal of Geophysical Research-SPACE PHYSICS, 2011, 116
Abstract: [1] We present an analysis of ionospheric electric field data observed during a geomagnetic storm by the recently deployed HF radar located on the Falkland Islands. On 3 August 2010 at ∼1800 UT evidence of the onset of a geomagnetic storm was observed in ground magnetometer data in the form of a decrease in the Sym-H index of ∼100 nT. The main phase of the storm was observed to last ∼24 hours before a gradual recovery lasting ∼3 days. On 4 August, during the peak magnetic disturbance of the storm, a high velocity (>1000 m s−1) channel of ionospheric plasma flow, which we interpret as a subauroral ion drift (SAID), located between 53° and 58° magnetic south and lasting ∼6.5 hours, was observed by the Falkland Islands radar in the pre-midnight sector. Coincident flow data from the DMSP satellites and the magnetically near-conjugate northern hemisphere Blackstone HF radar reveal that the SAID was embedded within the broader subauroral polarization streams (SAPS). DMSP particle data indicate that the SAID location closely followed the equatorward edge of the auroral electron precipitation boundary, while remaining generally poleward of the equatorward boundary of the ion precipitation. The latitude of the SAID varied throughout the interval on similar timescales to variations in the interplanetary magnetic field and auroral activity, while variations in its velocity were more closely related to ring current dynamics. These results are consistent with SAID electric fields being generated by localized charge separation in the partial ring current, but suggest that their location is more strongly governed by solar wind driving and associated large-scale magnetospheric dynamics.
DOI Link: 10.1029/2011JA016763
ISSN: 0148-0227
Version: Publisher Version
Status: Peer-reviewed
Type: Journal Article
Rights: Copyright © 2011 by the American Geophysical Union. All rights reserved. Archived with reference to Usage Permissions granted to authors, available at
Appears in Collections:Published Articles, Dept. of Physics and Astronomy

Files in This Item:
File Description SizeFormat 
jgra21443.pdfPublished (publisher PDF)3.99 MBAdobe PDFView/Open

Items in LRA are protected by copyright, with all rights reserved, unless otherwise indicated.