Please use this identifier to cite or link to this item: http://hdl.handle.net/2381/11632
Title: Haloperidol protects striatal neurons from dysfunction induced by mutated huntingtin in vivo.
Authors: Charvin, D
Roze, E
Perrin, V
Deyts, C
Betuing, S
Pagès, C
Régulier, E
Luthi-Carter, R
Brouillet, E
Déglon, N
Caboche, J
First Published: Jan-2008
Citation: NEUROBIOL DIS, 2008, 29 (1), pp. 22-29
Abstract: Huntington's disease (HD) results from an abnormal polyglutamine extension in the N-terminal region of the huntingtin protein. This mutation causes preferential degeneration of striatal projection neurons. We previously demonstrated, in vitro, that dopaminergic D2 receptor stimulation acted synergistically with mutated huntingtin (expHtt) to increase aggregate formation and striatal death. In the present work, we extend these observations to an in vivo system based on lentiviral-mediated expression of expHtt in the rat striatum. The early and chronic treatment with the D2 antagonist haloperidol decanoate protects striatal neurons from expHtt-induced dysfunction, as analyzed by DARPP-32 and NeuN stainings. Haloperidol treatment also reduces aggregates formation, an effect that is maintained over time. These findings indicate that D2 receptors activation contributes to the deleterious effects of expHtt on striatal function and may represent an interesting early target to alter the subsequent course of neuropathology in HD.
DOI Link: 10.1016/j.nbd.2007.07.028
ISSN: 0969-9961
Links: http://hdl.handle.net/2381/11632
Type: Journal Article
Appears in Collections:Published Articles, Dept. of Cell Physiology and Pharmacology

Files in This Item:
There are no files associated with this item.


Items in LRA are protected by copyright, with all rights reserved, unless otherwise indicated.