Please use this identifier to cite or link to this item: http://hdl.handle.net/2381/11656
Title: Gene expression profiling of R6/2 transgenic mice with different CAG repeat lengths reveals genes associated with disease onset and progression in Huntington's disease.
Authors: Tang, B
Seredenina, T
Coppola, G
Kuhn, A
Geschwind, DH
Luthi-Carter, R
Thomas, EA
First Published: Jun-2011
Citation: NEUROBIOL DIS, 2011, 42 (3), pp. 459-467
Abstract: R6/2 transgenic mice with expanded CAG repeats (>300) have a surprisingly prolonged disease progression and longer lifespan than prototypical parent R6/2 mice (carrying 150 CAGs); however, the mechanism of this phenotype amelioration is unknown. We compared gene expression profiles in the striatum of R6/2 transgenic mice carrying ~300 CAG repeats (R6/2(Q300) transgenic mice) to those carrying ~150 CAG repeats (R6/2(Q150) transgenic mice) and littermate wildtype controls in order to identify genes that may play determinant roles in the time course of phenotypic expression in these mice. Of the top genes showing concordant expression changes in the striatum of both R6/2 lines, 85% were decreased in expression, while discordant expression changes were observed mostly for genes upregulated in R6/2(Q300) transgenic mice. Upregulated genes in the R6/2(Q300) mice were associated with the ubiquitin ligase complex, cell adhesion, protein folding, and establishment of protein localization. We qPCR-validated increases in expression of genes related to the latter category, including Lrsam1, Erp29, Nasp, Tap1, Rab9b, and Pfdn5 in R6/2(Q300) mice, changes that were not observed in R6/2 mice with shorter CAG repeats, even in late stages (i.e., 12 weeks of age). We further tested Lrsam1 and Erp29, the two genes showing the greatest upregulation in R6/2(Q300) transgenic mice, for potential neuroprotective effects in primary striatal cultures overexpressing a mutated human huntingtin (htt) fragment. Overexpression of Lrsam1 prevented the loss of NeuN-positive cell bodies in htt171-82Q cultures, concomitant with a reduction of nuclear htt aggregates. Erp29 showed no significant effects in this model. This is consistent with the distinct pattern of htt inclusion localization observed in R6/2(Q300) transgenic mice, in which smaller cytoplasmic inclusions represent the major form of insoluble htt in the cell, as opposed to large nuclear inclusions observed in R6/2(Q150) transgenic mice. We suggest that the prolonged onset and disease course observed in R6/2 mice with greatly expanded CAG repeats might result from differential upregulation of genes related to protein localization and clearance. Such genes may represent novel therapeutic avenues to decrease htt aggregate toxicity and cell death in HD patients, with Lrsam1 being a promising, novel candidate disease modifier.
DOI Link: 10.1016/j.nbd.2011.02.008
eISSN: 1095-953X
Links: http://hdl.handle.net/2381/11656
Type: Journal Article
Appears in Collections:Published Articles, Dept. of Cell Physiology and Pharmacology

Files in This Item:
There are no files associated with this item.


Items in LRA are protected by copyright, with all rights reserved, unless otherwise indicated.