Please use this identifier to cite or link to this item:
Title: First observations of SPEAR-induced topside and bottomside sporadic E layer heating observed using the EISCAT Svalbard and SuperDARN radars
Authors: Baddeley, L. J.
Haggstrøm, I.
Yeoman, T. K.
Rietveld, M.
First Published: 12-Jan-2012
Publisher: American Geophysical Union (AGU); Wiley
Citation: Journal of Geophysical Research A: SPACE PHYSICS, 2012, 117 (1)
Abstract: [1] We present the first observations of heater-induced simultaneous topside and bottomside sporadic E layer enhancements at very high latitudes (78.15°N) using the Space Plasma Exploration by Active Radar (SPEAR) heating facility and the European Incoherent Scatter (EISCAT) Svalbard Radar. During the experiment the SPEAR heating facility was transmitting with O-mode polarization in a field-aligned direction with a constant effective radiated power of ∼16 MW. Results show distinct heater-induced enhancements in both the ion and plasma line spectra. The plasma line enhancements are observed at the SPEAR heater frequency of 4.45 MHz. The plasma line observations represent the highest spatial resolution data (100 m) obtained of such heater-induced enhancements and indicate simultaneous enhancements at both the topside and bottomside of the layer, respectively (located at ∼107.5 and 109 km altitude, respectively). It is postulated that the results represent evidence of O- to Z-mode conversion of the heater wave occurring at the bottom of the E layer, allowing propagation through the layer resulting in simultaneous topside enhancements. The Z-mode enhancements are observed outside the Spitze angle, which is thought to be a result of field-aligned irregularities causing an increase in angular extent of the observations. Additional data from the Super Dual Auroral Radar Network (SuperDARN) HF Finland radar are also shown, which indicate that upon a thinning of the sporadic E layer, the heater beam propagated into the F region, where it induced artificial field-aligned irregularities.
DOI Link: 10.1029/2011JA017079
ISSN: 0148-0227
Version: Publisher Version
Status: Peer-reviewed
Type: Journal Article
Rights: Copyright © 2012 by the American Geophysical Union. All rights reserved. Archived with reference to Usage Permissions granted to authors, available at
Appears in Collections:Published Articles, Dept. of Physics and Astronomy

Files in This Item:
File Description SizeFormat 
jgra21636.pdfPublished (publisher PDF)1.06 MBAdobe PDFView/Open

Items in LRA are protected by copyright, with all rights reserved, unless otherwise indicated.