Please use this identifier to cite or link to this item: http://hdl.handle.net/2381/12597
Title: STARS Is Essential to Maintain Cardiac Development and Function In Vivo via a SRF Pathway
Authors: Chong, N. W.
Koekemoer, A. L.
Ounzain, S.
Samani, N. J.
Shin, J. T.
Shaw, S. Y.
First Published: 18-Jul-2012
Publisher: Public Library of Science
Citation: PLOS ONE, 2012, 7 (7), p. e40966
Abstract: STARS (STriated muscle Activator of Rho Signaling) is a sarcomeric protein expressed early in cardiac development that acts as an acute stress sensor for pathological remodeling. However the role of STARS in cardiac development and function is incompletely understood. Here, we investigated the role of STARS in heart development and function in the zebrafish model and in vitro. Methodology and Principal Findings: Expression of zebrafish STARS (zSTARS) first occurs in the somites by the 16 somite stage [17 hours post fertilization (hpf)]. zSTARS is expressed in both chambers of the heart by 48 hpf, and also in the developing brain, jaw structures and pectoral fins. Morpholino-induced knockdown of zSTARS alters atrial and ventricular dimensions and decreases ventricular fractional shortening (measured by high-speed video microscopy), with pericardial edema and decreased or absent circulation [abnormal cardiac phenotypes in 126/164 (77%) of morpholino-injected embryos vs. 0/152 (0%) of control morpholino embryos]. Co-injection of zsrf (serum response factor) mRNA rescues the cardiac phenotype of zSTARS knockdown, resulting in improved fractional shortening and ventricular end-diastolic dimensions. Ectopic over-expression of STARS in vitro activates the STARS proximal promoter, which contains a conserved SRF site. Chromatin immunoprecipitation demonstrates that SRF binds to this site in vivo and the SRF inhibitor CCG-1423 completely blocks STARS proximal reporter activity in H9c2 cells. Conclusions/Significance: This study demonstrates for the first time that STARS deficiency severely disrupts cardiac development and function in vivo and revealed a novel STARS-SRF feed-forward autoregulatory loop that could play an essential role in STARS regulation and cardiac function.
DOI Link: 10.1371/journal.pone.0040966
eISSN: 1932-6203
Links: http://hdl.handle.net/2381/12597
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0040966
Version: Publisher Version
Status: Peer-reviewed
Type: Journal Article
Rights: Copyright © 2012 Chong et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Appears in Collections:Published Articles, Dept. of Cardiovascular Sciences

Files in This Item:
File Description SizeFormat 
journal.pone.0040966.pdfPublished (publisher PDF)585.05 kBAdobe PDFView/Open


Items in LRA are protected by copyright, with all rights reserved, unless otherwise indicated.