Please use this identifier to cite or link to this item:
Title: Individual patient data meta-analysis of survival data using Poisson regression models.
Authors: Crowther, Michael J.
Riley, R.D.
Staessen, J.A.
Wang, J.
Gueyffier, F.
Lambert, Paul C.
First Published: 23-Mar-2012
Publisher: BioMed Central Ltd
Citation: BMC Medical Research Methodology, 2012, 12 : 34
Abstract: Background: An Individual Patient Data (IPD) meta-analysis is often considered the gold-standard for synthesising survival data from clinical trials. An IPD meta-analysis can be achieved by either a two-stage or a one-stage approach, depending on whether the trials are analysed separately or simultaneously. A range of one-stage hierarchical Cox models have been previously proposed, but these are known to be computationally intensive and are not currently available in all standard statistical software. We describe an alternative approach using Poisson based Generalised Linear Models (GLMs). Methods: We illustrate, through application and simulation, the Poisson approach both classically and in a Bayesian framework, in two-stage and one-stage approaches. We outline the benefits of our one-stage approach through extension to modelling treatment-covariate interactions and non-proportional hazards. Ten trials of hypertension treatment, with all-cause death the outcome of interest, are used to apply and assess the approach. Results: We show that the Poisson approach obtains almost identical estimates to the Cox model, is additionally computationally efficient and directly estimates the baseline hazard. Some downward bias is observed in classical estimates of the heterogeneity in the treatment effect, with improved performance from the Bayesian approach. Conclusion: Our approach provides a highly flexible and computationally efficient framework, available in all standard statistical software, to the investigation of not only heterogeneity, but the presence of non-proportional hazards and treatment effect modifiers.
DOI Link: 10.1186/1471-2288-12-34
eISSN: 1471-2288
Version: Publisher Version
Status: Peer-reviewed
Type: Journal Article
Rights: Copyright © 2012 Crowther et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Appears in Collections:Published Articles, Dept. of Health Sciences

Files in This Item:
File Description SizeFormat 
10.1186_1471-2288-12-34pdf.pdfPublished (publisher PDF)885.55 kBAdobe PDFView/Open

Items in LRA are protected by copyright, with all rights reserved, unless otherwise indicated.