Please use this identifier to cite or link to this item: http://hdl.handle.net/2381/14417
Title: Structural basis for phosphatidylinositol phosphate kinase type Igamma binding to talin at focal adhesions.
Authors: de Pereda JM
Wegener, KL
Santelli, E
Bate, N
Ginsberg, MH
Critchley, DR
Campbell, ID
Liddington, RC
First Published: 4-Mar-2005
Citation: J BIOL CHEM, 2005, 280 (9), pp. 8381-8386
Abstract: The cytoskeletal protein talin binds to a short C-terminal sequence in phosphatidylinositol phosphate kinase type Igamma (PIPKIgamma), activating the enzyme and promoting the local production of phosphatidylinositol 4,5 bisphosphate, which regulates focal adhesion dynamics as well as clathrin-mediated endocytosis in neuronal cells. Here we show by crystallographic, NMR, and calorimetric analysis that the phosphotyrosine binding (PTB)-like domain of talin engages the PIPKIgamma C terminus in a mode very similar to that of integrin binding. However, PIPKIgamma binds in the canonical PTB-peptide mode with an SPLH motif replacing the classic NPXY motif. The tighter packing of the SPLH motif against the hydrophobic core of talin may explain the stronger binding of PIPKIgamma. Two tyrosine residues flanking the SPLH motif (Tyr-644 and Tyr-649) have been implicated in the regulation of talin binding. We show that phosphorylation at Tyr-644, a Src phosphorylation site in vivo, has little effect on the binding mode or strength, which is consistent with modeling studies in which the phosphotyrosine makes surface-exposed salt bridges, and we suggest that its strong activating effect arises from the release of autoinhibitory restraints in the full-length PIPKIgamma. Modeling studies suggest that phosphorylation of Tyr-649 will likewise have little effect on talin binding, whereas phosphorylation of the SPLH serine is predicted to be strongly disruptive. Our data are consistent with the proposal that Src activity promotes a switch from integrin binding to PIPKIgamma binding that regulates focal adhesion turnover.
DOI Link: 10.1074/jbc.M413180200
ISSN: 0021-9258
Links: http://hdl.handle.net/2381/14417
Type: Journal Article
Appears in Collections:Published Articles, Dept. of Biochemistry

Files in This Item:
There are no files associated with this item.


Items in LRA are protected by copyright, with all rights reserved, unless otherwise indicated.