Please use this identifier to cite or link to this item: http://hdl.handle.net/2381/15381
Title: Single-molecule PCR analysis of germ line mutation induction by anticancer drugs in mice.
Authors: Glen, CD
Smith, AG
Dubrova, YE
First Published: 15-May-2008
Citation: CANCER RES, 2008, 68 (10), pp. 3630-3636
Abstract: Understanding and estimating the genetic hazards of exposure to chemical mutagens and anticancer drugs in humans requires the development of efficient systems for monitoring germ line mutation. The suitability of a single-molecule PCR-based approach for monitoring mutation induction at the mouse expanded simple tandem repeat (ESTR) locus Ms6-hm by chemical mutagens and anticancer drugs has been validated. The frequency of ESTR mutation was evaluated in the germ line of male mice exposed to the well-characterized alkylating agent and mutagen, ethylnitrosourea, and four widely used anticancer drugs, bleomycin, cyclophosphamide, mitomycin C, and procarbazine. The dose-response of ethylnitrosourea-induced mutation was found to be very close to that previously established using a pedigree-based approach for ESTR mutation detection. Paternal exposure to the clinically relevant doses of bleomycin (15-30 mg/kg), cyclophosphamide (40-80 mg/kg), and mitomycin C (2.5-5 mg/kg) led to statistically significant, dose-dependent increases in ESTR mutation frequencies in the germ line of treated male mice. Exposure to procarbazine led to a maximal increase in mutation frequency at 50 mg/kg, with a plateau at the higher concentrations. The results of this study show that the single-molecule PCR technique provides a new and efficient experimental system for monitoring the genetic effects of anticancer drugs, capable of detecting increases in mutation rates at clinically relevant doses of exposure. In addition, this approach dramatically reduces the number of mice needed for the measurement of germ line mutation induction.
DOI Link: 10.1158/0008-5472.CAN-08-0484
eISSN: 1538-7445
Links: http://hdl.handle.net/2381/15381
Type: Journal Article
Appears in Collections:Published Articles, Dept. of Genetics

Files in This Item:
There are no files associated with this item.


Items in LRA are protected by copyright, with all rights reserved, unless otherwise indicated.