Please use this identifier to cite or link to this item:
Title: Clock gene evolution and functional divergence.
Authors: Tauber, E
Last, KS
Olive, PJ
Kyriacou, CP
First Published: Oct-2004
Citation: J BIOL RHYTHMS, 2004, 19 (5), pp. 445-458
Abstract: In considering the impact of the earth's changing geophysical conditions during the history of life, it is surprising to learn that the earth's rotational period may have been as short as 4 h, as recently as 1900 million years ago (or 1.9 billion years ago). The implications of such figures for the origin and evolution of clocks are considerable, and the authors speculate on how this short rotational period might have influenced the development of the "protoclock" in early microorganisms, such as the Cyanobacteria, during the geological periodsin which they arose and flourished. They then discuss the subsequent duplication of clock genes that took place around and after the Cambrian period, 543 million years ago, and its consequences. They compare the relative divergences of the canonical clock genes, which reveal the Per family to be the most rapidly evolving. In addition, the authors use a statistical test to predict which residues within the PER and CRY families may have undergone functional specialization.
DOI Link: 10.1177/0748730404268775
ISSN: 0748-7304
Type: Journal Article
Appears in Collections:Published Articles, Dept. of Genetics

Files in This Item:
There are no files associated with this item.

Items in LRA are protected by copyright, with all rights reserved, unless otherwise indicated.