Please use this identifier to cite or link to this item:
Title: Specificity of g protein-coupled receptor kinase 6-mediated phosphorylation and regulation of single-cell m3 muscarinic acetylcholine receptor signaling.
Authors: Willets, JM
Mistry, R
Nahorski, SR
Challiss, RA
First Published: Nov-2003
Citation: MOL PHARMACOL, 2003, 64 (5), pp. 1059-1068
Abstract: Previously we have shown that G protein-coupled receptor kinase (GRK) 6 plays a major role in the regulation of the human M3 muscarinic acetylcholine receptor (M3 mAChR) in the human neuroblastoma SH-SY5Y. However, 30-fold overexpression of the catalytically inactive, dominant-negative K215RGRK6 produced only a 50% suppression of M3 mAChR phosphorylation and desensitization. Here, we have attempted to determine whether other endogenous kinases play a role in the regulation of M3 mAChR signaling. In contrast to the clear attenuating effect of K215RGRK6 expression on M3 mAChR regulation, dominant-negative forms of GRKs (K220RGRK2, K220RGRK3, K215RGRK5) and casein kinase 1alpha (K46RCK1alpha) were without effect. In addition, inhibition of a variety of second-messenger-regulated kinases and the tyrosine kinase Src also had no effect upon agonist-stimulated M3 mAChR regulation. To investigate further the desensitization process we have followed changes in inositol 1,4,5-trisphosphate in single SHSY5Y cells using the pleckstrin homology domain of PLCdelta1 tagged with green fluorescent protein (eGFP-PHPLCdelta1). Stimulation of cells with approximate EC50 concentrations of agonist before and after a desensitizing period of agonist exposure resulted in a marked attenuation of the latter response. Altered GRK6 activity, through overexpression of wild-type GRK6 or K215RGRK6, enhanced or reduced the degree of M3 mAChR desensitization, respectively. Taken together, our data indicate that M3 mAChR desensitization is mediated by GRK6 in human SH-SY5Y cells, and we show that receptor desensitization of phospholipase C signaling can be monitored in 'real-time' in single, living cells.
DOI Link: 10.1124/mol.64.5.1059
ISSN: 0026-895X
Type: Journal Article
Appears in Collections:Published Articles, Dept. of Cell Physiology and Pharmacology

Files in This Item:
There are no files associated with this item.

Items in LRA are protected by copyright, with all rights reserved, unless otherwise indicated.