Please use this identifier to cite or link to this item:
Title: Cyclooxygenase-2 expression and oxidative DNA adducts in murine intestinal adenomas: modification by dietary curcumin and implications for clinical trials.
Authors: Tunstall, RG
Sharma, RA
Perkins, S
Sale, S
Singh, R
Farmer, PB
Steward, WP
Gescher, AJ
First Published: Feb-2006
Citation: EUR J CANCER, 2006, 42 (3), pp. 415-421
Abstract: The natural polphenol, curcumin, retards the growth of intestinal adenomas in the Apc(Min+) mouse model of human familial adenomatous polyposis. In other preclinical models, curcumin downregulates the transcription of the enzyme cyclooxygenase-2 (COX-2) and decreases levels of two oxidative DNA adducts, the pyrimidopurinone adduct of deoxyguanosine (M1dG) and 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxo-dG). We have studied COX-2 protein expression and oxidative DNA adduct levels in intestinal adenoma tissue from Apc(Min+) mice to try and differentiate between curcumin's direct pharmacodynamic effects and indirect effects via its inhibition of adenoma growth. Mice received dietary curcumin (0.2%) for 4 or 14 weeks. COX-2 protein, M1dG and 8-oxo-dG levels were measured by Western blot, immunochemical assay and liquid chromatography-mass spectrometry, respectively. In control Apc(Min+) mice, the levels of all three indices measured in adenoma tissue were significantly higher than levels in normal mucosa. Lifetime administration of curcumin reduced COX-2 expression by 66% (P = 0.01), 8-oxo-dG levels by 24% (P < 0.05) and M1dG levels by 39% (P < 0.005). Short-term feeding did not affect total adenoma number or COX-2 expression, but decreased M1dG levels by 43% (P < 0.01). COX-2 protein levels related to adenoma size. These results demonstrate the utility of measuring these oxidative DNA adduct levels to show direct antioxidant effects of dietary curcumin. The effects of long-term dietary curcumin on COX-2 protein levels appear to reflect retardation of adenoma development.
DOI Link: 10.1016/j.ejca.2005.10.024
ISSN: 0959-8049
Type: Journal Article
Appears in Collections:Published Articles, Dept. of Cancer Studies and Molecular Medicine

Files in This Item:
There are no files associated with this item.

Items in LRA are protected by copyright, with all rights reserved, unless otherwise indicated.