Please use this identifier to cite or link to this item: http://hdl.handle.net/2381/16246
Title: Tumour angiogenesis: a novel therapeutic target in patients with malignant disease.
Authors: O'Byrne, KJ
Steward, WP
First Published: Apr-2001
Citation: EXPERT OPIN EMERG DRUGS, 2001, 6 (1), pp. 155-174
Abstract: Angiogenesis refers to the formation of new blood vessels from an existing vasculature and is recognised as a necessary requirement for most tumours to grow beyond 1-2 mm in diameter. Factors established as playing a role in angiogenesis may be divided into two principal groups: (a) those that stimulate endothelial cell proliferation and/or elongation, migration and vascular morphogenesis including vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF), platelet derived endothelial cell growth factor (PD-ECGF) and the tie and tek receptors, and (b) proteases and their receptors involved in the breakdown of basement membranes and the extracellular matrix (ECM) including the matrix metalloproteinases (MMPs), cathepsins and those involved in the plasmin cascade. Angiogenesis has been identified as a potential target for development of anticancer agents. The discovery of a range of naturally-occurring factors which negatively regulate angiogenesis, including the thrombospondins, angiostatin and endostatin, and the tissue inhibitors of MMPs (TIMPs), has given added impetus to this approach. Synthetic anti-angiogenic compounds have been developed, including TNP-470, carboxyamidotriazole, VEGF-tyrosine kinase inhibitors and MMP inhibitors (MMPI) which, like the naturally-occurring anti-angiogenic factors, inhibit angiogenesis in vitro and in vivo, and tumour development, growth and metastasis in vivo. Anti-angiogenic agents also enhance the antitumour activity of many conventional cytotoxic chemotherapeutic agents. Such combinations may have a particular role as adjuvant therapies following surgical resection of primary tumours. Unlike tumour cells, tumour associated endothelial cells do not develop resistance to anti-angiogenic agents. Furthermore, anti-angiogenic agents are generally cytostatic rather than cytotoxic. As such, these agents are, in general, likely to be administered over long periods of time. Therefore, as well as having proven antitumour efficacy, an anti-angiogenic compound will need to be well-tolerated if it is to become established in the clinical management of patients with malignant disease.
DOI Link: 10.1517/14728214.6.1.155
eISSN: 1744-7623
Links: http://hdl.handle.net/2381/16246
Type: Journal Article
Appears in Collections:Published Articles, Dept. of Cancer Studies and Molecular Medicine

Files in This Item:
There are no files associated with this item.


Items in LRA are protected by copyright, with all rights reserved, unless otherwise indicated.