Please use this identifier to cite or link to this item:
Title: Assessing atrophy of the major white matter fiber bundles of the brain from diffusion tensor MRI data.
Authors: Pagani, E
Horsfield, MA
Rocca, MA
Filippi, M
First Published: Sep-2007
Citation: MAGN RESON MED, 2007, 58 (3), pp. 527-534
Abstract: Brain atrophy is a typical feature of many neurological conditions. Therefore, quantitative evaluation and spatial characterization of atrophy are potentially useful for monitoring the evolution of central nervous system (CNS) disorders. In this study, a method for measuring atrophy of the major white matter (WM) fiber bundles in the brain using diffusion tensor (DT) MRI data is developed. To this end, an atlas was created from sets of diffusion anisotropy images from normal subjects, and the deformations necessary to match single subject anisotropy images to this atlas were then computed. Because diffusion anisotropy images were used, this approach should be sensitive to fiber bundle volume changes in the same way that using T1-weighted images allows gray matter volume changes to be measured. The Jacobian determinant of the deformation field for each subject was then used as a measure of contraction or expansion of the tissue at each image voxel. An overview of the nonlinear registration problem is given; then an optimization of the parameters for the chosen algorithm is performed and the method for producing the atlas is described. The effectiveness of the method was then tested on data from five patients with multiple sclerosis (MS) and two patients with amyotrophic lateral sclerosis (ALS).
DOI Link: 10.1002/mrm.21346
ISSN: 0740-3194
Type: Journal Article
Appears in Collections:Published Articles, Dept. of Cardiovascular Sciences

Files in This Item:
There are no files associated with this item.

Items in LRA are protected by copyright, with all rights reserved, unless otherwise indicated.