Please use this identifier to cite or link to this item: http://hdl.handle.net/2381/17070
Title: ATP and UTP responses of cultured rat aortic smooth muscle cells revisited: dominance of P2Y2 receptors.
Authors: Kumari, R
Goh, G
Ng, LL
Boarder, MR
First Published: Dec-2003
Citation: BR J PHARMACOL, 2003, 140 (7), pp. 1169-1176
Abstract: 1. It has previously been shown that ATP and UTP stimulate P2Y receptors in vascular smooth muscle cells (VSMCs), but the nature of these receptors, in particular the contribution of P2Y2 and P2Y4 subtypes, has not been firmly established. Here we undertake a further pharmacological analysis of [3H]inositol polyphosphate responses to nucleotides in cultured rat VSMCs. 2. ATP generated a response that was partial compared to UTP, as reported earlier. 3. In the presence of a creatine phosphokinase (CPK) system for regenerating nucleoside triphosphates, the response to ATP was increased, the response to UTP was unchanged, and the difference between UTP and ATP concentration-response curves disappeared. Chromatographic analysis showed that ATP was degraded slightly faster than UTP. 4. The response to UDP was always smaller than that to UTP, but with a shallow slope and a high potency component. In the presence of hexokinase (which prevents the accumulation of ATP/UTP from ADP/UDP), the maximum response to UDP was reduced and the high-potency component of the curve was retained. By contrast, the response to ADP was weaker throughout in the presence of hexokinase. 5. ATP gamma S was an effective agonist with a similar EC50 to UTP, but with a lower maximum. ITP was a weak agonist compared with UTP. 6. Suramin was an effective antagonist of the response to UTP (pA2=4.48), but not when ATP was the agonist. However, suramin was an effective antagonist (pA2=4.45) when stimulation with ATP was in the presence of the CPK regenerating system. 7. Taken together with the results of others, these findings indicate that the response of cultured rat VSMCs to UTP and to ATP is predominantly at the P2Y2 receptor, and that there is also a response to UDP at the P2Y6 receptor.
DOI Link: 10.1038/sj.bjp.0705526
ISSN: 0007-1188
Links: http://hdl.handle.net/2381/17070
Type: Journal Article
Appears in Collections:Published Articles, Dept. of Cardiovascular Sciences

Files in This Item:
There are no files associated with this item.


Items in LRA are protected by copyright, with all rights reserved, unless otherwise indicated.