Please use this identifier to cite or link to this item:
Title: Functional coupling of the nociceptin/orphanin FQ receptor in dog brain membranes.
Authors: Johnson, EE
McDonald, J
Nicol, B
Guerrini, R
Lambert, DG
First Published: 2-Apr-2004
Citation: BRAIN RES, 2004, 1003 (1-2), pp. 18-25
Abstract: Nociceptin/orphanin FQ (N/OFQ) is the endogenous ligand for the N/OFQ receptor (NOP) which is yet to be functionally characterized in dog brain. Ligand binding data reports low NOP density (29 fmol mg(-1) protein) in dog. In this study using dog brain membranes, we have examined the effects of N/OFQ on [leucyl-(3)H]N/OFQ(1-17)OH ([leucyl-(3)H]N/OFQ) binding in the presence and absence of 120 mM NaCl and 100 microM GTPgammaS. Data from standard [(35)S]GTPgammaS binding and immunoprecipitation (G(alphai1-3)) assays are also presented, along with data from a limited number of control experiments with human NOP expressed in Chinese hamster ovary (CHO(hNOP)) cells. N/OFQ displaced [leucyl-(3)H]N/OFQ binding with pK(i) and slope values of 9.62+/-0.07 and 0.38+/-0.05, respectively. Addition of NaCl/GTPgammaS produced a steepening (slope 0.95+/-0.06, n=3) of the curve. N/OFQ stimulated [(35)S]GTPgammaS binding with pEC(50) and E(max) values of 8.21+/-0.17 and 1.17+/-0.01, respectively (in CHO(hNOP), pEC(50) and E(max) values were 8.47+/-0.01 and 7.01+/-0.63). N/OFQ stimulated [(35)S]GTPgammaS binding in dog and CHO(hNOP) cell membranes could be immunoprecipitated with an anti-G(alphai1-3) antibody, indicating coupling to a pertussis toxin (PTx)-sensitive G-protein. N/OFQ actions were competitively antagonized by the selective NOP antagonists, 100 nM J-113397, 1 microM [Nphe(1)]N/OFQ(1-13)NH(2) and 1 microM [Phe(1)Psi(CH(2)-NH)Gly(2)]N/OFQ(1-13)NH(2) (partial agonist) yielding pK(B) values of 8.58+/-0.21, 7.06+/-0.59 and 7.32+/-0.41, respectively (in CHO(hNOP), a pK(B) for J-113397 of 8.33+/-0.02 was obtained). Despite relatively low receptor density, we were able to detect functional activity of native dog NOP, with pharmacology consistent with reports for other species.
DOI Link: 10.1016/j.brainres.2003.10.070
ISSN: 0006-8993
Type: Journal Article
Appears in Collections:Published Articles, Dept. of Cardiovascular Sciences

Files in This Item:
There are no files associated with this item.

Items in LRA are protected by copyright, with all rights reserved, unless otherwise indicated.