Please use this identifier to cite or link to this item:
Title: Detection limits for close eclipsing and transiting substellar and planetary companions to white dwarfs in the WASP survey
Authors: West, R. G.
Burleigh, M. R.
Goad, M. R.
Faedi, F.
Hebb, L.
First Published: 11-Jan-2011
Publisher: Oxford University Press (OUP)
Citation: Monthly Notices of the Royal Astronomical Society , 2011, 410 (2), pp. 899-911
Abstract: We have performed extensive simulations to explore the possibility of detecting eclipses and transits of close, substellar and planetary companions to white dwarfs in WASP (the UK Wide-Angle Search for Planets) light curves. Our simulations cover companions ∼0.3 < Rpl < 12 RGraphic and orbital periods 2 < P < 15 d, equivalent to orbital radii 0.003 < a < 0.1 au. For Gaussian random noise, WASP is sensitive to transits by companions as small as the Moon orbiting a V≃ 12 white dwarf. For fainter white dwarfs, WASP is sensitive to increasingly larger radius bodies. However, in the presence of correlated noise structure in the light curves, the sensitivity drops, although Earth-sized companions remain detectable, in principle, even in low signal-to-noise data. Mars-sized, and even Mercury-sized, bodies yield reasonable detection rates in high-quality light curves with little residual noise. We searched for eclipses and transit signals in long-term light curves of a sample of 194 white dwarfs resulting from a cross-correlation of the McCook & Sion catalogue and the WASP archive. No evidence for eclipsing or transiting substellar and planetary companions was found. We used this non-detection and results from our simulations to place tentative upper limits to the frequency of such objects in close orbits at white dwarfs. While only weak limits can be placed on the likely frequency of Earth-sized or smaller companions, brown dwarfs and gas giants (radius ≈Rjup) with periods <0.1–0.2 d must certainly be rare (<10 per cent). More stringent constraints likely require significantly larger white dwarf samples, higher observing cadence and continuous coverage. The short duration of eclipses and transits of white dwarfs compared to the cadence of WASP observations appears to be one of the main factors limiting the detection rate in a survey optimized for planetary transits of main-sequence stars.
DOI Link: 10.1111/j.1365-2966.2010.17488.x
ISSN: 0035-8711
eISSN: 1365-2966
Version: Publisher Version
Status: Peer-reviewed
Type: Journal Article
Rights: This article has been accepted for publication in Monthly Notices of the Royal Astronomical Society ©: 2011 the authors. Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved. Deposited with reference to the publisher’s archiving policy available on the SHERPA/RoMEO website.
Appears in Collections:Published Articles, Dept. of Physics and Astronomy

Files in This Item:
File Description SizeFormat 
MNRAS-2011-Faedi-899-911.pdfPublished (publisher PDF)1.16 MBAdobe PDFView/Open

Items in LRA are protected by copyright, with all rights reserved, unless otherwise indicated.