Please use this identifier to cite or link to this item:
Title: Black hole mergers: The first light
Authors: Rossi, E. M.
Lodato, G.
Pringle, J. E.
King, A. R.
Armitage, P. J.
Pringle, J. E.
First Published: 1-Jan-2010
Publisher: Oxford University Press (OUP)
Citation: Monthly Notices of the Royal Astronomical Society, 2010, 401 (3), pp. 2021-2035
Abstract: The coalescence of supermassive black hole binaries occurs via the emission of gravitational waves, that can impart a substantial recoil to the merged black hole. We consider the energy dissipation that results if the recoiling black hole is surrounded by a thin circumbinary disc. Our results differ significantly from those of previous investigations. We show analytically that the dominant source of energy is often potential energy, released as gas in the outer disc attempts to circularize at smaller radii. Thus, dimensional estimates, that include only the kinetic energy gained by the disc gas, underestimate the real energy loss. This underestimate can exceed an order of magnitude, if the recoil is directed close to the disc plane. We use three dimensional smooth particle hydrodynamics (SPH) simulations and two-dimensional finite difference simulations to verify our analytic estimates. We also compute the bolometric light curve, which is found to vary strongly depending upon the kick angle. A prompt emission signature due to this mechanism may be observable for low-mass (106 M⊙) black holes whose recoil velocities exceed ∼103 km s−1. Emission at earlier times can mainly result from the response of the disc to the loss of mass, as the black holes merge. We derive analytically the condition for this to happen.
DOI Link: 10.1111/j.1365-2966.2009.15802.x
ISSN: 0035-8711
eISSN: 1365-2966
Version: Publisher Version
Status: Peer-reviewed
Type: Journal Article
Rights: This article has been accepted for publication in Monthly Notices of the Royal Astronomical Society ©: 2009 the authors. Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved. Deposited with reference to the publisher’s archiving policy available on the SHERPA/RoMEO website.
Appears in Collections:Published Articles, Dept. of Physics and Astronomy

Files in This Item:
File Description SizeFormat 
MNRAS-2010-Rossi-2021-35.pdf8.7 MBAdobe PDFView/Open

Items in LRA are protected by copyright, with all rights reserved, unless otherwise indicated.