Please use this identifier to cite or link to this item: http://hdl.handle.net/2381/19015
Title: The spectral-temporal properties of the prompt pulses and rapid decay phase of gamma-ray bursts
Authors: Willingale, R.
O'Brien, P. T.
Granot, J.
Genet, F.
First Published: 11-Apr-2010
Publisher: Oxford University Press (OUP)
Citation: Monthly Notices of the Royal Astronomical Society, 2010, 403 (3), pp. 1296-1316
Abstract: The prompt emission from gamma-ray burst is the brightest electromagnetic emission known, yet its origin is not understood. The flux density of individual prompt pulses of a GRB can be represented by an analytical expression derived assuming the emission is from a thin, ultrarelativistically expanding, uniform, spherical shell over a finite range of radii. We present the results of fitting this analytical expression to the light curves from the four standard Swift Burst Alert Telescope energy bands and two standard Swift X-ray Telescope energy bands of 12 bursts. The expression includes the high latitude emission (HLE) component and the fits provide a rigorous demonstration that the HLE can explain the rapid decay phase of the prompt emission. The model also accommodates some aspects of energy-dependent lag and energy-dependent pulse width, but there are features in the data which are not well represented. Some pulses have a hard, narrow peak which is not well fitted or a rise and decay which are faster than expected using the standard indices derived assuming synchrotron emission from internal shocks, although it might be possible to accommodate these features using a different emission mechanism within the same overall framework. The luminosity of pulses is correlated with the peak energy of the pulse spectrum, Lf∝[Epeak(1 +z)]1.8, and anticorrelated with the time since ejection of the pulse, Lf∝[Tf/(1 +z)]−2.0.
DOI Link: 10.1111/j.1365-2966.2009.16187.x
ISSN: 0035-8711
eISSN: 1365-2966
Links: http://hdl.handle.net/2381/19015
http://mnras.oxfordjournals.org/content/403/3/1296
Version: Publisher Version
Status: Peer-reviewed
Type: Journal Article
Rights: This article has been accepted for publication in Monthly Notices of the Royal Astronomical Society ©: 2010 the authors. Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved. Deposited with reference to the publisher’s archiving policy available on the SHERPA/RoMEO website.
Appears in Collections:Published Articles, Dept. of Physics and Astronomy

Files in This Item:
File Description SizeFormat 
MNRAS-2010-Willingale-1296-316.pdfPublished (publisher PDF) 1.74 MBAdobe PDFView/Open


Items in LRA are protected by copyright, with all rights reserved, unless otherwise indicated.