Please use this identifier to cite or link to this item: http://hdl.handle.net/2381/19214
Title: Investigating the use of secondary organic aerosol as seed particles in simulation chamber experiments
Authors: Hamilton, J.F.
Rami Alfarra M.
Wyche, K.P.
Ward, M.W.
Lewis, A.C.
McFiggans, G.B.
Good, N.
Monks, P.S.
Carr, T.
White, I.R.
Purvis, R.M.
First Published: 2011
Publisher: Copernicus GmbH (Copernicus Publications) on behalf of the European Geosciences Union (EGU).
Citation: Atmospheric Chemistry and Physics, 2011, 11 (12), pp. 5917-5929
Abstract: The use of β-caryophyllene secondary organic aerosol particles as seeds for smog chamber simulations has been investigated. A series of experiments were carried out in the Manchester photochemical chamber as part of the Aerosol Coupling in the Earth System (ACES) project to study the effect of seed particles on the formation of secondary organic aerosol (SOA) from limonene photo-oxidation. Rather than use a conventional seed aerosol containing ammonium sulfate or diesel particles, a method was developed to use in-situ chamber generated seed particles from β-caryophyllene photo-oxidation, which were then diluted to a desired mass loading (in this case 4–13 μg m[superscript −3]). Limonene was then introduced into the chamber and oxidised, with the formation of SOA seen as a growth in the size of oxidised organic seed particles from 150 to 325 nm mean diameter. The effect of the partitioning of limonene oxidation products onto the seed aerosol was assessed using aerosol mass spectrometry during the experiment and the percentage of m/z 44, an indicator of degree of oxidation, increased from around 5 to 8 %. The hygroscopicity of the aerosol also changed, with the growth factor for 200 nm particles increasing from less than 1.05 to 1.25 at 90% RH. The detailed chemical composition of the limonene SOA could be extracted from the complex β-caryophyllene matrix using two-dimensional gas chromatography (GC × GC) and liquid chromatography coupled to mass spectrometry. High resolution Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FTICR-MS) was used to determine exact molecular formulae of the seed and the limonene modified aerosol. The average O:C ratio was seen to increase from 0.32 to 0.37 after limonene oxidation products had condensed onto the organic seed.
DOI Link: 10.5194/acp-11-5917-2011
ISSN: 1680-7316
eISSN: 1680-7324
Links: http://hdl.handle.net/2381/19214
http://www.atmos-chem-phys.net/11/5917/2011/acp-11-5917-2011.html
Version: Publisher Version
Status: Peer-reviewed
Type: Journal Article
Rights: © Author(s) 2011. This is an open-access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Appears in Collections:Published Articles, Dept. of Chemistry

Files in This Item:
File Description SizeFormat 
10.5194_ACP-11-5917-2011.pdf2 MBAdobe PDFView/Open


Items in LRA are protected by copyright, with all rights reserved, unless otherwise indicated.