Please use this identifier to cite or link to this item:
Title: The Significance of Microspore Division and Division Symmetry for Vegetative Cell-Specific Transcription and Generative Cell Differentiation.
Authors: Eady, C
Lindsey, K
Twell, D
First Published: Jan-1995
Citation: PLANT CELL, 1995, 7 (1), pp. 65-74
Abstract: The significance of the onset and symmetry of pollen mitosis I (PMI) for the subsequent differentiation of the vegetative and generative cells was investigated by the in vitro maturation of isolated microspores of transgenic tobacco. Free uninucleate microspores of transgenic plants harboring the vegetative cell (VC)-specific late anther tomato lat52 promoter fused to the [beta]-glucuronidase (gus) gene showed normal asymmetric cell division at PMI and activated the lat52 promoter specifically in the nascent VC during in vitro maturation. In vitro maturation in the presence of high levels of colchicine effectively blocked PMI, resulting in the formation of uninucleate pollen grains in which the lat52 promoter was activated. Furthermore, matured uninucleate pollen grains were capable of germination and pollen tube growth despite the absence of a functional generative cell (GC). Lower levels of colchicine induced symmetric division at PMI, producing two similar daughter cells in which typical GC chromatin condensation was prevented. Similar cultures of transgenic microspores harboring the lat52 promoter driving the expression of a nuclear-targeted GUS fusion protein showed that lat52 promoter activation occurred in both symmetric daughter cells. These results directly demonstrate that division asymmetry at PMI is essential for correct GC differentiation and that activation of VC-specific transcription and functional VC maturation may be uncoupled from cytokinesis at PMI. These results are discussed in relation to models proposed to account for the role and distribution of factors controlling the differing fates of the vegetative and generative cells.
DOI Link: 10.1105/tpc.7.1.65
eISSN: 1532-298X
Type: Journal Article
Appears in Collections:Published Articles, Dept. of Biology

Files in This Item:
There are no files associated with this item.

Items in LRA are protected by copyright, with all rights reserved, unless otherwise indicated.