Please use this identifier to cite or link to this item:
Title: Structural diversity in twin-arginine signal peptide-binding proteins.
Authors: Maillard, J
Spronk, CA
Buchanan, G
Lyall, V
Richardson, DJ
Palmer, T
Vuister, GW
Sargent, F
First Published: 2-Oct-2007
Citation: PROC NATL ACAD SCI U S A, 2007, 104 (40), pp. 15641-15646
Abstract: The twin-arginine transport (Tat) system is dedicated to the translocation of folded proteins across the bacterial cytoplasmic membrane. Proteins are targeted to the Tat system by signal peptides containing a twin-arginine motif. In Escherichia coli, many Tat substrates bind redox-active cofactors in the cytoplasm before transport. Coordination of cofactor insertion with protein export involves a "Tat proofreading" process in which chaperones bind twin-arginine signal peptides, thus preventing premature export. The initial Tat signal-binding proteins described belonged to the TorD family, which are required for assembly of N- and S-oxide reductases. Here, we report that E. coli NapD is a Tat signal peptide-binding chaperone involved in biosynthesis of the Tat-dependent nitrate reductase NapA. NapD binds tightly and specifically to the NapA twin-arginine signal peptide and suppresses signal peptide translocation activity such that transport via the Tat pathway is retarded. High-resolution, heteronuclear, multidimensional NMR spectroscopy reveals the 3D solution structure of NapD. The chaperone adopts a ferredoxin-type fold, which is completely distinct from the TorD family. Thus, NapD represents a new family of twin-arginine signal-peptide-binding proteins.
DOI Link: 10.1073/pnas.0703967104
ISSN: 0027-8424
Type: Journal Article
Appears in Collections:Published Articles, Dept. of Biochemistry

Files in This Item:
There are no files associated with this item.

Items in LRA are protected by copyright, with all rights reserved, unless otherwise indicated.