Please use this identifier to cite or link to this item:
Title: PERK activation at low glucose concentration is mediated by SERCA pump inhibition and confers preemptive cytoprotection to pancreatic β-cells.
Authors: Moore, CE
Omikorede, O
Gomez, E
Willars, GB
Herbert, TP
First Published: Feb-2011
Citation: MOL ENDOCRINOL, 2011, 25 (2), pp. 315-326
Abstract: Protein kinase R-like ER kinase (PERK) is activated at physiologically low glucose concentrations in pancreatic β-cells. However, the molecular mechanisms by which PERK is activated under these conditions and its role in β-cell function are poorly understood. In this report, we investigated, in dispersed rat islets of Langerhans and mouse insulinoma-6 (MIN6) cells, the relationship between extracellular glucose concentration, the free endoplasmic reticulum (ER) calcium concentration ([Ca(2+)](ER)) measured directly using an ER targeted fluorescence resonance energy transfer-based calcium sensor, and the activation of PERK. We found that a decrease in glucose concentration leads to a concentration-dependent reduction in [Ca(2+)](ER) that parallels the activation of PERK and the phosphorylation of its substrate eukaryotic initiation factor-2α. We provide evidence that this decrease in [Ca(2+)](ER) is caused by a decrease in sarcoplasmic/ER Ca(2+)-ATPase pump activity mediated by a reduction in the energy status of the cell. Importantly, we also report that PERK-dependent eukaryotic initiation factor-2α phosphorylation at low glucose concentration plays a significant role in 1) the regulation of both proinsulin and global protein synthesis, 2) cell viability, and 3) conferring preemptive cytoprotection against ER stress. Taken together, these results provide evidence that a decrease in the ATP/energy status of the cell in response to a decrease in glucose concentration results in sarcoplasmic/ER Ca(2+)-ATPase pump inhibition, the efflux of Ca(2+) from the ER, and the activation of PERK, which plays an important role in both pancreatic β-cell function and survival.
DOI Link: 10.1210/me.2010-0309
eISSN: 1944-9917
Type: Journal Article
Appears in Collections:Published Articles, Dept. of Cell Physiology and Pharmacology

Files in This Item:
There are no files associated with this item.

Items in LRA are protected by copyright, with all rights reserved, unless otherwise indicated.