Please use this identifier to cite or link to this item:
Title: Molecular mechanisms of muscarinic acetylcholine receptor-stimulated increase in cytosolic free Ca(2+) concentration and ERK1/2 activation in the MIN6 pancreatic β-cell line.
Authors: Selway, JL
Moore, CE
Mistry, R
John Challiss RA
Herbert, TP
First Published: Aug-2012
Citation: ACTA DIABETOL, 2012, 49 (4), pp. 277-289
Abstract: Muscarinic acetylcholine receptor (mAChR) activation of pancreatic β-cells elevates intracellular Ca(2+) and potentiates glucose-stimulated insulin secretion. In addition, it activates a number of signaling molecules, including ERK1/2, whose activation has been shown to play an important role in regulating pancreatic β-cell function and mass. The aim of this work was to determine how mAChR activation elevates intracellular Ca(2+) concentration ([Ca(2+)]( i )) and activates ERK1/2 in the pancreatic β-cell line MIN6. We demonstrate that agonist-stimulated ERK1/2 activation is dependent on the activation of phospholipase C and an elevation in [Ca(2+)]( i ), but is independent of the activation of diacylglycerol-dependent protein kinase C isoenzymes. Using a pharmacological approach, we provide evidence that agonist-induced increases in [Ca(2+)]( i ) and ERK activity require (1) IP(3) receptor-mediated mobilization of Ca(2+) from the endoplasmic reticulum, (2) influx of extracellular Ca(2+) through store-operated channels, (3) closure of K(ATP) channels, and (4) Ca(2+) entry via L-type voltage-operated Ca(2+) channels. Moreover, this Ca(2+)-dependent activation of ERK is mediated via both Ras-dependent and Ras-independent mechanisms. In summary, this study provides important insights into the multifactorial signaling mechanisms linking mAChR activation to increases in [Ca(2+)]( i ) and ERK activity.
DOI Link: 10.1007/s00592-011-0314-9
eISSN: 1432-5233
Type: Journal Article
Appears in Collections:Published Articles, Dept. of Cell Physiology and Pharmacology

Files in This Item:
There are no files associated with this item.

Items in LRA are protected by copyright, with all rights reserved, unless otherwise indicated.