Please use this identifier to cite or link to this item:
Title: Monocyte- and Endothelial-Derived Microparticles Induce an Inflammatory Phenotype in Human Podocytes.
Authors: Eyre, J
Burton, JO
Saleem, MA
Mathieson, PW
Topham, PS
Brunskill, NJ
First Published: 18-Aug-2011
Citation: NEPHRON EXP NEPHROL, 2011, 119 (3), pp. e58-e66
Abstract: Background/Aims: Proteinuria is associated with cardiovascular and chronic kidney disease. Microparticles (MPs) are bioactive vesicles shed from activated cells and also linked to cardiovascular disease. MP-like structures have been identified in the glomerular basement membrane, urinary space and between the glomerular basement membrane and the podocyte. We hypothesised that circulating MPs may provide a link between vascular injury and kidney diseases by inducing podocyte phenotypic alterations, thus propagating glomerular dysfunction and proteinuria. Methods:Human umbilical vein endothelial cells and U937 monocytes were stimulated with TNF-α to produce MPs. These MPs were confirmed by electron microscopy, and added to differentiated podocyte monolayers to determine effects on podocyte albumin endocytosis and the production of soluble mediators. Results:Monocyte and endothelial MPs upregulated podocyte production of pro-inflammatory mediators monocyte chemoattractant protein-1 (p < 0.001) and interleukin-6 (p < 0.001). Only monocyte MPs upregulated podocyte secretion of VEGF (p < 0.001), known to regulate glomerular permeability. Endothelial MPs decreased podocyte albumin endocytosis by 13% compared to control cells (p < 0.01). Conclusion:MPs alter endocytic functions of podocytes and induce secretion of pro-inflammatory cytokines, potentially leading to glomerular inflammation in vivo and the development of proteinuria. This study identifies a potential pathophysiological role for circulating MPs in the kidney through effects on the podocyte.
DOI Link: 10.1159/000329575
eISSN: 1660-2129
Type: Journal Article
Appears in Collections:Published Articles, Dept. of Infection, Immunity and Inflammation

Files in This Item:
There are no files associated with this item.

Items in LRA are protected by copyright, with all rights reserved, unless otherwise indicated.