Please use this identifier to cite or link to this item:
Title: 57-second oscillations in Nova Centauri 1986 (V842 Cen)
Authors: Woudt, P. A.
Warner, B.
Osborne, J.
Page, K.
First Published: 1-Jun-2009
Citation: Monthly Notices of the Royal Astronomical Society, 2009, 395 (4), pp. 2177-2182
Abstract: High-speed photometry in 2008 shows that the light curve of V842 Cen possesses a coherent modulation at 56.825 s, with sidebands at 56.598 and 57.054 s. These have appeared since this nova remnant was observed in 2000 and 2002. We deduce that the dominant signal is the rotation period of the white dwarf primary and the sidebands are caused by reprocessing from a surface moving with an orbital period of 3.94 h. Thus, V842 Cen is an intermediate polar (IP) of the DQ Herculis subclass, is the fastest rotating white dwarf among the IPs and is the third fastest known in a cataclysmic variable. As in other IPs, we see no dwarf nova oscillations, but there are often quasi-periodic oscillations in the range 350–1500 s. There is a strong brightness modulation with a period of 3.78 h, which we attribute to negative superhumps, and there is an even stronger signal at 2.886 h which is of unknown origin but is probably a further example of that seen in GW Lib and some other systems. We used the Swift satellite to observe V842 Cen in the ultraviolet and in X-rays, although no periodic modulation was detected in the short observations. The X-ray luminosity of this object appears to be much lower than that of other IPs in which the accretion region is directly visible.
DOI Link: 10.1111/j.1365-2966.2009.14668.x
ISSN: 0035-8711
eISSN: 1365-2966
Version: Publisher Version
Status: Peer-reviewed
Type: Journal Article
Rights: This article has been accepted for publication in Monthly Notices of the Royal Astronomical Society ©: 2009 the authors. Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved. Deposited with reference to the publisher’s archiving policy available on the SHERPA/RoMEO website.
Appears in Collections:Published Articles, Dept. of Physics and Astronomy

Files in This Item:
File Description SizeFormat 
MNRAS-2009-Woudt-2177-82.pdfPublished (publisher PDF) 1.78 MBAdobe PDFView/Open

Items in LRA are protected by copyright, with all rights reserved, unless otherwise indicated.