Please use this identifier to cite or link to this item:
Title: Determination of the solid-liquid interfacial free energy along a coexistence line by Gibbs-Cahn integration.
Authors: Laird, BB
Davidchack, RL
Yang, Y
Asta, M
First Published: 21-Sep-2009
Citation: J CHEM PHYS, 2009, 131 (11), pp. 114110-114110
Abstract: We calculate the solid-liquid interfacial free energy gamma(sl) for the Lennard-Jones (LJ) system at several points along the pressure-temperature coexistence curve using molecular-dynamics simulation and Gibbs-Cahn integration. This method uses the excess interfacial energy (e) and stress (tau) along the coexistence curve to determine a differential equation for gamma(sl) as a function of temperature. Given the values of gamma(sl) for the (100), (110), and (111) LJ interfaces at the triple-point temperature (T( *)=kT/varepsilon=0.618), previously obtained using the cleaving method by Davidchack and Laird [J. Chem. Phys. 118, 7657 (2003)], this differential equation can be integrated to obtain gamma(sl) for these interfaces at higher coexistence temperatures. Our values for gamma(sl) calculated in this way at T( *)=1.0 and 1.5 are in good agreement with those determined previously by cleaving, but were obtained with significantly less computational effort than required by either the cleaving method or the capillary fluctuation method of Hoyt, Asta, and Karma [Phys. Rev. Lett. 86, 5530 (2001)]. In addition, the orientational anisotropy in the excess interface energy, stress and entropy, calculated using the conventional Gibbs dividing surface, are seen to be significantly larger than the relatively small anisotropies in gamma(sl) itself.
DOI Link: 10.1063/1.3231693
eISSN: 1089-7690
Type: Journal Article
Appears in Collections:Published Articles, Dept. of Mathematics

Files in This Item:
There are no files associated with this item.

Items in LRA are protected by copyright, with all rights reserved, unless otherwise indicated.