Please use this identifier to cite or link to this item:
Title: Partitioning of excess mortality in population-based cancer patient survival studies using flexible parametric survival models.
Authors: Eloranta, Sandra
Lambert, Paul C.
Andersson, Therese M.L.
Czene, Kamila
Hall, Per
Björkholm, Magnus
Dickman, Paul W.
First Published: 24-Jun-2012
Publisher: BioMed Central Ltd
Citation: BMC Medical Research Methodology, 2012, 12 : 86
Abstract: Background: Relative survival is commonly used for studying survival of cancer patients as it captures both the direct and indirect contribution of a cancer diagnosis on mortality by comparing the observed survival of the patients to the expected survival in a comparable cancer-free population. However, existing methods do not allow estimation of the impact of isolated conditions (e.g., excess cardiovascular mortality) on the total excess mortality. For this purpose we extend flexible parametric survival models for relative survival, which use restricted cubic splines for the baseline cumulative excess hazard and for any time-dependent effects. Methods: In the extended model we partition the excess mortality associated with a diagnosis of cancer through estimating a separate baseline excess hazard function for the outcomes under investigation. This is done by incorporating mutually exclusive background mortality rates, stratified by the underlying causes of death reported in the Swedish population, and by introducing cause of death as a time-dependent effect in the extended model. This approach thereby enables modeling of temporal trends in e.g., excess cardiovascular mortality and remaining cancer excess mortality simultaneously. Furthermore, we illustrate how the results from the proposed model can be used to derive crude probabilities of death due to the component parts, i.e., probabilities estimated in the presence of competing causes of death. Results: The method is illustrated with examples where the total excess mortality experienced by patients diagnosed with breast cancer is partitioned into excess cardiovascular mortality and remaining cancer excess mortality. Conclusions: The proposed method can be used to simultaneously study disease patterns and temporal trends for various causes of cancer-consequent deaths. Such information should be of interest for patients and clinicians as one way of improving prognosis after cancer is through adapting treatment strategies and follow-up of patients towards reducing the excess mortality caused by side effects of the treatment.
DOI Link: 10.1186/1471-2288-12-86
eISSN: 1471-2288
Version: Publisher Version
Status: Peer-reviewed
Type: Journal Article
Rights: Copyright © 2012 Eloranta et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Description: PMCID: PMC3526518
Appears in Collections:Published Articles, Dept. of Health Sciences

Files in This Item:
File Description SizeFormat 
10.1186_1471-2288-12-86.pdfPublished (publisher PDF)1.26 MBAdobe PDFView/Open

Items in LRA are protected by copyright, with all rights reserved, unless otherwise indicated.