Please use this identifier to cite or link to this item:
Title: Variable glacier response to atmospheric warming, northern Antarctic Peninsula, 1988-2009
Authors: Davies, B.J.
Carrivick, J.L.
Glasser, N.F.
Hambrey, M.J.
Smellie, John L.
First Published: 2012
Publisher: Copernicus Publications on behalf of the European Geosciences Union
Citation: Cryosphere, 2012, 6 (5), pp. 1031-1048
Abstract: The northern Antarctic Peninsula has recently exhibited ice-shelf disintegration, glacier recession and acceleration. However, the dynamic response of land-terminating, ice-shelf tributary and tidewater glaciers has not yet been quantified or assessed for variability, and there are sparse data for glacier classification, morphology, area, length or altitude. This paper firstly classifies the area, length, altitude, slope, aspect, geomorphology, type and hypsometry of 194 glaciers on Trinity Peninsula, Vega Island and James Ross Island in 2009 AD. Secondly, this paper documents glacier change 1988-2009. In 2009, the glacierised area was 8140±262 km2. From 1988-2001, 90% of glaciers receded, and from 2001-2009, 79% receded. This equates to an area change of -4.4% for Trinity Peninsula eastern coast glaciers, -0.6% for western coast glaciers, and -35.0% for ice-shelf tributary glaciers from 1988-2001. Tidewater glaciers on the drier, cooler eastern Trinity Peninsula experienced fastest shrinkage from 1988-2001, with limited frontal change after 2001. Glaciers on the western Trinity Peninsula shrank less than those on the east. Land-terminating glaciers on James Ross Island shrank fastest in the period 1988-2001. This east-west difference is largely a result of orographic temperature and precipitation gradients across the Antarctic Peninsula, with warming temperatures affecting the precipitation-starved glaciers on the eastern coast more than on the western coast. Reduced shrinkage on the western Peninsula may be a result of higher snowfall, perhaps in conjunction with the fact that these glaciers are mostly grounded. Rates of area loss on the eastern side of Trinity Peninsula are slowing, which we attribute to the floating ice tongues receding into the fjords and reaching a new dynamic equilibrium. The rapid shrinkage of tidewater glaciers on James Ross Island is likely to continue because of their low elevations and flat profiles. In contrast, the higher and steeper tidewater glaciers on the eastern Antarctic Peninsula will attain more stable frontal positions after low-lying ablation areas are removed, reaching equilibrium more quickly.
DOI Link: 10.5194/tc-6-1031-2012
ISSN: 1994-0416
eISSN: 1994-0424
Version: Publisher Version
Status: Peer-reviewed
Type: Journal Article
Rights: Copyright © the authors, 2012. This is an open-access article distributed under the terms of the Creative Commons Attribution License ( ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Appears in Collections:Published Articles, Dept. of Geology

Files in This Item:
File Description SizeFormat 
10.5194_TC-6-1031-2012.pdfPublished (publisher PDF)4.35 MBAdobe PDFView/Open

Items in LRA are protected by copyright, with all rights reserved, unless otherwise indicated.